
2026/02/04 16:26 1/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Version : 2024.01

Dernière mise-à-jour : 2024/11/22 08:50

RH13409 - Gestion des Conteneurs avec Podman

Contenu du Cours

RH13409 - Gestion des Conteneurs avec Podman
Contenu du Cours
Présentation de la Virtualisation par Isolation

Historique
Conteneurs vs Machines Virtuelles

Machines Virtuelles
Conteneurs

Conteneurs Rootless et Rootful
Architecture à base de Conteneurs
Outils de Gestion des Conteneurs
Images et Registres des Conteneurs
Podman

Présentation
La Commande Podman

LAB #1 - Configuration des Registres
LAB #2 - Gestion des Images

2.1 - Télécharger une Image
2.2 - Créer une Image à l'aide d'un Fichier Containerfile

LAB #3 - Gestion des Conteneurs
3.1 - Création d'un Conteneur
3.2 - Démarrage d'un Conteneur
3.3 - Exécution d'une Commande dans un Conteneur
3.4 - Suppression des Images et des Conteneurs

2026/02/04 16:26 2/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

LAB #4 - Gestion du Stockage et du Réseau
4.1 - Gestion du Stockage Persistant
4.2 - Gestion du Réseau

LAB #5 - Gestion des Conteneurs en tant que Services Système
5.1 - Création du Gestionnaire de Conteneurs
5.2 - Création d'un Conteneur de Serveur Web

Présentation de la Virtualisation par Isolation

Un isolateur est un logiciel qui permet d'isoler l'exécution des applications dans des containers, des contextes ou des zones d'exécution.

Historique

1979 - chroot - l'isolation par changement de racine,
2000 - BSD Jails - l'isolation en espace utilisateur,
2004 - Solaris Containers - l'isolation par zones,
2005 - OpenVZ - l'isolation par partitionnement du noyau sous Linux,
2008 - LXC - LinuX Containers - l'isolation en utilisant des namespaces et des CGroups avec liblxc,
2013 - Docker - l'isolation en utilisant des namespaces et des CGroups avec libcontainer,
2014 - LXD - LinuX Container Daemon - l'isolation en utilisant des namespaces et des CGroups avec liblxc,
2018 - Podman - l'isolation en utilisant des namespaces et des CGroups avec libpod.

Conteneurs vs Machines Virtuelles

Les conteneurs et les machines virtuelles (VM) sont des technologies de virtualisation, mais elles diffèrent dans leur fonctionnement, leur structure, et
leurs cas d'utilisation.

Architecture et Isolation
Conteneurs - Un conteneur virtualise uniquement le système d'exploitation. Les conteneurs partagent le noyau de l'OS hôte et utilisent
des namespaces et des cgroups pour l'isolation et la gestion des ressources. Ils contiennent les bibliothèques et dépendances nécessaires

https://fr.wikipedia.org/wiki/Chroot
https://www.freebsd.org/doc/handbook/jails.html
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://openvz.org/
https://linuxcontainers.org/
https://www.docker.com/get-started
https://linuxcontainers.org/lxd/introduction/
https://www.redhat.com/en/topics/containers/what-is-podman

2026/02/04 16:26 3/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

pour exécuter les applications, mais ne nécessitent pas un système d'exploitation complet.
Machines Virtuelles - Une VM virtualise le matériel physique. Chaque VM exécute un système d'exploitation complet (guest OS) au-
dessus d’un hyperviseur (comme VMware, KVM, ou Hyper-V) qui fonctionne sur l’OS hôte. Les VMs sont donc complètement isolées les
unes des autres, car elles n’interagissent pas directement avec l’OS hôte.

Poids et Performance
Conteneurs - Les conteneurs sont légers et démarrent rapidement car ils n’incluent pas d’OS complet. Ils consomment moins de
ressources car ils partagent le noyau de l’OS hôte, ce qui les rend plus performants pour les déploiements rapides.
Machines Virtuelles - Les VMs sont plus lourdes et demandent plus de ressources, car chaque VM nécessite son propre OS. Elles mettent
plus de temps à démarrer et consomment plus de mémoire et de CPU.

Cas d’utilisation
Conteneurs - Idéaux pour les microservices, les déploiements rapides et les applications nécessitant des environnements homogènes et
portables. Ils permettent de standardiser les environnements de développement, test, et production.
Machines Virtuelles - Conviennent aux applications nécessitant un niveau élevé d'isolation, aux environnements multi-OS, ou aux
applications qui ont besoin de toute une pile OS. Elles sont souvent utilisées dans les environnements multi-cloud, où des applications
peuvent dépendre de fonctionnalités spécifiques d'un OS particulier.

Sécurité
Conteneurs - Moins isolés que les VMs, car ils partagent le noyau de l'OS hôte. Bien que l'isolation soit renforcée par des namespaces et
des cgroups, une compromission du noyau pourrait affecter tous les conteneurs.
Machines Virtuelles - Offrent une meilleure isolation, chaque VM étant indépendante et exécutant son propre OS. Même si l’une est
compromise, les autres VM restent protégées.

En résumé, les conteneurs sont légers, rapides et optimisés pour le déploiement d’applications isolées mais interconnectées, tandis que les machines
virtuelles offrent une isolation robuste et sont adaptées aux environnements multi-OS ou pour exécuter des applications exigeant un OS complet.

Graphiquement, les différences peuvent être consultées en consultant les deux images suivantes :

Conteneurs Rootless et Rootful

Sur l'hôte du conteneur, on peut exécuter les conteneurs en tant qu'utilisateur root ou en tant qu'un utilisateur ordinaire non privilégié. Les conteneurs
exécutés par un utilisateur privilégié sont appelés conteneurs Rootful. Les conteneurs exécutés par des utilisateurs sont appelés conteneurs
Rootless.

Un conteneur Rootless n'est pas autorisé à utiliser les ressources du système qui sont habituellement réservées aux utilisateurs privilégiés comme

2026/02/04 16:26 4/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

l'accès à des répertoires restreints, ou de publier des services réseau sur des ports restreints (ports inférieurs à 1024). Cette fonctionnalité empêche un
éventuel attaquant d'obtenir les privilèges de root sur l'hôte du conteneur.

On peut exécuter les conteneurs directement en tant que root si nécessaire, mais ce scénario affaiblit la sécurité du système si un bogue permet à un
attaquant de compromettre le conteneur.

Architecture à base de Conteneurs

Les conteneurs sont un moyen efficace de réutiliser les applications hébergées et de les rendre portables. Les conteneurs peuvent être facilement
déplacés d'un environnement à un autre, par exemple du développement à la production. On peut enregistrer plusieurs versions d'un conteneur et
accéder rapidement à chacune d'entre elles en cas de besoin.

Les conteneurs sont généralement temporaires ou éphémères. Vous pouvez enregistrer de manière permanente dans un stockage persistant les
données générées par un conteneur en cours d'exécution mais les conteneurs s'exécutent généralement en cas de besoin, puis s'arrêtent et sont
supprimés. Un nouveau processus de conteneur est lancé la prochaine fois que ce conteneur est nécessaire.

