2026/02/04 19:41 1/57 LCE405 - Command Line Interface

Version : 2023.01

Updated : 2023/07/27 13:56

LCE405 - Command Line Interface

Contents

e LCE405 - Command Line Interface
o Contents
o The Shell
o /bin/bash
= |nternal And External Commands
= Aliases
= The Prompt
= The history Command
The TAB key
Metacharacters
Protecting Metacharacters
Exit Status
Redirections
Pipes
Command Substitution
= Conditional Command Execution
o Environment Variables
» Principal Variables
= |nternationalisation and Localisation
= Special Variables
= The env Command
o Bash Shell Options
= noclobber

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 2/57 LCE405 - Command Line Interface

= noglob
* nounset
o Basic Shell Scripting
= Execution
» The read command
* The test Command
* The [[expression]] Command
= Shell Operators
= The expr Command
» The let Command
Control Structures
Loops
Start-up Scripts
LAB #1 - Start-up Scripts

The Shell

A shell is a Command Line Interpreter (C.L.I). It is used to give instructions or commands to the operating system (OS).

The word shell is generic. There are many shells under Unix and Linux such as:

Shell|[Name Release Date|Inventer Command|/Comments

tsh Thompson Shell 1971 Ken Thompson |sh The first shell

sh |Bourne Shell 1977 Stephen Bourne|sh The shell common to all Unix and Linux OSs: /bin/sh

csh |C-Shell 1978 Bill Joy csh The BSD shell: /bin/csh

tcsh [Tenex C-Shell 1979 Ken Greer tcsh A fork of the csh shell: /bin/tcsh

ksh |Korn Shell 1980 David Korn ksh Open Source since 2005: /bin/ksh

bash |Bourne Again Shell|1987 Brian Fox bash The default shell for Linux, MacOS X, Solaris 11: /bin/bash

In RHEL/CentOS 8 /bin/sh is a soft link to /bin/bash :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 3/57 LCE405 - Command Line Interface

[trainee@centos8 ~]$ 1ls -1 /bin/sh
lrwxrwxrwx. 1 root root 4 Jul 21 2020 /bin/sh -> bash

/bin/bash

This unit covers the /bin/bash shell. The /bin/bash shell allows you to:

Recall previously typed commands
Auto-generate the end of a file name

Use Aliases

Use tables

Use C language numerical and math variables
Manage strings

Use Functions

A command always starts with a keyword. This keyword is interpreted by the shell, in the order shown, as one of the following:

¢ An Alias,

¢ A Function,

¢ A Built-in Command,

¢ An External Command.

Internal And External Commands

The /bin/bash shell comes with a set of built-in or internal commands. External commands are executable binaries or scripts generally found in one of
the following directories:

[trainee@centos7 ~]$ type cd
cd is a shell builtin

External commands are either binaries or scripts that can be found in /usr/bin or /usr/sbin:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 4/57 LCE405 - Command Line Interface

[trainee@centos8 ~]$ type cd
cd is a shell builtin

Aliases

Aliases are strings that are aliased to a command, a command and some options or even several commands. Aliases are specific to the shell in which
they are created and unless specified in one of the start-up files, they disappear when the shell is closed:

[trainee@centos8 ~]$ type ls
1s is aliased to "ls --color=auto'

Important: Note that the Is alias is an alias to the Is command itself.

An alias is defined using the alias command:

[trainee@centos8 ~]$ alias dir='ls -1'
[trainee@centos8 ~]$ dir

total ©

-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 aac
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 abc
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 bca
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 xyz

| Important: Note that dir exists as a command. By creating an alias of the same name,
£.% . the alias will be executed in place of the command.

The list of currently defined aliases is obtained by using the alias command with no options:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41

5/57

LCE405 - Command Line Interface

[trainee@centos8 ~]$ alias
alias dir='1ls -1’

alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias 1.='ls -d .* --color=auto'
alias ll='ls -1 --color=auto’
alias ls='ls --color=auto'

alias vi='vim'

alias which="'(alias; declare -f) | /usr/bin/which --tty-only --read-alias --read-functions --show-tilde --show-

dot'

alias xzegrep='xzegrep --color=auto'
alias xzfgrep='xzfgrep --color=auto'’
alias xzgrep='xzgrep --color=auto’
alias zegrep='zegrep --color=auto'
alias zfgrep='zfgrep --color=auto’
alias zgrep='zgrep --color=auto'

/> Important: In the above list you can see, without distinction, the system wide aliases
‘1 . created by system start up scripts and the user created alias dir. The latter is only
available for trainee and will disappear when the current session is terminated.

To force the shell to use the command and not the alias, you can precede the command with the \ character:

[trainee@centos8 ~1$ \dir
aac abc bca xyz

To delete an alias, simply use the unalias command:

[trainee@centos8 ~]$ unalias dir
[trainee@centos8 ~]$ dir

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 6/57 LCE405 - Command Line Interface

aac abc bca xyz
Each user's shell is defined by root in the /etc/passwd file:

[trainee@centos8 ~]$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:1p:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin

ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin

dbus:x:81:81:System message bus:/:/sbin/nologin

systemd-coredump:x:999:997:systemd Core Dumper:/:/sbin/nologin
systemd-resolve:x:193:193:systemd Resolver:/:/sbin/nologin

tss:x:59:59:Account used by the trousers package to sandbox the tcsd daemon:/dev/null:/sbin/nologin
polkitd:x:998:996:User for polkitd:/:/sbin/nologin

unbound:x:997:994:Unbound DNS resolver:/etc/unbound:/sbin/nologin
libstoragemgmt:x:996:993:daemon account for libstoragemgmt:/var/run/lsm:/sbin/nologin
cockpit-ws:x:995:991:User for cockpit-ws:/nonexisting:/sbin/nologin
sssd:x:994:990:User for sssd:/:/sbin/nologin
setroubleshoot:x:993:989::/var/lib/setroubleshoot:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
chrony:x:992:988::/var/lib/chrony:/sbin/nologin

tcpdump:x:72:72::/:/sbin/nologin

trainee:x:1000:1000:trainee:/home/trainee:/bin/bash

cockpit-wsinstance:x:991:987:User for cockpit-ws instances:/nonexisting:/sbin/nologin
rngd:x:990:986:Random Number Generator Daemon:/var/lib/rngd:/sbin/nologin

www.ittraining.team - https://www.ittraining.team/

7/57 LCE405 - Command Line Interface

2026/02/04 19:41

gluster:x:989:985:GlusterFS daemons:/run/gluster:/sbin/nologin
gemu:x:107:107:gemu user:/:/sbin/nologin

rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
saslauth:x:988:76:Saslauthd user:/run/saslauthd:/sbin/nologin

radvd:x:75:75:radvd user:/:/sbin/nologin
dnsmasq:x:983:983:Dnsmasq DHCP and DNS server:/var/lib/dnsmasq:/sbin/nologin

However, each user can change his shell using the chsh command. The shells available to users are listed in the /etc/shells file:

[trainee@centos8 ~]$ cat /etc/shells
/bin/sh

/bin/bash

/usr/bin/sh

/usr/bin/bash

Now use the echo command to view the contents of the system variable SHELL for your current session:

[trainee@centos8 ~]$ echo $SHELL
/bin/bash

| Important : Note that when using RHEL/CentOS 7 the output shows that trainee's shell is
& /bin/bash and not /usr/bin/bash. This is because /bin is a soft link to /usr/bin.