On peut installer une application logicielle complexe avec plusieurs services dans un seul conteneur. Par exemple, un serveur web peut avoir besoin
d'utiliser une base de données et un système de messagerie et un système de messagerie. Cependant, l'utilisation d'un conteneur pour plusieurs
services est difficile à gérer. Une meilleure conception consiste à exécuter dans des conteneurs séparés chaque composant, le serveur web, la base de
données et le système de messagerie. De cette manière, les mises à jour et la maintenance des composants individuels de l'application n'affectent pas
les autres composants ou la pile d'applications.

Outils de Gestion des Conteneurs

RHEL fournit un ensemble d'outils de conteneurs que qui sont utilisés pour exécuter des conteneurs dans un serveur unique :

podman pour gérer les Conteneurs et les Images,
skopeo pour inspecter, copier, supprimer et signer les Images,
buildah pour créer des Images.

Important : L'utilisation de la commande buildah ne fait pas partie de la certification

2026/02/04 16:26 5/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

RH134. Cette commande est couverte dans la formation DO180 - Red Hat OpenShift I:
Containers & Kubernetes.

Images et Registres des Conteneurs

Pour exécuter des conteneurs, il faut utiliser une image de conteneur. Une image de conteneur est un fichier statique qui contient des étapes codifiées
et qui sert de modèle pour créer des conteneurs. Les images de conteneur empaquettent une application avec toutes ses dépendances, telles que les
bibliothèques système, les moteurs d'exécution et les bibliothèques du langage de programmation, ainsi que d'autres paramètres de configuration.

Les images des conteneurs sont construites conformément à des spécifications, telles que la spécification du format d'image de l'Open Container
Initiative (OCI). Ces spécifications définissent le format des images de conteneurs, ainsi que les métadonnées relatives aux systèmes d'exploitation
hôtes des conteneurs et aux architectures matérielles que l'image prend en charge.

Un registre de conteneurs est un référentiel permettant de stocker et de récupérer des images de conteneurs. Un développeur pousse ou télécharge
des images de conteneurs dans un registre de conteneurs. Ensuite le développeur extrait ou télécharge des images de conteneurs d'un registre vers
un système local pour exécuter des conteneurs.

Il est possible d'utiliser un registre public contenant des images de tiers ou un registre privé contrôlé par une organisation. La source des images de
conteneurs est importante. Comme pour tout autre logiciel, il faut savoir si on peut faire confiance au code de l'image de conteneur. Les politiques
varient d'un registre à l'autre en ce qui concerne la fourniture, l'évaluation et le test des images de conteneurs qui leur sont soumises.

Red Hat distribue des images de conteneurs certifiées par le biais de deux registres de conteneurs principaux auxquels il est possible d'accéder à l'aide
des identifiants de connexion Red Hat :

registry.redhat.io pour les conteneurs basés sur les produits officiels de Red Hat,
registry.connect.redhat.com pour les conteneurs basés sur des produits tiers.

Le Red Hat Container Catalog fournit une interface web pour rechercher des contenus certifiés dans ces registres.

Podman

https://access.redhat.com/containers

2026/02/04 16:26 6/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Présentation

Podman, créé en 2018, est un outil open-source de gestion de conteneurs développé par Red Hat. Il offre des fonctionnalités similaires à Docker mais
se distingue par sa conception “daemonless”, c'est-à-dire sans besoin de daemon en arrière-plan. Cette approche améliore la sécurité et la gestion des
droits : les conteneurs peuvent être exécutés en mode rootless, évitant l'exécution en tant qu'utilisateur root, ce qui limite les risques de sécurité.

Podman est basé sur OCI (Open Container Initiative) pour la compatibilité avec les formats d'images et les standards de conteneurs, et s'appuie sur
runC pour l'exécution des conteneurs. Il utilise aussi des outils comme conmon (un moniteur de conteneurs léger) pour superviser les conteneurs et
libpod, une bibliothèque de gestion des conteneurs permettant d'assurer l’orchestration et la gestion des conteneurs et pods. Podman supporte
également la compatibilité avec les outils et API de Docker, offrant une transition plus fluide aux utilisateurs de Docker.

Podman utilise à la fois les namespaces et les cgroups, qui sont des fonctionnalités centrales du noyau Linux pour isoler et limiter les ressources des
conteneurs.

Namespaces - Les namespaces sont utilisés pour isoler différents aspects de l'environnement d'un conteneur, comme le système de fichiers, le
réseau, les processus, les utilisateurs, et les identifiants IPC. Podman, en tant qu’outil de conteneurisation, utilise les namespaces pour créer un
environnement isolé pour chaque conteneur, de sorte que les processus d'un conteneur ne puissent pas interférer avec ceux des autres.
Cgroups (Control Groups) - Les cgroups sont employés pour gérer et limiter l'utilisation des ressources (CPU, mémoire, I/O, etc.) des conteneurs.
Avec Podman, chaque conteneur peut être configuré pour utiliser une quantité précise de ressources système. Cela permet une meilleure
allocation et empêche qu’un conteneur monopolise les ressources du système hôte.

La combinaison des namespaces et des cgroups permet à Podman de fournir une isolation forte entre les conteneurs et de contrôler la consommation
des ressources, tout en restant conforme aux standards OCI pour l'exécution des conteneurs.

La Commande Podman

Podman est contenu dans le méta-paquet container-tools. Podman fournit plusieurs sous-commandes pour interagir avec les conteneurs et les
images.La liste suivante présente les sous-commandes utilisées dans cette section :

Commande Description
podman build Construire une image de conteneur avec un fichier de conteneur.
podman run Exécuter une commande dans un nouveau conteneur.

2026/02/04 16:26 7/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Commande Description
podman images Liste des images stockées localement.
podman ps Imprimer des informations sur les conteneurs.
podman inspect Affiche la configuration d'un conteneur, d'une image, d'un volume, d'un réseau ou d'un pod.
podman pull Télécharger une image à partir d'un registre.
podman cp Copier des fichiers ou des dossiers entre un conteneur et le système de fichiers local.
podman exec Exécuter une commande dans un conteneur en cours d'exécution.
podman rm Supprimer un ou plusieurs conteneurs.
podman rmi Supprimer une ou plusieurs images stockées localement.
podman search Recherche d'une image dans un registre.

LAB #1 - Configuration des Registres

La configuration par défaut des registres de conteneurs se trouve dans le fichier /etc/containers/registries.conf :

[trainee@redhat9 ~]$ cat /etc/containers/registries.conf
For more information on this configuration file, see containers-registries.conf(5).
#
NOTE: RISK OF USING UNQUALIFIED IMAGE NAMES
We recommend always using fully qualified image names including the registry
server (full dns name), namespace, image name, and tag
(e.g., registry.redhat.io/ubi8/ubi:latest). Pulling by digest (i.e.,
quay.io/repository/name@digest) further eliminates the ambiguity of tags.
When using short names, there is always an inherent risk that the image being
pulled could be spoofed. For example, a user wants to pull an image named
`foobar` from a registry and expects it to come from myregistry.com. If
myregistry.com is not first in the search list, an attacker could place a
different `foobar` image at a registry earlier in the search list. The user
would accidentally pull and run the attacker's image and code rather than the
intended content. We recommend only adding registries which are completely
trusted (i.e., registries which don't allow unknown or anonymous users to
create accounts with arbitrary names). This will prevent an image from being

2026/02/04 16:26 8/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

spoofed, squatted or otherwise made insecure. If it is necessary to use one
of these registries, it should be added at the end of the list.
#
An array of host[:port] registries to try when pulling an unqualified image, in order.

unqualified-search-registries = ["registry.access.redhat.com", "registry.redhat.io", "docker.io"]

[[registry]]
The "prefix" field is used to choose the relevant [[registry]] TOML table;
(only) the TOML table with the longest match for the input image name
(taking into account namespace/repo/tag/digest separators) is used.
#
The prefix can also be of the form: *.example.com for wildcard subdomain
matching.
#
If the prefix field is missing, it defaults to be the same as the "location" field.
prefix = "example.com/foo"
#
If true, unencrypted HTTP as well as TLS connections with untrusted
certificates are allowed.
insecure = false
#
If true, pulling images with matching names is forbidden.
blocked = false
#
The physical location of the "prefix"-rooted namespace.
#
By default, this is equal to "prefix" (in which case "prefix" can be omitted
and the [[registry]] TOML table can only specify "location").
#
Example: Given
prefix = "example.com/foo"
location = "internal-registry-for-example.net/bar"
requests for the image example.com/foo/myimage:latest will actually work with the

2026/02/04 16:26 9/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

internal-registry-for-example.net/bar/myimage:latest image.
#
The location can be empty iff prefix is in a
wildcarded format: "*.example.com". In this case, the input reference will
be used as-is without any rewrite.
location = internal-registry-for-example.com/bar"
#
(Possibly-partial) mirrors for the "prefix"-rooted namespace.
#
The mirrors are attempted in the specified order; the first one that can be
contacted and contains the image will be used (and if none of the mirrors contains the image,
the primary location specified by the "registry.location" field, or using the unmodified
user-specified reference, is tried last).
#
Each TOML table in the "mirror" array can contain the following fields, with the same semantics
as if specified in the [[registry]] TOML table directly:
- location
- insecure
[[registry.mirror]]
location = "example-mirror-0.local/mirror-for-foo"
[[registry.mirror]]
location = "example-mirror-1.local/mirrors/foo"
insecure = true
Given the above, a pull of example.com/foo/image:latest will try:
1. example-mirror-0.local/mirror-for-foo/image:latest
2. example-mirror-1.local/mirrors/foo/image:latest
3. internal-registry-for-example.net/bar/image:latest
in order, and use the first one that exists.
short-name-mode = "enforcing"

Commencez par vous connecter au registre registry.access.redhat.com :

[trainee@redhat9 ~]$ podman login registry.access.redhat.com
Username: <your_login>

2026/02/04 16:26 10/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Password: <your_password>
Login Succeeded!

Pour vérifier si vous êtes connecté au registre registry.access.redhat.com, ajoutez l'option –get-login :

[trainee@redhat9 ~]$ podman login registry.access.redhat.com --get-login
<your_login>

Notez que vous devez vous connecter à chaque registre séparément :

[trainee@redhat9 ~]$ podman login registry.redhat.io --get-login
Error: not logged into registry.redhat.io

[trainee@redhat9 ~]$ podman login registry.redhat.io
Username: <your_login>
Password: <your_password>
Login Succeeded!

[trainee@redhat9 ~]$ podman login registry.redhat.io --get-login
<your_login>

Les directives dans le fichier /etc/containers/registries.conf sont surchargées par les directives dans le fichier
~$HOME/.config/containers/registries.conf. Créez donc ce fichier :

[trainee@redhat9 ~]$ mkdir .config/containers

[trainee@redhat9 ~]$ vi .config/containers/registries.conf

[trainee@redhat9 ~]$ cat .config/containers/registries.conf
unqualified-search-registries = ["registry.access.redhat.com", "registry.redhat.io", "docker.io"]

[[registry]]
location = "registry.access.redhat.com"
insecure = true

2026/02/04 16:26 11/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

blocked = false

Pour vérifier si ce fichier est pris en compte, consultez la sortie de la commande podman info :

[trainee@redhat9 ~]$ podman info
...
registries:
 search:
 - registry.access.redhat.com
 - registry.redhat.io
 - docker.io
store:
 configFile: /home/trainee/.config/containers/storage.conf
 containerStore:
 number: 0
 paused: 0
 running: 0
 stopped: 0
...

LAB #2 - Gestion des Images

2.1 - Télécharger une Image

Pour obtenir une image et la stocker localement, sans créer de conteneur, utilisez la commande podman pull :

[trainee@redhat9 ~]$ podman pull registry.access.redhat.com/ubi8/python-38
Trying to pull registry.access.redhat.com/ubi8/python-38:latest...
Getting image source signatures
Checking if image destination supports signatures
Copying blob 8756f22094d0 done |

2026/02/04 16:26 12/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

...
Copying config 142e82b6e6 done |
Writing manifest to image destination
Storing signatures
142e82b6e600e0a2208e32bcffab89cd6257316f93b22a1f12f172756ed7fe53

Pour examiner l'image, il faut utiliser la commande skopeo, or, cette commande n'est pas installée. Devenez donc root et installez le paquet skopeo :

[trainee@redhat9 ~]$ su -
Password:
[root@redhat9 ~]# dnf install skopeo -y
...
[root@redhat9 ~]# exit
logout
[trainee@redhat9 ~]$

Utilisez maintenant la commande skopeo inspect pour examiner l'image téléchargée :

[trainee@redhat9 ~]$ skopeo inspect docker://registry.access.redhat.com/ubi8/python-38
{
 "Name": "registry.access.redhat.com/ubi8/python-38",
 "Digest": "sha256:74e5b2d063d424cb06f8e41ef1983a94b1cb890e62ec656c52e81074be21c15e",
 "RepoTags": [
 "1",
 "1-100",
 "1-100-source",
...
 "latest",
 "sha256-0020f8ea6a94fd32518a31ec7301f07a08f0109ad1854c46feb19d82d0d640d2.sig",
...
 "sha256-ff413c7793bca66c872667eadef98d77df900b5f24b288f233003e1201956c22.sig"
],
 "Created": "2023-08-02T19:52:55.743348399Z",
 "DockerVersion": "",

2026/02/04 16:26 13/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 "Labels": {
 "architecture": "x86_64",
 "build-date": "2023-08-02T19:49:35",
 "com.redhat.component": "python-38-container",
 "com.redhat.license_terms": "https://www.redhat.com/en/about/red-hat-end-user-license-agreements#UBI",
 "description": "Python 3.8 available as container is a base platform for building and running various
Python 3.8 applications and frameworks. Python is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective approach to object-oriented programming. Python's
elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting
and rapid application development in many areas on most platforms.",
 "distribution-scope": "public",
 "io.buildah.version": "1.29.0",
 "io.buildpacks.stack.id": "com.redhat.stacks.ubi8-python-38",
 "io.k8s.description": "Python 3.8 available as container is a base platform for building and running
various Python 3.8 applications and frameworks. Python is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective approach to object-oriented programming. Python's
elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting
and rapid application development in many areas on most platforms.",
 "io.k8s.display-name": "Python 3.8",
 "io.openshift.expose-services": "8080:http",
 "io.openshift.s2i.scripts-url": "image:///usr/libexec/s2i",
 "io.openshift.tags": "builder,python,python38,python-38,rh-python38",
 "io.s2i.scripts-url": "image:///usr/libexec/s2i",
 "maintainer": "SoftwareCollections.org \u003csclorg@redhat.com\u003e",
 "name": "ubi8/python-38",
 "release": "131",
 "summary": "Platform for building and running Python 3.8 applications",
 "url": "https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/python-38/images/1-131",
 "usage": "s2i build https://github.com/sclorg/s2i-python-container.git --context-dir=3.8/test/setup-test-
app/ ubi8/python-38 python-sample-app",
 "vcs-ref": "92c79cfbeb4465ee73f816c7c6069b7402e4ec19",
 "vcs-type": "git",
 "vendor": "Red Hat, Inc.",
 "version": "1"