[

Now change your shell to /bin/sh using the chsh command

[trainee@centos8 ~]$ chsh
Changing shell for trainee.
New shell [/bin/bash]
/bin/sh

Password: trainee

www.ittraining.team - https://www.ittraining.team/

8/57 LCE405 - Command Line Interface

2026/02/04 19:41

Shell changed.

Important: Note that the password will not be printed to standard output.

. u
-

Now check your current shell:

[trainee@centos8 ~]$ echo $SHELL
/bin/bash

At first glance nothing has happened. However if you view your entry in the /etc/passwd file you will notice that your login shell has changed:

[trainee@centos8 ~]$ cat /etc/passwd | grep trainee
trainee:x:1000:1000:trainee:/home/trainee:/bin/sh

Important : The /bin/sh shell will be your active shell the next time you login.

. u
-

Now change your shell back to /bin/bash using the chsh command:

[trainee@centos8 ~]$ chsh
Changing shell for trainee.
New shell [/bin/sh]: /bin/bash
Password: trainee

Shell changed.

Important: Note that the password will not be printed to standard output.

F.]
_—)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41

9/57

LCE405 - Command Line Interface

The Prompt

As you have already noticed, the prompt under Linux is different for a normal user and root:

e $ for a user,
e # for root.

The history Command

/bin/bash keeps track of commands that have been previously executed. To access the command history, use the following command:

[trainee@centos8 ~]$ history | more

su -
exit

su -

nmcli ¢ show
stty -a

date

who

df

df -h

free free -h
free

free -h
whoami

su -

pwd

cd /tmp

pwd

1s

su -

touch test

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 10/57 LCE405 - Command Line Interface

21 1s

22 echo fenestros

23 cp test ~
--More- -

o

! . Important: The history is specific to each user.

The history command uses emacs style control characters. As a result you can navigate through the list as follows:

Control Character Action
[CTRL]-[P] (= Up Arrow) |Navigates backwards through the list
[CTRL]-[N] (= Down Arrow)|Navigates forwards through the list

To move around in the history:

Control Character/Action

[CTRL]-[A] Move to the beginning of the line
[CTRLI-[E] Move to the end of the line

[CTRL]-[B] Move one character to the left
[CTRL]-[F] Move one character to the right
[CTRL]-[D] Delete the character under the cursor

Pour rechercher dans I'historique il convient d'utiliser les touches :

Control Character|Action

[CTRL]-[R] string |Search backwards for string in the history. Using [CTRL]-[R] again will search for the previous occurence of string
[CTRL]-[S] string |Search forwards for string in the history. Using [CTRL]-[S] again will search for the next occurence of string
[CTRL]-[G] Quit the search mode

It is also possible to recall the last command executed by using the !! characters:

www.ittraining.team - https://www.ittraining.team/

11/57 LCE405 - Command Line Interface

2026/02/04 19:41

[trainee@centos8 ~1$ 1s
aac abc bca xyz
[trainee@centos8 ~]$!!

1s
aac abc bca xyz

Alternatively, to execute a command in the list, you can use the list number preceded by the ! character:

[trainee@centos8 ~]$ history
1 su -

80 history | more

81 1s
82 history
[trainee@centos8 ~]$!81

ls
aac abc bca xyz

The environmental variables associated with the history are set system-wide in the /etc/profile file:

[trainee@centos8 ~]$ cat /etc/profile | grep HISTSIZE

HISTSIZE=1000
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

As you can see, in the previous case the HISTSIZE value is set to 1000. This means that the last 1,000 commands are held in the history.
The history command stores data in the ~/.bash_history file for each user. The commands for the current bash session are stored in the file when the
session is closed:

[trainee@centos8 ~]$ nl .bash history | tail

54 1s

55 1s | sort

56 1s | sort -r

57 more /etc/services

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 12/57

LCE405 - Command Line Interface

58 Tless /etc/services

59 find acc

60 find aac

61 su -

62 sleep 10

63 su -

3 contents of .bash_history file.

The TAB key

/bin/bash can auto-generate the end of a file name. Consider the following example:

| Important : Note the use of the nl command to number the lines in the output of the

$ Us .b [Tab][Tab][Tab]

By hitting the Tib| key three times, the system shows you the files that match:

[trainee@centos8 ~]$ 1s .bash

.bash history .bash logout .bash profile

This same technique can also be used to auto-generate command names. Consider the following example:

/= Important : Notez qu'en appuyant sur la touche Tab| trois fois le shell propose 4
/ &+ possibilités de complétion de nom de fichier. En effet, sans plus d'information, le shell ne
sait pas quel fichier est concerné.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41

13/57

LCE405 - Command Line Interface

$ mo [Tab][Tab]

By hitting the Tab| twice the system lists all known commands available to the user and starting with mo:

[trainee@centos8 ~]$ mo

modinfo more mount.nfs4
modprobe mount mountpoint
modulemd-validator mount. fuse mountstats

modulemd-validator-vl mount.nfs

Metacharacters

It is often necessary and desirable to be able to work with several files at one time as opposed to repeating the operation on each file individually. For
this reason, bash accepts the use of Metacharacters:

Metacharacter Description

* Matches one or more characters

? Matches a single character

[abc] Matches any one of the characters between square brackets
[!abc] Matches any character except those between square brackets
[m-t] Matches any character from m through to t

['m-t] Matches any character other than m through to t

?(expressionl|expression2| ...)

Matches 0 or 1 occurence of expressionl OR 0 or 1 occurence of expression2 OR ...

*(expressionl|expression2| ...)

Matches 0 to x occurences of expressionl OR 0 to x occurences of expression2 OR ...

+(expressionl|expression2]| ...)

Matches 1 to x occurences of expressionl OR 1 to x occurences of expression2 OR ...

@(expressionl|expression2| ...)

Matches 1 occurrence of expressionl OR 1 occurence of expression2 OR ...

!(expressionl|expression2| ...)

Matches 0 occurrences of expressionl OR 0 occurrences of expression2 OR ...

To illustrate the use of Metacharacters, you need to create a directory in your home directory and the create some files within it:

[trainee@centos8 ~]$ mkdir

training

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 14/57 LCE405 - Command Line Interface

[trainee@centos8 ~]$ cd training
[trainee@centos8 training]$ touch f1 f2 f3 f4 5
[trainee@centos8 trainingl$ 1s

fl1 f2 f3 f4 15

The * Metacharacter

Now use the Metacharacter *:

[trainee@centos8 trainingl]$ echo f*
fl f2 f3 f4 f5

Important: Note that the * is used as a wild card which replaces 0 or more characters.

2 []
-

The ? Metacharacter

Create two more files:
[trainee@centos8 trainingl$ touch f52 62
Now use the Metacharacter ?:

[trainee@centos8 trainingl$ echo f?2
52 f62

Important: Note that the ? is used as a wild card which replaces a single character.

2 []
-

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 15/57 LCE405 - Command Line Interface

The [] Metacharacter

The [] Metacharacter can take several forms:

Metacharacter|Description

[xyz] Represents either x ory or z

[m-t]

['xyz] Represents any character other than x ory or z
['m-t] Represents any character outside of the range mto t

To demonstrate the use of the metacharacter [], create a file called a100:
[trainee@centos8 training]$ touch al0oO
The use of this Metacharacter can be demonstrated with the following examples:
[trainee@centos8 trainingl$ echo [a-f]*
aloo fl f2 f3 f4 f5 f52 62

[trainee@centos8 trainingl]$ echo [af]*
aleo f1 f2 f3 f4 f5 f52 62

Important: Note that all the files starting with either a, b, ¢, d, e or f are displayed.

4 L] "
-

[trainee@centos8 training]$ echo ['al*
fl f2 f3 f4 f5 52 62

J_,:’r| " Important: Note that all the files in the directory are displayed except the file starting
&= witha.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 16/57 LCE405 - Command Line Interface

[trainee@centos8 trainingl$ echo [a-b]*
aloo

| Important: Note that only the file starting with a is displayed since no file starting with b

L% s present.

[trainee@centos8 trainingl$ echo [a-f]
[a-f]

| Important: Note that in the above example, since no file called a, b, ¢, d, e or f exists in

{22 the directory, the echo command simply returns the filter used.

The extglob Option

In order to use ?(expression), *(expression), +(expression), @(expression) and !(expression), you need to activate the extglob option:
[trainee@centos8 training]$ shopt -s extglob

The shopt command is used to activate and deactivate the shopt option of the shell.

The list of all the options can be displayed by simply using the shopt command:

[trainee@centos8 trainingl$ shopt

autocd of f
cdable vars off
cdspell of f

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41

17/57

LCE405 - Command Line Interface

checkhash of f
checkjobs of f
checkwinsize on
cmdhist on
compat3l off
compat32 of f
compat40 of f
compat4l of f
direxpand off
dirspell off
dotglob off
execfail of f
expand aliases on
extdebug of f
extglob on
extquote on
failglob of f
force fignore on
globstar of f
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit of f
interactive comments
lastpipe off
lithist off
login_shell on
mailwarn of f
no _empty cmd completion off
nocaseglob of f
nocasematch of f
nullglob off

www.ittraining.team - https://www.ittraining.team/

LCE405 - Command Line Interface

2026/02/04 19:41 18/57
progcomp on
promptvars on

restricted shell off
shift verbose off
sourcepath on
xpg_echo of

?(expression)

Create the following files:

[trainee@centos8 training]$ touch f f.txt f123.txt f123123.txt f123123123.txt

Execute the following command:

[trainee@centos8 training]$ ls f?(123).txt
f123.txt f.txt

| Important: Note that the command displays file names that match 0 or 1 occurrences of

. the string 123.

*(expression)

Execute the following command:

[trainee@centos8 training]$ ls f*(123).txt

f123123123.txt f123123.txt f123.txt f.txt

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 19/57 LCE405 - Command Line Interface

| Important: Note that the command displays file names that match 0 to x occurrences of
the string 123.

+(expression)

Execute the following command:

[trainee@centos8 trainingl$ ls f+(123).txt
£123123123.txt f123123.txt f123.txt

| Important: Note that the command displays file names that match 1 to x occurrences of
. the string 123..

@(expression)

Execute the following command:

[trainee@centos8 trainingl$ ls f@(123).txt
f123.txt

| Important: Note that the command displays file names that match 1 occurrence of the

=, string 123.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 20/57 LCE405 - Command Line Interface

!(expression)

Execute the following command:

[trainee@centos8 trainingl$ ls f!(123).txt
£123123123.txt f123123.txt f.txt

Fa

| Important: Note that the command displays file names that match 0 or x occurrences of

£.% % the string 123, where x>1.

Protecting Metacharacters

To cancel the wild card effect of a special character, the character needs to be escaped or “protected”:

Character|Description

\ Escapes the character which immediately follows

v Protects any character between the two '

“r Protects any character between the two “ except the following: $,\ and '

For example:

[trainee@centos8 training]$ echo * is a metacharacter
aloo f f1 f123123123.txt f123123.txt f123.txt f2 f3 f4 f5 f52 f62 f.txt est un caractere spécial

[trainee@centos8 training]$ echo * is a metacharacter
* 1is a metacharacter

[trainee@centos8 training]$ echo "* is a metacharacter"
* is a metacharacter

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 21/57 LCE405 - Command Line Interface

[trainee@centos8 training]$ echo '* is a metacharacter'
* is a metacharacter

Exit Status

Each command returns an exit status when it is executed. This exit status is stored in a special variable: $?.

For example:

[trainee@centos8 training]$ cd

[trainee@centos8 ~]$ mkdir codes

[trainee@centos8 ~]$ echo $7?

0

[trainee@centos8 ~]$ touch codes/exit.txt
[trainee@centos8 ~]$ rmdir codes

rmdir: failed to remove ‘codes’: Directory not empty
[trainee@centos8 ~]$ echo $7?

1

As you can see when the exit status is 0, the command has executed correctly. If the exit status is anything else, the command has executed with
errors.

Redirections

Your dialogue with the system uses three file descriptors:

e Standard Input - the keyboard,
e Standard output - the screen,
e Standard error - contains any eventual errors.

The standard output can be redirected using the > character:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 22/57

LCE405 - Command Line Interface

[trainee@centos8 ~]$ pwd

/home/trainee

[trainee@centos8 ~]$ cd training
[trainee@centos8 trainingl]$ free > file
[trainee@centos8 trainingl$ cat file

total used free shared buff/cache available
Mem: 500780 192692 38916 4824 269172 260472
Swap: 2096124 0 2096124

Important: If the file does not exist, it is automatically created.