2026/02/04 16:26 14/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 },
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 "sha256:bea2a0b08f4fd7df72285c8ccf71ff0e9b76c025a0bc4dc67a4f40695feb0eca",
 "sha256:7822e944d15c45e998e88e0638073a1974246aea8fd268a925948eb2e070e048",
 "sha256:b82ddf37e40febb44c258077df217aef2b72f65c2c190ecd3a165ae894256e11",
 "sha256:8756f22094d074e5ea7b13b5a7cb8c5132b61a8b39d550f58e6a6053e4b3530d"
],
 "LayersData": [
 {
 "MIMEType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
 "Digest": "sha256:bea2a0b08f4fd7df72285c8ccf71ff0e9b76c025a0bc4dc67a4f40695feb0eca",
 "Size": 79272789,
 "Annotations": null
 },
 {
 "MIMEType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
 "Digest": "sha256:7822e944d15c45e998e88e0638073a1974246aea8fd268a925948eb2e070e048",
 "Size": 18418966,
 "Annotations": null
 },
 {
 "MIMEType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
 "Digest": "sha256:b82ddf37e40febb44c258077df217aef2b72f65c2c190ecd3a165ae894256e11",
 "Size": 151252194,
 "Annotations": null
 },
 {
 "MIMEType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
 "Digest": "sha256:8756f22094d074e5ea7b13b5a7cb8c5132b61a8b39d550f58e6a6053e4b3530d",
 "Size": 78908672,
 "Annotations": null
 }

2026/02/04 16:26 15/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

],
 "Env": [
 "container=oci",
 "STI_SCRIPTS_URL=image:///usr/libexec/s2i",
 "STI_SCRIPTS_PATH=/usr/libexec/s2i",
 "APP_ROOT=/opt/app-root",
 "HOME=/opt/app-root/src",
 "PLATFORM=el8",
 "NODEJS_VER=14",
 "PYTHON_VERSION=3.8",
 "PATH=/opt/app-root/src/.local/bin/:/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "PYTHONUNBUFFERED=1",
 "PYTHONIOENCODING=UTF-8",
 "LC_ALL=en_US.UTF-8",
 "LANG=en_US.UTF-8",
 "CNB_STACK_ID=com.redhat.stacks.ubi8-python-38",
 "CNB_USER_ID=1001",
 "CNB_GROUP_ID=0",
 "PIP_NO_CACHE_DIR=off",
 "SUMMARY=Platform for building and running Python 3.8 applications",
 "DESCRIPTION=Python 3.8 available as container is a base platform for building and running various Python
3.8 applications and frameworks. Python is an easy to learn, powerful programming language. It has efficient
high-level data structures and a simple but effective approach to object-oriented programming. Python's elegant
syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting and
rapid application development in many areas on most platforms.",
 "BASH_ENV=/opt/app-root/bin/activate",
 "ENV=/opt/app-root/bin/activate",
 "PROMPT_COMMAND=. /opt/app-root/bin/activate"
]
}

Pour lister les images disponibles localement, utilisez la commande podman images :

2026/02/04 16:26 16/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

[trainee@redhat9 ~]$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/python-38 latest 142e82b6e600 15 months ago 898 MB

Important - Notez que l'image est référencée par son IMAGE ID.

2.2 - Créer une Image à l'aide d'un Fichier Containerfile

Créez un contexte sous la forme d'un répertoire, placez-vous dans ce répertoire puis créez le fichier Containerfile :

[trainee@redhat9 ~]$ mkdir rh13409

[trainee@redhat9 ~]$ cd rh13409/

[trainee@redhat9 rh13409]$ vi Containerfile

[trainee@redhat9 rh13409]$ cat Containerfile
FROM registry.access.redhat.com/ubi8/ubi:latest
RUN dnf install -y python36
CMD ["/bin/bash", "-c", "sleep infinity"]

Dans le fichier Containerfile, les significations des commandes sont :

Commande Description
FROM Définit l'image à partir de laquelle sera construite la nouvelle image.
RUN Lance un processus dans la construction de la nouvelle image.
CMD Définit la commande qui sera exécutée dans le conteneur lors de sa création à partir de la nouvelle image.

Créez maintenant l'image python36:1.0, l'option -t indique un tag :

2026/02/04 16:26 17/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

[trainee@redhat9 rh13409]$ podman build -t python36:1.0 .
STEP 1/3: FROM registry.access.redhat.com/ubi8/ubi:latest
Trying to pull registry.access.redhat.com/ubi8/ubi:latest...
Getting image source signatures
Checking if image destination supports signatures
Copying blob 148a3ed2f70e done |
Copying config 4f03f39cd4 done |
Writing manifest to image destination
Storing signatures
STEP 2/3: RUN dnf install -y python36
Updating Subscription Management repositories.
Unable to read consumer identity
subscription-manager is operating in container mode.

This system is not registered with an entitlement server. You can use subscription-manager to register.

Red Hat Enterprise Linux 8 for x86_64 - AppStre 31 MB/s | 68 MB 00:02
Red Hat Enterprise Linux 8 for x86_64 - BaseOS 34 MB/s | 74 MB 00:02
Red Hat Universal Base Image 8 (RPMs) - BaseOS 2.9 MB/s | 722 kB 00:00
Red Hat Universal Base Image 8 (RPMs) - AppStre 11 MB/s | 3.2 MB 00:00
Red Hat Universal Base Image 8 (RPMs) - CodeRea 991 kB/s | 186 kB 00:00
Last metadata expiration check: 0:00:01 ago on Wed Oct 30 16:31:36 2024.
Dependencies resolved.
==
 Package Arch Version Repository Size
==
Installing:
 python36 x86_64 3.6.8-39.module+el8.10.0+20784+edafcd43 rhel-8-for-x86_64-appstream-rpms 20 k
Installing dependencies:
 platform-python-pip noarch 9.0.3-24.el8 rhel-8-for-x86_64-baseos-rpms 1.6 M
 python3-pip noarch 9.0.3-24.el8 rhel-8-for-x86_64-appstream-rpms 20 k
 python3-setuptools noarch 39.2.0-8.el8_10 rhel-8-for-x86_64-baseos-rpms 163 k
Enabling module streams:
 python36 3.6

2026/02/04 16:26 18/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Transaction Summary
==
Install 4 Packages

Total download size: 1.8 M
Installed size: 7.1 M
Downloading Packages:
(1/4): python36-3.6.8-39.module+el8.10.0+20784+ 137 kB/s | 20 kB 00:00
(2/4): python3-setuptools-39.2.0-8.el8_10.noarc 2.9 MB/s | 163 kB 00:00
(3/4): platform-python-pip-9.0.3-24.el8.noarch. 7.2 MB/s | 1.6 MB 00:00
(4/4): python3-pip-9.0.3-24.el8.noarch.rpm 92 kB/s | 20 kB 00:00
--
Total 7.8 MB/s | 1.8 MB 00:00
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing : 1/1
 Installing : python3-setuptools-39.2.0-8.el8_10.noarch 1/4
 Installing : platform-python-pip-9.0.3-24.el8.noarch 2/4
 Installing : python3-pip-9.0.3-24.el8.noarch 3/4
 Installing : python36-3.6.8-39.module+el8.10.0+20784+edafcd43.x86 4/4
 Running scriptlet: python36-3.6.8-39.module+el8.10.0+20784+edafcd43.x86 4/4
 Verifying : python36-3.6.8-39.module+el8.10.0+20784+edafcd43.x86 1/4
 Verifying : python3-pip-9.0.3-24.el8.noarch 2/4
 Verifying : platform-python-pip-9.0.3-24.el8.noarch 3/4
 Verifying : python3-setuptools-39.2.0-8.el8_10.noarch 4/4
Installed products updated.