2 []
-

Repeating a single redirection will replace the file:

[trainee@centos8 training]$ date > file
[trainee@centos8 trainingl$ cat file
Mon 28 Nov 15:48:09 CET 2016

To add additional data to the file, you need to use a double redirection:

[trainee@centos8 trainingl$ free >> file
[trainee@centos8 training]$ cat file
Mon 28 Nov 15:48:09 CET 2016

total used free shared buff/cache available
Mem: 500780 192792 38516 4824 269472 260376
Swap: 2096124 0 2096124

. []
-

Important : Note that standard output can only be redirected to a single destination.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 23/57 LCE405 - Command Line Interface

File descriptors are numbered for ease of use :

e 0 = Standard Input
e 1 = Standard Output
e 2 = Standard Error

For example:

[trainee@centos8 training]$ cd

[trainee@centos8 ~]$ rmdir training/ 2>errorlog
[trainee@centos8 ~]$ cat errorlog

rmdir: failed to remove ‘training/’: Directory not empty

L]

Important: As you can see the error generated is redirected to the errorlog file.

You can join file descriptors using the & character:
[trainee@centos8 ~]$ free > file 2>81

Any errors are sent to the same destination as the standard output, in the case, file.

It is also possible to have a reverse redirection:

[trainee@centos8 ~]$ wc -w < errorlog
8

In this case wc -w counts the number of words in the file.

Other redirections exist :

www.ittraining.team - https://www.ittraining.team/

LCE405 - Command Line Interface

2026/02/04 19:41 24/57
Redirection|Definition

&> Join file descriptors 1 and 2.

<< Takes the text typed on the next lines as standard input until EOF is found at the beginning of a line.
<> Allows the use of the same file as STDIN and STDOUT.

Pipes

A pipe is used to present the standard output on the first command to the standard input of the second command

[trainee@centos8 ~]$ ls | wc -w

7

N

4 N
AT\

/ a . Important - Several pipes can be used within the same command.

Standard output can generaly only be redirected to a single destination. To redirect to two destinations at once, you need to use the tee command:

[trainee@centos8 ~]$ date | tee filel
Tue 20 Apr 10:39:47 EDT 2021
[trainee@centos8 ~]$ cat filel

Tue 20 Apr 10:39:47 EDT 2021

Alternatively,

tee can be used to redirect to two files at the same time:

[trainee@centos8 ~]$ date | tee filel > file2
[trainee@centos8 ~1$ cat filel

Tue 20 Apr 10:40:36 EDT 2021

[trainee@centos8 ~]$ cat file2

Tue 20 Apr 10:40:36 EDT 2021

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 25/57 LCE405 - Command Line Interface

| Important : The default action of the tee command is to overwrite the destination file. In
&% order to append output to the same file, you need to use the -a switch.

Command Substitution

Command substitution permits in-line execution of a command:

[trainee@centos8 ~]$ echo date
date

[trainee@centos8 ~]$ echo $(date)
Tue 20 Apr 10:41:33 EDT 2021
[trainee@centos8 ~]$ echo “date’
Tue 20 Apr 10:41:45 EDT 2021

Conditional Command Execution

Commands can be grouped using brackets:
$ (ls -1; ps; who) > list [Entrée]
Conditional command execution can be obtained by using the exit status value and either && or ||.

For example,

e Commandl && Command2,
o Command2 will execute if the exit status of Command1 is 0,
e Commandl || Command2,
o Command2 will execute if the exit status of Command1l anything other than 0.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41

26/57

Environment Variables

The contents of a shell variable can be displayed on standard output using the echo command:

$ echo $VARIABLE [Enter]

Principal Variables

Variable Description
BASH Complete path to current shell.
BASH_VERSION Shell version.

EUID

EUID of the current user.

uiD UID of the current user.

PPID PID of the parent of the current process.

PWD The current directory.

OLDPWD The previous current directory (like the ¢d -command).
RANDOM A random number between 0 and 32767.

SECONDS The numbers of seconds since the shell was started.
LINES The number of lines in a screen.

COLUMNS The number of columns in a screen .

HISTFILE The history file.

HISTFILESIZE The history file size.

HISTSIZE The number of commands that can be saved to the history file.
HISTCMD The current command's number in the History.
HISTCONTROL ignorespace or ignoredups or ignoreboth

HOME The user's home directory.

HOSTTYPE Machine type.

OSTYPE The OS type.

MAIL The file containing the user's mail.

MAILCHECK Frequency in seconds that a user's mail is checked.

www.ittraining.team - https://www.ittraining.team/

LCE405 - Command Line Interface

LCE405 - Command Line Interface

2026/02/04 19:41 27/57
Variable Description

PATH The paths to executables.

PROMPT_COMMAND|Command executed before each prompt is displayed.

PS1 User's default prompt.

PS2 User's 2nd level default prompt.

PS3 User's 3rd level prompt.

PS4 User's 4th level prompt.

SHELL User's current shell.

SHLVL The number of shell instances.

TMOUT The number of seconds less 60 before an unused terminal gets sent the exit command.

Internationalisation and Localisation

Internationalisation, also called i18n since there are 18 letters between the I and n, consists of modifying software so that it conforms to regional

parameters:

e Text processing differences,
e Writing direction,

Paper sizes,

etc ...

Different systems of numerals,

Telephone numbers, addresses and international postal codes,
Weights and measures,

Date/time format,

Keyboard layout,

Localisation, also called L10n since there are 10 letters between the L and n, consists of modifying the Internationalisation so that it conforms to a

specific locale:

e en_GB = Great Britain,

e en US = USA,

e en AU = Australia,
e en_NZ = New Zealand,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 28/57

LCE405 - Command Line Interface

e en_ZA = South Africa,
e en_CA = Canada.

The most important variables are:
[trainee@centos8 ~]$ echo $LC ALL
[trainee@centos8 ~]$ echo $LC CTYPE

[trainee@centos8 ~1$ echo $LANG
en GB.UTF-8

[trainee@centos8 ~]$ locale
LANG=en GB.UTF-8

LC CTYPE="en GB.UTF-8"

LC NUMERIC="en GB.UTF-8"

LC TIME="en GB.UTF-8"

LC COLLATE="en GB.UTF-8"

LC MONETARY="en GB.UTF-8"

LC MESSAGES="en GB.UTF-8"

LC PAPER="en GB.UTF-8"

LC NAME="en GB.UTF-8"

LC ADDRESS="en GB.UTF-8"

LC TELEPHONE="en GB.UTF-8"
LC_MEASUREMENT="en GB.UTF-8"

LC IDENTIFICATION="en GB.UTF-8"
LC ALL=

Special Variables

Variable Description

$LINENO |Contains the current line number of the script or function being executed

$$ Contains the PID of the current process

$PPID Contains the PID of the parent of the current process

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 29/57 LCE405 - Command Line Interface

Variable Description

$0 Contains the name of the current script

$1, $2 ... |Contains respectively the 1st, 2nd etc arguments passed to the script
$# Contains the total number of arguments passed to the script

$* Contains all of the arguments passed to the script

$@ Contains all of the arguments passed to the script

The env Command

The env command can be used to run a program in a modified environment or just list the values of all environmental variables associated with the
user calling the program env:

[trainee@centos8 ~1$ env

LS COLORS=rs=0:di=38;5;33:1n=38;5;51:mh=00:pi=40;38;5;11:50=38;5;13:d0=38;5;5:bd=48;5;232;38;5;11:cd=48;5;232;38;
5;3:0r=48;5;232;38;5;9:mi=01;05;37;41:5u=48;5;196;38;5;15:59=48;5;11;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5
;16:0w=48;5;10;38;5;21:5t=48;5;21;38;5;15:ex=38;5;40:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj=38;5;9:*.taz=38
:5:9:%,1ha=38;5;9:*%.12z4=38;5;9:*.1zh=38;5;9:*.1zma=38;5;9:*.t1z=38;5;9:*.txz=38;5;9:*.tz0=38;5;9:*.t72z=38;5;9:*.z
ip=38;5;9:*.2z=38;5;9:*.dz=38;5;9:*.9z=38;5;9:*.1rz=38;5;9:*.12=38;5;9:*.120=38;5;9: *.xz=38;5;9:*.zst=38;5;9:*.tzs
t=38;5;9:*.bz2=38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*.1z=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9:*
.war=38;5;9:*.ear=38;5;9:*.5ar=38;5;9:*.rar=38;5;9:*.alz=38;5;9:*.ace=38;5;9:*.200=38;5;9:*.cpio=38;5;9:*.7z=38;5
;9:*%.rz=38;5;9:*.cab=38;5;9:*.wim=38;5;9:*.swm=38;5;9:*.dwm=38;5;9:*.esd=38;5;9:*. jpg=38;5;13:*.jpeg=38;5;13:*.mj
pg=38;5;13:*.mjpeg=38;5;13:*.9if=38;5;13:*.bmp=38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;13:*.tga=38;5;13: *.
xbm=38;5;13:*.xpm=38;5;13:*.tif=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38;5;13:*.svgz=38;5;13:*.mng=38;5;13:*
.pcx=38;5;13:*.mov=38;5;13:*.mpg=38;5;13:*.mpeg=38;5;13:*.m2v=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.0gm=38;5;13:
* . mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:*.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38;5;13:*.asf=38;5;13:*
.rm=38;5;13:*.rmvb=38;5;13:*.flc=38;5;13:*.avi=38;5;13:*.fli=38;5;13:*.flv=38;5;13:*.9g1=38;5;13:*.d1=38;5;13:*.xcC
f=38;5;13:*.xwd=38;5;13:*.yuv=38;5;13:*.cgm=38;5;13:*.emf=38;5;13:*.0gv=38;5;13:*.09x=38;5;13:*.aac=38;5;45:*.au=
38;5;45:*.flac=38;5;45:*.m4a=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38;5;45:*.mp3=38;5;45:* . mpc=38;5;45:*.09g
=38;5;45:*.ra=38;5;45:*.wav=38;5;45:*.0ga=38;5;45:*.0pus=38;5;45:*.s5px=38;5;45:*.xspf=38;5;45:

SSH CONNECTION=10.0.2.2 42834 10.0.2.15 22

LANG=en GB.UTF-8

HISTCONTROL=ignoredups

GUESTFISH RESTORE=\e[Om

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 30/57

LCE405 - Command Line Interface

HOSTNAME=centos8.ittraining. loc
GUESTFISH INIT=\e[1;34m
XDG_SESSION ID=9

USER=trainee

GUESTFISH PS1=\[\e[1;32m\]><fs>\[\e[0;31m\]
SELINUX ROLE REQUESTED=
PWD=/home/trainee
HOME=/home/trainee

SSH CLIENT=10.0.2.2 42834 22
SELINUX LEVEL REQUESTED=

SSH TTY=/dev/pts/0
MAIL=/var/spool/mail/trainee
TERM=xterm-256color
SHELL=/bin/bash
SELINUX USE CURRENT RANGE=
SHLVL=1

LOGNAME=trainee

DBUS_SESSION BUS ADDRESS=unix:path=/run/user/1000/bus

XDG_RUNTIME DIR=/run/user/1000

PATH=/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

GUESTFISH OUTPUT=\e[Om
HISTSIZE=1000
LESSOPEN=| | /usr/bin/lesspipe.sh %s
_=/usr/bin/env
OLDPWD=/home/trainee/training

To run a program, such as xterm in a modified environment the command is:

$ env EDITOR=vim xterm

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 31/57 LCE405 - Command Line Interface

Bash Shell Options

To view all the options of the bash shell, use the command set:

[trainee@centos8 ~]$ set -o

allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off
noglob off
nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 32/57 LCE405 - Command Line Interface

To turn on an option you need to specify which option as an argument to the previous command:

[trainee@centos8 ~]$ set -o allexport
[trainee@centos8 ~]$ set -0

allexport on

braceexpand on

To turn off an option, use set with the +o0 option:

[trainee@centos8 ~]$ set +o0 allexport
[trainee@centos8 ~]$ set -0
allexport of f

braceexpand on

These are the most interesting options:

Option |Default value|Description

allexport |off The shell automatically exports all variables

emacs [on emacs editing mode

noclobber|off Simple re-directions do not squash the target file if it exists
noglob |off Turns off special characters

nounset |off The shell will return an error if the variable is not set
verbose |off Echos back the typed command

Vi off vi editing mode

noclobber

[trainee@centos8 ~]$ set -o noclobber
[trainee@centos8 ~]$ pwd > file

-bash: file: cannot overwrite existing file
[trainee@centos8 ~]$ pwd > file

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 33/57 LCE405 - Command Line Interface

-bash: file: cannot overwrite existing file
[trainee@centos8 ~]$ pwd >| file
[trainee@centos8 ~]$ set +o0 noclobber

Important : Note that the noclobber option can be overidden by using a pipe.

2 []
-

noglob

[trainee@centos8 ~]$ set -o noglob

[trainee@centos8 ~]$ echo *

%

[trainee@centos8 ~]$ set +0 noglob

[trainee@centos8 ~]$ echo *

aac abc bca codes Desktop Documents Downloads errorlog file filel Music Pictures Public Templates training Videos

vitext xyz

! > Important : Note that metacharacters are turned off when the noglob option is set.