Installed:
 platform-python-pip-9.0.3-24.el8.noarch
 python3-pip-9.0.3-24.el8.noarch
 python3-setuptools-39.2.0-8.el8_10.noarch

2026/02/04 16:26 19/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 python36-3.6.8-39.module+el8.10.0+20784+edafcd43.x86_64

Complete!
--> ffbfe7e2c52a
STEP 3/3: CMD ["/bin/bash", "-c", "sleep infinity"]
COMMIT python36:1.0
--> aeb6174afefe
Successfully tagged localhost/python36:1.0
aeb6174afefe34e16037a22efe8d6b9de6f7542dd15e24f33335fd5ba4689dd7

[trainee@redhat9 rh13409]$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/python36 1.0 aeb6174afefe 9 minutes ago 529 MB
registry.access.redhat.com/ubi8/ubi latest 4f03f39cd427 6 weeks ago 212 MB
registry.access.redhat.com/ubi8/python-38 latest 142e82b6e600 15 months ago 898 MB

En consultant l'image construite, on peut constater les résultat des commandes incluses dans le fichier Containerfile. Notez bien que l'on doit
référencer l'image par son nom complet registre/tag :

[trainee@redhat9 ~]$ podman inspect localhost/python36:1.0
...
 "Cmd": [
 "/bin/bash",
 "-c",
 "sleep infinity"
],
...
 {
 "created": "2024-10-30T16:32:22.752492995Z",
 "created_by": "/bin/sh -c dnf install -y python36",
 "comment": "FROM registry.access.redhat.com/ubi8/ubi:latest"
 },
...

2026/02/04 16:26 20/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

LAB #3 - Gestion des Conteneurs

Un conteneur peut être dans un de cinq états :

Etat Description
Created Un conteneur qui est créé mais qui n'est pas démarré.
Running Un conteneur qui fonctionne avec ses processus.
Stopped Un conteneur dont les processus sont arrêtés.
Paused Un conteneur dont les processus sont en pause. Non pris en charge pour les conteneurs Rootless.
Deleted Un conteneur dont les processus sont dans un état mort.

3.1 - Création d'un Conteneur

Créez un conteneur dénommé python36 à partir de la nouvelle image. Notez que l'image est référencée par son IMAGE ID :

[trainee@redhat9 ~]$ podman create --name python36 aeb6174afefe
f42e19a0627eb457570ca3626c8bb1fff77963542b7dc59ae5d07e86bf1a3fca

Pour visualiser la liste des conteneurs en cours d'exécution, utilisez la commande podman ps :

[trainee@redhat9 ~]$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Pour consulter la liste de tous les conteneurs, ajoutez l'option -a à la commande précédente :

[trainee@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... 32 seconds ago Created python36

2026/02/04 16:26 21/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

3.2 - Démarrage d'un Conteneur

Pour démarrer un conteneur déjà créé, utilisez la commande podman start :

[trainee@redhat9 ~]$ podman start python36
python36

[trainee@redhat9 ~]$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... About a minute ago Up 5 seconds
python36

Pour démarrer un conteneur à partir d'une image distante, il convient d'utiliser la commande podman run :

[trainee@redhat9 ~]$ podman run -d --name python38 registry.access.redhat.com/ubi8/python-38 sleep infinity
85e26c02bfad3b47270b785b74ce225799dea5aff16ebf4f002a51688da2b3a7

[trainee@redhat9 ~]$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... 4 minutes ago Up 3
minutes python36
85e26c02bfad registry.access.redhat.com/ubi8/python-38:latest sleep infinity 38 seconds ago Up 38
seconds python38

3.3 - Exécution d'une Commande dans un Conteneur

Pour exécuter une commande à l'intérieur d'un conteneur en cours d'exécution, utilisez la commande podman exec :

[trainee@redhat9 ~]$ podman exec python38 ps -ax
 PID TTY STAT TIME COMMAND
 1 ? Ss 0:00 /usr/bin/coreutils --coreutils-prog-shebang=sleep /usr/bin/sleep infinity

2026/02/04 16:26 22/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 2 ? R 0:00 ps -ax

Il est aussi possible d'utilser cette commande en stipulant un shell spécifique :

[trainee@redhat9 ~]$ podman exec python38 sh -c 'ps -ax > /tmp/process-data.log'

[trainee@redhat9 ~]$ podman exec python38 cat /tmp/process-data.log
 PID TTY STAT TIME COMMAND
 1 ? Ss 0:00 /usr/bin/coreutils --coreutils-prog-shebang=sleep /usr/bin/sleep infinity
 3 ? S 0:00 sh -c ps -ax > /tmp/process-data.log
 4 ? R 0:00 ps -ax

Créez maintenant le fichier /tmp/hello.sh contenant la chaîne hello world et regardez ses caractéristiques :

[trainee@redhat9 ~]$ echo "echo 'hello world'" > /tmp/hello.sh

[trainee@redhat9 ~]$ stat /tmp/hello.sh
 File: /tmp/hello.sh
 Size: 19 Blocks: 8 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 33670667 Links: 1
Access: (0644/-rw-r--r--) Uid: (1000/ trainee) Gid: (1000/ trainee)
Context: unconfined_u:object_r:user_tmp_t:s0
Access: 2024-10-31 09:49:46.727000000 +0100
Modify: 2024-10-31 09:49:46.727000000 +0100
Change: 2024-10-31 09:49:46.727000000 +0100
 Birth: 2024-10-31 09:49:46.727000000 +0100

Bien évidement ce fichier n'existe pas encore dans le conteneur **python38** :

<code>
[trainee@redhat9 ~]$ podman exec python38 stat /tmp/hello.sh
stat: cannot statx '/tmp/hello.sh': No such file or directory

Copiez donc le fichier dans le conteneur et regardez ses caractéristiques :

2026/02/04 16:26 23/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

[trainee@redhat9 ~]$ podman cp /tmp/hello.sh python38:/tmp/hello.sh

[trainee@redhat9 ~]$ podman exec python38 stat /tmp/hello.sh
 File: /tmp/hello.sh
 Size: 19 Blocks: 8 IO Block: 4096 regular file
Device: 40h/64d Inode: 115769725 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ default) Gid: (0/ root)
Access: 2024-10-31 08:49:47.000000000 +0000
Modify: 2024-10-31 08:49:47.000000000 +0000
Change: 2024-10-31 08:52:14.862000000 +0000
 Birth: 2024-10-31 08:52:14.862000000 +0000