-

nounset

[trainee@centos8 ~]$ set -0 nounset
[trainee@centos8 ~]$ echo $FENESTROS
-bash: FENESTROS: unbound variable
[trainee@centos8 ~1$ set +0 nounset
[trainee@centos8 ~]$ echo $FENESTROS

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 34/57

LCE405 - Command Line Interface

[trainee@centos8 ~1%

| Important : Note that the inexistant variable $FENESTROS is identified as such when the
nounset option is set.

Basic Shell Scripting

Execution

A script is a text file that is read by the system and it's contents executed. There are five ways to execute a script:
By stipulating the shell that will execute the script:

/bin/bash myscript

by a reverse redirection:

/bin/bash < myscript

By calling the script by it's name, provided that the script is executable and that it resides in a directory specified by your path :

myscript
By placing yourself in the directory where the script resides and using one of the two following possibilities :

. myscript et ./myscript

Important: In the first case the script is executed in the parent shell. In the second case

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 35/57

LCE405 - Command Line Interface

u
.

the script is executed in a child shell.

Comments in a script are lines starting with #. However, each script starts with a pseudo-comment that informs the system which shell should be used

to execute the script:

#!/bin/sh

Since a script in it's simplest form is a list of commands that are sequentially executed, it is often useful to test those command prior to writing the
script> Linux has a command that can help you debug a future script. The script command can be used to generate a log file, called typescript, that

contains a record of everything occurred on standard output. To exit the recording mode, use exit:

[trainee@centos8 ~]$ script

Script started, file is typescript
[trainee@centos8 ~1$ pwd

/home/trainee

[trainee@centos8 ~1$ 1s

aac abc bca codes errorlog file filel file2
[trainee@centos8 ~]$ exit

exit

Script done, file is typescript

[trainee@centos8 ~]$ cat typescript

Script started on 2021-04-20 10:59:58-04:00
[trainee@centos8 ~]$ pwd

/home/trainee

[trainee@centos8 ~]$ s

aac abc bca codes errorlog file filel file2
[trainee@centos8 ~1$ exit

exit

Script done on 2021-04-20 11:00:09-04:00

training typescript

training typescript

XyZz

XyZz

www.ittraining.team - https://www.ittraining.team/

LCE405 - Command Line Interface

36/57

2026/02/04 19:41
Lets start by creating a simple script called myscript:

[trainee@centos8 ~]$ vi myscript
[trainee@centos8 ~]$ cat myscript

pwd
1s

Save the file and use the five ways to execute it.

As an argument de /bin/bash:

[trainee@centos8 ~]$ /bin/bash myscript

/home/trainee
aac bca errorlog filel myscript typescript

abc codes file file2 +training xyz
Using a redirection:
[trainee@centos8 ~]$ /bin/bash < myscript

/home/trainee
aac bca errorlog filel myscript typescript

abc codes file file2 +training xyz

In order to be able to call the script by it's name from another directory, such as /tmp, you need to move the script into the /home/trainee/bin
directory and make it executable. Note that in this case, the the value of the environmental variable $PATH should contain a reference to

/home/trainee/bin:

[trainee@centos8 ~]$ echo $PATH
/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin
In the case of RHEL/CentOS, even though PATH contains $HOME/bin, the directory is not present:

[trainee@centos8 ~]$ 1s
aac bca errorlog filel myscript typescript

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 37/57

LCE405 - Command Line Interface

abc codes file file2 training xyz
So you need to create the directory:

[trainee@centos8 ~]$ mkdir bin

Now you need to move the script to $HOME/bin and make it executable:

[trainee@centos8 ~]$ mv myscript ~/bin
[trainee@centos8 ~]$ chmod u+x ~/bin/myscript

Move to /tmp and can call the script by just using it's name:

[trainee@centos8 ~]$ cd /tmp
[trainee@centos8 tmp]$ myscript
/tmp

expand

expandl

filepartaa

filepartab

filepartac

filepartad

filepartae

greptest

greptestl

greptest.patch

newfile

sales.awk

sales.txt

scriptawk

sedtest

sedtestl

systemd-private-d9ff2376a8a44f0392f860d80c839bed-chronyd.service-6im4Ii

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 38/57 LCE405 - Command Line Interface

Now move back to ~/bin and use the following two commands to execute myscript:

[trainee@centos8 tmpl$ cd ~/bin
[trainee@centos8 bin]$./myscript
/home/trainee/bin

myscript

[trainee@centos8 bin]$. myscript
/home/trainee/bin

myscript

To do: Note the difference in the output of these two commands and explain that
&0 difference.

The read command

The read command reads the standard input and stores the information in the variables that are specified as arguments. The separator between fields
is a space, a tabultaion or a carriage return:

[trainee@centos8 bin]$ read varl var2 var3 var4d
fenestros edu is great!

[trainee@centos8 binl$ echo $varl

fenestros

[trainee@centos8 bin]$ echo $var2

edu

[trainee@centos8 bin]$ echo $var3

is

[trainee@centos8 binl$ echo $vard

great!

www.ittraining.team - https://www.ittraining.team/

39/57 LCE405 - Command Line Interface

2026/02/04 19:41

Important: Note that each field has been placed in a seperate variable. Note also that by
convention, user declared variables are in lower case in order to distinguish them from

system variables.

[trainee@centos8 bin]$ read varl var?2

fenestros edu is great!
[trainee@centos8 binl$ echo $varl

fenestros
[trainee@centos8 bin]$ echo $var2

edu is great!

Important: Note that in this case, $var2 contains three fields.

F. []
-

Exit Codes

The contents of a variable can also be empty:
[trainee@centos8 bin]$ read var

o Entrée|

[trainee@centos8 bin]$ echo $?

0
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]l$

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 40/57 LCE405 - Command Line Interface

But not null:
[trainee@centos8 bin]$ read var

cirl+o

[trainee@centos8 bin]$ echo $7?
1
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]l$
The IFS Variable

The IFS variable contains the default separator characters: SpaceBar, Tab s|and « Enter;

[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 A\t \n \n
0000004

/> Important: The od command (Octal Dump) returns the contents of a file in octal format.
.+ . The -c switch prints to standard output any ASCII characters or backslashes contained
within the file.

It is possible to change the contents of this variable:

[trainee@centos8 bin]$ OLDIFS="$IFS"
[trainee@centos8 bin]$ IFS=":"
[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 :\n

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 41/57 LCE405 - Command Line Interface

0000002
Now test the new configuration:

[trainee@centos8 bin]$ read varl var2 var3
fenestros:edu is:great!