Exécutez le script dans le conteneur avec le shell bash :

[trainee@redhat9 ~]$ podman exec python38 bash /tmp/hello.sh
hello world

3.4 - Suppression des Images et des Conteneurs

En essayant de supprimer l'image registry.access.redhat.com/ubi8/python-38, vous constaterez que ceci n'est pas possible à cause de la
présence du conteneur python38 qui dépend de l'image :

[trainee@redhat9 ~]$ podman rmi registry.access.redhat.com/ubi8/python-38
Error: image used by 85e26c02bfad3b47270b785b74ce225799dea5aff16ebf4f002a51688da2b3a7: image is in use by a
container: consider listing external containers and force-removing image

Arrêtez donc le conteneur python38 :

[trainee@redhat9 ~]$ podman stop python38
WARN[0010] StopSignal SIGTERM failed to stop container python38 in 10 seconds, resorting to SIGKILL
python38

2026/02/04 16:26 24/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

[trainee@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... 18 minutes ago Up 17
minutes python36
85e26c02bfad registry.access.redhat.com/ubi8/python-38:latest sleep infinity 14 minutes ago Exited
(137) 17 seconds ago python38

Supprimez le conteneur python38 avec la commande podman rm :

[trainee@redhat9 ~]$ podman rm python38
python38

Il est maintenant possible de supprimer l'image registry.access.redhat.com/ubi8/python-38 :

[trainee@redhat9 ~]$ podman rmi registry.access.redhat.com/ubi8/python-38
Untagged: registry.access.redhat.com/ubi8/python-38:latest
Deleted: 142e82b6e600e0a2208e32bcffab89cd6257316f93b22a1f12f172756ed7fe53

Créez un conteneur db01 à partir de l'image registry.redhat.io/rhel8/mariadb-105 :

[trainee@redhat9 ~]$ podman run -d registry.redhat.io/rhel8/mariadb-105 --name db01
Trying to pull registry.redhat.io/rhel8/mariadb-105:latest...
Getting image source signatures
Checking if image destination supports signatures
Copying blob 0258a9a5cd06 done |
Copying blob 148a3ed2f70e skipped: already exists
Copying blob 4de1bba6ee61 done |
Copying config b0e9bcdcc3 done |
Writing manifest to image destination
Storing signatures
aea7c40abc0570fb616be14de5642683be5ebbadc95359f4b2d3ec32f1b12ddd

[trainee@redhat9 ~]$ podman ps -a

2026/02/04 16:26 25/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... 40 minutes ago Up 38 minutes
python36
aea7c40abc05 registry.redhat.io/rhel8/mariadb-105:latest --name db01 45 seconds ago Exited (2) 45
seconds ago great_nash

Examinez l'image avec la commande skopeo :

[trainee@redhat9 ~]$ skopeo inspect docker://registry.redhat.io/rhel8/mariadb-105
{
 "Name": "registry.redhat.io/rhel8/mariadb-105",
 "Digest": "sha256:eed1478afb45d095a6d667dc8903d9a656c894397805d1a3faf8b3301a4bec23",
...
 "summary": "MariaDB 10.5 SQL database server",
 "url":
"https://access.redhat.com/containers/#/registry.access.redhat.com/rhel8/mariadb-105/images/1-204",
 "usage": "podman run -d -e MYSQL_USER=user -e MYSQL_PASSWORD=pass -e MYSQL_DATABASE=db -p 3306:3306
rhel8/mariadb-105",
 "vcs-ref": "6d784bf12dd71b38121fd97070c13447470e237e",
 "vcs-type": "git",
 "vendor": "Red Hat, Inc.",
 "version": "1"
...
}

Vous noterez que pour lancer un conteneur, il faut spécifier les variables d'environnement indiquées dans la sortie de la commande skopeo :

[trainee@redhat9 ~]$ podman run -d -e MYSQL_USER=user -e MYSQL_PASSWORD=pass -e MYSQL_DATABASE=db -p 3306:3306
rhel8/mariadb-105
afc0cc8427677eed8cf17ef1ee9669b937ca25ccd322c066ee9c46e070baf3d3

[trainee@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

2026/02/04 16:26 26/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... 46 minutes ago Up 44 minutes
python36
aea7c40abc05 registry.redhat.io/rhel8/mariadb-105:latest --name db01 6 minutes ago Exited (2) 6
minutes ago great_nash
afc0cc842767 registry.redhat.io/rhel8/mariadb-105:latest run-mysqld 12 seconds ago Up 11 seconds
0.0.0.0:3306->3306/tcp boring_ganguly

Notez que le conteneur crée avec les variables d'environnement n'a pas été créé en spécifiant l'option –name. De ce fait, le conteneur a été
automatiquement créé avec un nom généré aléatoirement.

Supprimez maintenant le conteneur db01. Notez que vous que l'on peut référencer le conteneur par une partie de son CONTAINER ID, à condition
que cette partie soit unique :

[trainee@redhat9 ~]$ podman rm aea
aea

Supprimez le deuxième conteneur en stipulant son nom :

[trainee@redhat9 ~]$ podman rm boring_ganguly
Error: cannot remove container afc0cc8427677eed8cf17ef1ee9669b937ca25ccd322c066ee9c46e070baf3d3 as it is running
- running or paused containers cannot be removed without force: container state improper

[trainee@redhat9 ~]$ podman rm -f boring_ganguly
boring_ganguly

Re-créez un conteneur MariaDB ayant le nom db1 :

[trainee@redhat9 ~]$ podman run -d --name db1 -e MYSQL_USER=user -e MYSQL_PASSWORD=pass -e MYSQL_DATABASE=db -p
3306:3306 rhel8/mariadb-105
90c582b10512c3049ded2937d72c6c4ccfe98a6e40311f44000a7c0425aa219e

[trainee@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

2026/02/04 16:26 27/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... 49 minutes ago Up 48 minutes
python36
90c582b10512 registry.redhat.io/rhel8/mariadb-105:latest run-mysqld 8 seconds ago Up 7 seconds
0.0.0.0:3306->3306/tcp db1

LAB #4 - Gestion du Stockage et du Réseau

4.1 - Gestion du Stockage Persistant

Consultez les deux fichiers /proc/self/uid_map et cat /proc/self/gid_map :

[trainee@redhat9 ~]$ podman unshare cat /proc/self/uid_map
 0 1000 1
 1 100000 65536

[trainee@redhat9 ~]$ podman unshare cat /proc/self/gid_map
 0 1000 1
 1 100000 65536

Important - La sortie précédente montre que dans le conteneur, l'utilisateur root (UID et
GID de 0) correspond à votre utilisateur (UID et GID de 1000) sur la machine hôte. Dans le
conteneur, l'UID et le GID de 1 correspondent à l'UID et au GID de 100000 sur la machine
hôte. Chaque UID et GID après 1 s'incrémente de 1. Par exemple, l'UID et le GID de 30
dans un conteneur correspondent à l'UID et au GID de 100029 sur la machine hôte.

Obtenez l'UID et le GID de l'utilisateur mysql dans le conteneur :

[trainee@redhat9 ~]$ podman exec -it db1 grep mysql /etc/passwd

2026/02/04 16:26 28/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

mysql:x:27:27:MySQL Server:/var/lib/mysql:/sbin/nologin

Il convient maintenant de monter le répertoire /home/trainee/db_data sur le répertoire /var/lib/mysql dans le conteneur db1 pour fournir un
stockage persistant.

Créez donc le répertoire /home/trainee/db_data et utilisez la commande podman unshare pour définir l'UID et le GID de 27 en tant que propriétaire
du répertoire :

[trainee@redhat9 ~]$ mkdir /home/trainee/db_data

[trainee@redhat9 ~]$ podman unshare chown 27:27 /home/trainee/db_data

[trainee@redhat9 ~]$ ls -l /home/trainee
total 8
drwxr-xr-x. 2 trainee trainee 22 Oct 21 12:01 bin
drwxr-xr-x. 2 100026 100026 6 Oct 31 10:37 db_data
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Desktop
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Documents
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Downloads
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Music
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Pictures
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Public
drwxr-xr-x. 2 trainee trainee 27 Oct 30 17:29 rh13409
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Templates
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Videos

Vérifiez que l'état de SELinux est enforcing dans la machine hôte redhat9 :

[trainee@redhat9 ~]$ su -
Password: fenestros

[root@redhat9 ~]# getenforce
Permissive

2026/02/04 16:26 29/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

[root@redhat9 ~]# setenforce enforcing

[root@redhat9 ~]# exit
logout

Arrêtez le conteneur bd1 :

[trainee@redhat9 ~]$ podman stop db1
db1

Créez un conteneur dénommé bd01 :

[trainee@redhat9 ~]$ podman run -d --name db01 -e MYSQL_USER=user -e MYSQL_PASSWORD=pass -e MYSQL_DATABASE=db -p
3306:3306 -v /home/trainee/db_data:/var/lib/mysql rhel8/mariadb-105
959e8039ba2bc11a30bbe0ffb9185c4779aa6c8865a9288767675c5163e119bd

Consultez l'état du conteneur. Le conteneur db01 sera en état d'arrêt :

[trainee@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... About an hour ago Up About an
hour python36
90c582b10512 registry.redhat.io/rhel8/mariadb-105:latest run-mysqld 27 minutes ago Exited (0) 7
minutes ago 0.0.0.0:3306->3306/tcp db1
959e8039ba2b registry.redhat.io/rhel8/mariadb-105:latest run-mysqld About a minute ago Exited (1)
About a minute ago 0.0.0.0:3306->3306/tcp db01

Afin de comprendre la nature du problème, consultez les journaux du conteneur avec la commande podman container logs :

[trainee@redhat9 ~]$ podman container logs db01
...
2024-10-31 9:53:10 0 [ERROR] mysqld: Got error 'Can't open file' when trying to use aria control file
'/var/lib/mysql/data/aria_log_control'

2026/02/04 16:26 30/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

2024-10-31 9:53:10 0 [ERROR] Plugin 'Aria' registration as a STORAGE ENGINE failed.
2024-10-31 9:53:10 0 [ERROR] InnoDB: Operating system error number 13 in a file operation.
2024-10-31 9:53:10 0 [ERROR] InnoDB: The error means mysqld does not have the access rights to the directory.
...

En notant l'erreur The error means mysqld does not have the access rights to the directory., devenez root dans la machine hôte redhat9 :

[trainee@redhat9 ~]$ su -
Password: fenestros

Générez un fichier d'alertes de SELinux :

[root@redhat9 ~]# sealert -a /var/log/audit/audit.log > /root/mylogfile.txt

[root@redhat9 ~]# cat /root/mylogfile.txt
...
--

SELinux is preventing /usr/libexec/mariadbd from 'read, write' accesses on the file aria_log_control.

***** Plugin catchall (100. confidence) suggests **************************

If you believe that mariadbd should be allowed read write access on the aria_log_control file by default.
Then you should report this as a bug.
You can generate a local policy module to allow this access.
Do
allow this access for now by executing:
ausearch -c 'mysqld' --raw | audit2allow -M my-mysqld
semodule -X 300 -i my-mysqld.pp

Additional Information:
Source Context system_u:system_r:container_t:s0:c602,c794
Target Context system_u:object_r:user_home_t:s0

2026/02/04 16:26 31/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Target Objects aria_log_control [file]
Source mysqld
Source Path /usr/libexec/mariadbd
Port <Unknown>
Host <Unknown>
Source RPM Packages
Target RPM Packages
SELinux Policy RPM selinux-policy-targeted-38.1.35-2.el9_4.2.noarch
Local Policy RPM selinux-policy-targeted-38.1.35-2.el9_4.2.noarch
Selinux Enabled True
Policy Type targeted
Enforcing Mode Enforcing
Host Name redhat9.ittraining.loc
Platform Linux redhat9.ittraining.loc
 5.14.0-427.37.1.el9_4.x86_64 #1 SMP
 PREEMPT_DYNAMIC Fri Sep 13 12:41:50 EDT 2024
 x86_64 x86_64
Alert Count 1
First Seen 2024-10-31 10:53:10 CET
Last Seen 2024-10-31 10:53:10 CET
Local ID c9066e3a-05ae-464e-bbd4-fd94585c6b64

Raw Audit Messages
type=AVC msg=audit(1730368390.63:60521): avc: denied { read write } for pid=228495 comm="mysqld"
name="aria_log_control" dev="dm-0" ino=373133 scontext=system_u:system_r:container_t:s0:c602,c794 tcontext=sys
tem_u:object_r:user_home_t:s0 tclass=file permissive=0

type=SYSCALL msg=audit(1730368390.63:60521): arch=x86_64 syscall=openat success=no exit=EACCES a0=ffffff9c
a1=7ffd32756e90 a2=80002 a3=0 items=0 ppid=228473 pid=228495 auid=1000 uid=100026 gid=100026 euid=10002
6 suid=100026 fsuid=100026 egid=100026 sgid=100026 fsgid=100026 tty=(none) ses=6974 comm=mysqld
exe=/usr/libexec/mariadbd subj=system_u:system_r:container_t:s0:c602,c794 key=(null)ARCH=x86_64 SYSCALL=openat
AUI
D=trainee UID=unknown(100026) GID=unknown(100026) EUID=unknown(100026) SUID=unknown(100026) FSUID=unknown(100026)

2026/02/04 16:26 32/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

EGID=unknown(100026) SGID=unknown(100026) FSGID=unknown(100026)

Hash: mysqld,container_t,user_home_t,file,read,write

[root@redhat9 ~]# exit
logout

En consultant l'erreur ci-dessus, il semblerait que pour accéder au répertoire /home/trainee/db_data, le SC du répertoire diot conteneur le type
container_file_t. Consultez le SC actuel du répertoire :

[root@redhat9 ~]# ls -lZ /home/trainee | grep db_data
drwxr-xr-x. 3 100026 100026 unconfined_u:object_r:user_home_t:s0 36 Oct 31 10:48 db_data

Pour forcer l'utilisation du SC correct, il faut ajouter la lettre Z à la fin de la valeur de l'option -v de la commande podman run. Par exemple, -v
chemin_hôte:chemin_conteneur:Z. Relancez donc la commande en spécifiant Z et l'option –replace qui va remplacer le conteneur actuel :