[trainee@centos8 bin]$ echo $varl
fenestros

[trainee@centos8 binl$ echo $var2

edu is

[trainee@centos8 bin]$ echo $var3

great!

Restore the old value of IFS before proceeding further: IFS=“$OLDIFS”

[trainee@centos8 bin]$ IFS="$0OLDIFS"
[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 \t \n \n

0000004

The test Command

The test command uses two forms:
test expression

or

[SpaceBadexpression SpaceBar|]

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41

42/57

LCE405 - Command Line Interface

Testing Files

Test Description

-f file Returns true if file is an ordinary file
-d file Returns true if file is a directory

-r file Returns true if user can read file

-w file Returns true if user can write file

-x file Returns true if user can execute file
-e file Returns true if file exists

-s file Returns true if file is not empty

filel -nt file2|Returns true if filel is newer than file2
filel -ot file2|Returns true if filel is older than file2
filel -ef file2|Returns true if filel is identical to file2

Test whether the al00 file is an ordinary file:

[trainee@centos8 bin]$ cd ../training/
[trainee@centos8 trainingl$ test -f aloo
[trainee@centos8 training]$ echo $?

0

[trainee@centos8 trainingl$ [-f aloo]
[trainee@centos8 trainingl$ echo $?

0

i-"'f ! . Important: The value contained in $? is 0. This indicates true.

Test whether the al01 file is an ordinary file:

[trainee@centos8 trainingl$ [-f alOl]
[trainee@centos8 trainingl$ echo $?

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 43/57 LCE405 - Command Line Interface

1

| Important: The value contained in $? is 1. This indicates false. This is obvious since al01

£°® . does not exist.

Test whether /home/trainee/training is a directory:

[trainee@centos8 training]$ [-d /home/trainee/training |
[trainee@centos8 training]$ echo $7?
0

Testing Strings

Test Description
-n string Returns true if string is not zero in length
-z string Returns true if string is zero in length

stringl = string2 |Returns true if stringl is equal to string2
stringl != string2|Returns true if stringl is different to string2
stringl Returns true if stringl is not empty

Test whether two strings are indentical:

[trainee@centos8 training]$ stringl="root"
[trainee@centos8 training]$ string2="fenestros"
[trainee@centos8 trainingl]$ [$stringl = $string2]
[trainee@centos8 trainingl$ echo $?

1

:_'_A Important: The value contained in $? is 1. This indicates false.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41

44/57

LCE405 - Command Line Interface

Test if stringl is not zero in length:

[trainee@centos8 training]$ [-n $stringl]
[trainee@centos8 trainingl$ echo $?

0

&
/ a Important: The value contained in $? is 1. This indicates false.

Testing Numbers

Test

Description

valuel -eq value2

Returns true if valuel is equal to value2

valuel -ne value2

Returns true if valuel is not equal to value2

valuel -It value2

Returns true if valuel is less than value2

valuel -le value2

Returns true if valuel is less than or equal to value2

valuel -gt value2

Returns true if valuel is greater than value2

valuel -ge value2

Returns true if valuel is greater than or equal to value2

Compare the two numbers valuel and value2:

[trainee@centos8 training]$ read valuel

35

[trainee@centos8 trainingl$ read value2

23

[trainee@centos8 trainingl$ [$valuel -1t $value2]
[trainee@centos8 training]$ echo $7?

1

[trainee@centos8 trainingl]$ [$value2 -1t $valuel]
[trainee@centos8 trainingl$ echo $?

0

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 45/57 LCE405 - Command Line Interface

[trainee@centos8 trainingl$ [$value2 -eq $valuel]
[trainee@centos8 trainingl$ echo $?

1
Expressions
Test Description
lexpression Returns true if expression is false

expressionl -a expression2 Represents a logical OR between expressionl and expression2
expressionl -0 expression2|Represents a logical AND between expressionl and expression2
\(expression\) Parenthesis let you group together expressions

Test if $file is not a directory:

[trainee@centos8 trainingl]$ file=al00
[trainee@centos8 trainingl$ [! -d $file]
[trainee@centos8 trainingl$ echo $?

0

Test if $directory is a directory and if trainee can cd into it:

[trainee@centos8 trainingl$ directory=/usr

[trainee@centos8 training]$ [-d $directory -a -x $directory]
[trainee@centos8 training]$ echo $?

0

Test if trainee has the write permission for the al00 file and test if /usr is a directory or test if /tmp is a directory:
[trainee@centos8 trainingl]$ [-w ale® -a \(-d /usr -o -d /tmp \)]

[trainee@centos8 trainingl$ echo $?
0

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 46/57 LCE405 - Command Line Interface

Testing the User Environment

Test Description
-0 option|Returns true if the shell option “option” is on

[trainee@centos7 training]$ [-o allexport |
[trainee@centos7 training]$ echo $?
1

The [[expression]] Command

The [[SpaceBar_‘|expressionSpaceBad]] command is an improved test command with some minor changes to syntax:

Test Description

expressionl && expression2|Represents a logical OR between expressionl and expression2
expressionl || expression2 |Represents a logical AND between expressionl and expression2
(expression) Parenthesis let you group together expressions

and some additional operators :

Test Description

string = model |Returns true if string corresponds to model

string '= model |Returns true if string does not correspond to model
stringl < string2|Returns true if stringl is lexicographically before string2
stringl > string2|Returns true if stringl is lexicographically after string2

Test if trainee has the write permission for the al00 file and test if /usr is a directory or test if /tmp is a directory:

[trainee@centos8 training]$ [[-w al00 && (-d /usr || -d /tmp) 1]
[trainee@centos8 trainingl$ echo $?
0

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 47/57 LCE405 - Command Line Interface

Shell Operators

Operator Description
Commandl && Command2|Command?2 is executed if the exit code of Command1l is zero
Commandl || Command2 [Command?2 is executed is the exit code of Command1l is not zero

[trainee@centos8 trainingl]$ [[-d /root]] && echo "The root directory exists"
The root directory exists

[trainee@centos8 trainingl]$ [[-d /root]] || echo "The root directory exists"
[trainee@centos8 trainingl$

The expr Command

Theexpr command's syntax is as follows :

expr SpaceBad numberl SpaceBad operator SpaceBad number2 SpaceBad

ou
expr Tab <:>| numberl m operator Tab ‘:>| number2 < Ente[|
ou

expr SpaceBa[l string SpaceBad : SpaceBad regular_expression SpaceBar|

or

expr Tab s string Tab S| : Tab 5| regular_expression « Enter|

Maths

Operator Description
+ Addition

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 48/57

LCE405 - Command Line Interface

Operator|Description
- Subtraction

* Multiplication
/ Division

% Modulo

\(\) Parentheses

Comparisons

Operator Description

\< Less than

\<= Less than or equal to

\> Greater then

\>= Greater then or equal to
= Equal to

I= Not equal to

Logic

Operator|Description
\| Logical OR
\& Logical AND

Add two to the value of $x:

[trainee@centos8 trainingl$ x=2
[trainee@centos8 trainingl$ expr $x + 2
4

If the surrounding spaces are removed, the result is completely different:

[trainee@centos8 trainingl$ expr $x+2

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 49/57 LCE405 - Command Line Interface

2+2

Certain operators need to be protected:

[trainee@centos8 trainingl]$ expr $x * 2
expr: syntax error

[trainee@centos8 trainingl$ expr $x * 2
4

Now put the result of a calculation in a variable:

[trainee@centos8 trainingl]$ resultat= expr $x + 10°
[trainee@centos8 training]$ echo $resultat
12

The let Command

The let command is equivalent to ((expression)). The ((expression)) command provides the following additional features when compared with the expr
command :

e greater number of operators,

no need for spaces or tabulations between arguments,
no need to prefix variables with the $ character,

the shell's special characters do not need to be escaped,
e variables are defined directly in the command,

» faster execution time.

Maths

Operator|Description
+ Addition
- Subtraction

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41

50/57

LCE405 - Command Line Interface

Operator|Description
* Multiplication
/ Division

% Modulo

~ Power

Comparisons

Operator|Description

< Less than

<= Less than or equal to

> Greater then

>= Greater then or equal to
== Equal

= Not Equal

Logic

Operator Description

&& Logical AND

[l Logical OR

! Logical negation

Binary

Opérateur|Description

~ Binary negation

>> décalage binaire a droite
<< décalage binaire a gauche
& Binary AND

| Binary OR

Exclusive binary OR

www.ittraining.

team - https://www.ittraining.team/

2026/02/04 19:41 51/57

LCE405 - Command Line Interface

For example:

[trainee@centos8 trainingl]$ x=2
[trainee@centos8 trainingl$ ((x=$x+10))
[trainee@centos8 training]$ echo $x

12

[trainee@centos8 training]$ ((x=$x+20))
[trainee@centos8 trainingl]$ echo $x

32

Control Structures

If

The syntax is as follows:

if condition
then
command(s)
else
command(s)
fi

or:

if condition
then
command(s)
command(s)
fi

or finally:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 52/57 LCE405 - Command Line Interface

if condition
then

command(s)
elif condition
then

command(s)
elif condition
then

command(s)
else

command(s)

fi
As an example, create the following script called user_check:

[trainee@centos8 training]$ vi user check
[trainee@centos8 training]$ cat user check
#!/bin/bash
if [$# -ne 1] ; then

echo "Incorrect number of arguments"

echo "Usage : $0 user name"

exit 1
fi
if grep "7$1:" /etc/passwd > /dev/null
then

echo "User $1 has an account on this system"
else

echo "User $1 does not have an account on this system"
fi
exit 0

Test this script:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 53/57

LCE405 - Command Line Interface

[trainee@centos8 training]$ chmod 770 user check
[trainee@centos8 training]$./user check

Incorrect number of arguments

Usage : ./user check user name

[trainee@centos8 training]$./user check root

User root has an account on this system
[trainee@centos8 training]$./user_check mickey mouse
Incorrect number of arguments

Usage : ./user check user name

[trainee@centos8 training]$./user check "mickey mouse"
User mickey mouse does not have an account on this system

case

The syntax is as follows:

case $variable in
modell) function

..
r

model2) function

r

model3 | model4 | model5) function

..
r

esac
For example:

case "$1" in
start)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 54/57 LCE405 - Command Line Interface

start
stop)
stop

restart|reload)

stop
start
status)
status
*) r
echo $"Usage: $0 {start|stop|restart|status}"
exit 1
esac
Loops
for

The syntax is as follows:
for variable in variable list
do

command(s)
done

while

The syntax is as follows:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 55/57

LCE405 - Command Line Interface

while condition
do

command(s)
done

Example

U=1
while [$U -1t $MAX ACCOUNTS]
do

useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null

useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Account fenestros$U created"

let U=U+1

done

Start-up Scripts

When Bash is called as a login shell it executes the start-up scripts in the following order:

» /etc/profile,
e ~/.bash_profile or ~/.bash_login or ~/.profile dependant upon the distribution,

In the case of RHEL/CentOS, Bash executes ~/.bash_profile.
When a login shell is terminated, Bash executes the ~/.bash_logout file if it exists.

Whan Bash is called as an interactive shell as opposed to a login shell, it executes only the ~/.bashrc file

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 56/57 LCE405 - Command Line Interface

LAB #1 - Start-up Scripts

| To do : Using the knowledge you have acquired in this unit, explain each of the following

=TS scripts.

~/.bash_profile

[trainee@centos8 training]$ cat ~/.bash profile
.bash profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

~/.bashrc

[trainee@centos8 training]$ cat ~/.bashrc
.bashrc

Source global definitions

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

User specific environment

www.ittraining.team - https://www.ittraining.team/

2026/02/04 19:41 57/57 LCE405 - Command Line Interface

PATH="$HOME/ .local/bin:$HOME/bin: $PATH"
export PATH

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD PAGER=

User specific aliases and functions

Copyright © 2023 Hugh Norris.

From:
https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:rhel:6:utilisateur:1105

Last update: 2023/07/27 13:56

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:rhel:6:utilisateur:l105

	LCE405 - Command Line Interface
	Contents
	The Shell
	/bin/bash
	Internal And External Commands
	Aliases
	The Prompt
	The history Command
	The TAB key
	Metacharacters
	The * Metacharacter
	The ? Metacharacter
	The [] Metacharacter
	The extglob Option
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)

	Protecting Metacharacters
	Exit Status
	Redirections
	Pipes
	Command Substitution
	Conditional Command Execution

	Environment Variables
	Principal Variables
	Internationalisation and Localisation
	Special Variables
	The env Command

	Bash Shell Options
	noclobber
	noglob
	nounset

	Basic Shell Scripting
	Execution
	The read command
	Exit Codes
	The IFS Variable

	The test Command
	Testing Files
	Testing Strings
	Testing Numbers
	Expressions
	Testing the User Environment

	The [[expression]] Command
	Shell Operators
	The expr Command
	Maths
	Comparisons
	Logic

	The let Command
	Maths
	Comparisons
	Logic
	Binary

	Control Structures
	If
	case

	Loops
	for
	while
	Example

	Start-up Scripts
	LAB #1 - Start-up Scripts
	~/.bash_profile
	~/.bashrc