[trainee@redhat9 ~]$ podman run -d --replace --name db01 -e MYSQL_USER=user -e MYSQL_PASSWORD=pass -e
MYSQL_DATABASE=db -p 3306:3306 -v /home/trainee/db_data:/var/lib/mysql:Z rhel8/mariadb-105
47a5626d51dd02a8a7c769bfd37c4ba763320f731a2ccc71797567817205a20b

[trainee@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... 2 hours ago Up 2 hours
python36
90c582b10512 registry.redhat.io/rhel8/mariadb-105:latest run-mysqld 51 minutes ago Exited (0)
31 minutes ago 0.0.0.0:3306->3306/tcp db1
47a5626d51dd registry.redhat.io/rhel8/mariadb-105:latest run-mysqld About a minute ago Up About a
minute 0.0.0.0:3306->3306/tcp db01

Finalement vérifiez le SC du répertoire /home/trainee/db_data :

[trainee@redhat9 ~]$ ls -lZ /home/trainee | grep db_data

2026/02/04 16:26 33/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

drwxr-xr-x. 3 100026 100026 system_u:object_r:container_file_t:s0:c274,c277 36 Oct 31 11:16 db_data

4.2 - Gestion du Réseau

Pour fournir un accès réseau aux conteneurs, les clients doivent se connecter aux ports de l'hôte du conteneur qui transmettent le trafic réseau aux
ports du conteneur. Par exemple, il convient de mapper le port 13306 de l'hôte du conteneur au port 3306 du conteneur pour communiquer avec le
conteneur MariaDB.

[trainee@redhat9 ~]$ podman run -d --replace --name db01 -e MYSQL_USER=user -e MYSQL_PASSWORD=pass -e
MYSQL_DATABASE=db -p 3306:3306 -v /home/trainee/db_data:/var/lib/mysql:Z -p 13306:3306 rhel8/mariadb-105
97f190a660ceba8f62b688781a5df1daef06e3ded241d799b15a8df744049116

Notez ensuite la prise en charge de cette commande :

[trainee@redhat9 ~]$ podman ps -a | grep db01
97f190a660ce registry.redhat.io/rhel8/mariadb-105:latest run-mysqld 55 seconds ago Up 56 seconds
0.0.0.0:3306->3306/tcp, 0.0.0.0:13306->3306/tcp db01

Pour voir le mappage des ports, utilisez la commande podman port -a :

[trainee@redhat9 ~]$ podman port -a
97f190a660ce 3306/tcp -> 0.0.0.0:3306
97f190a660ce 3306/tcp -> 0.0.0.0:13306

[trainee@redhat9 ~]$ podman port db01
3306/tcp -> 0.0.0.0:3306
3306/tcp -> 0.0.0.0:13306

Depuis la version 4.0, Podman supporte deux réseaux pour les conteneurs, Netavark et CNI. À partir de RHEL 9, les systèmes utilisent Netavark par
défaut. Pour vérifier quel backend réseau est utilisé, exécutez la commande podman info suivante :

[trainee@redhat9 ~]$ podman --version

2026/02/04 16:26 34/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

podman version 4.9.4-rhel

[trainee@redhat9 ~]$ podman info --format {{.Host.NetworkBackend}}
netavark

Pour modifier le backend utilisé, il convient de modifier la directive network_backend dans le fichier /usr/share/containers/containers.conf :

[trainee@redhat9 ~]$ cat /usr/share/containers/containers.conf | grep network_backend
#network_backend = ""

Lors de l'installation de podman un réseau par défaut, utilisant le DRIVER bridge et appelé podman, est créé :

[trainee@redhat9 ~]$ podman network ls
NETWORK ID NAME DRIVER
2f259bab93aa podman bridge

Important - Le DRIVER bridge est limité aux conteneurs d'un hôte unique exécutant
podman. Les conteneurs ne peuvent communiquer qu'entre eux et ils ne sont pas
accessibles depuis l'extérieur. Pour que les conteneurs sur le réseau puissent
communiquer ou être accessibles du monde extérieur, il faut configurer le mappage de
port.

Regardez les caractéristiques de ce réseau :

[trainee@redhat9 ~]$ podman network inspect podman
[
 {
 "name": "podman",
 "id": "2f259bab93aaaaa2542ba43ef33eb990d0999ee1b9924b557b7be53c0b7a1bb9",
 "driver": "bridge",
 "network_interface": "podman0",

2026/02/04 16:26 35/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 "created": "2024-10-31T11:37:47.368883073+01:00",
 "subnets": [
 {
 "subnet": "10.88.0.0/16",
 "gateway": "10.88.0.1"
 }
],
 "ipv6_enabled": false,
 "internal": false,
 "dns_enabled": false,
 "ipam_options": {
 "driver": "host-local"
 }
 }
]

Créez maintenant un deuxième réseau appelé db_net :

[trainee@redhat9 ~]$ podman network create --gateway 10.87.0.1 --subnet 10.87.0.0/16 db_net
db_net

[trainee@redhat9 ~]$ podman network ls
NETWORK ID NAME DRIVER
556c9797ea6d db_net bridge
2f259bab93aa podman bridge

[trainee@redhat9 ~]$ podman network inspect db_net
[
 {
 "name": "db_net",
 "id": "556c9797ea6df5a823901755db1e9526c7de975a0881def515e61f75d7db38bc",
 "driver": "bridge",
 "network_interface": "podman1",
 "created": "2024-10-31T11:41:38.479538212+01:00",

2026/02/04 16:26 36/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 "subnets": [
 {
 "subnet": "10.87.0.0/16",
 "gateway": "10.87.0.1"
 }
],
 "ipv6_enabled": false,
 "internal": false,
 "dns_enabled": true,
 "ipam_options": {
 "driver": "host-local"
 }
 }
]

Placez le conteneur db01 dans le réseau db_net :

[trainee@redhat9 ~]$ podman run -d --replace --name db01 -e MYSQL_USER=user -e MYSQL_PASSWORD=pass -e
MYSQL_DATABASE=db -p 3306:3306 -v /home/trainee/db_data:/var/lib/mysql:Z -p 13306:3306 --network db_net
rhel8/mariadb-105
36c9f95ae52f76f96c45bb7fd6600cb014adc751059a531bb7bf38f927a11541

Créez maintenant le conteneur client en le plaçant dans le réseau db_net :

[trainee@redhat9 ~]$ podman run -d --name client --network db_net registry.access.redhat.com/ubi8/ubi:latest
sleep infinity
00b2b82c2adf022badf91f88a9a7f59e71cac705bf4885fa08553681ad1f594c

[trainee@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
f42e19a0627e localhost/python36:1.0 /bin/bash -c slee... 2 hours ago Up 2 hours
python36
90c582b10512 registry.redhat.io/rhel8/mariadb-105:latest run-mysqld About an hour ago Exited (0)

2026/02/04 16:26 37/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

About an hour ago 0.0.0.0:3306->3306/tcp db1
36c9f95ae52f registry.redhat.io/rhel8/mariadb-105:latest run-mysqld 7 minutes ago Up 7 minutes
0.0.0.0:3306->3306/tcp, 0.0.0.0:13306->3306/tcp db01
00b2b82c2adf registry.access.redhat.com/ubi8/ubi:latest sleep infinity 13 seconds ago Up 13 seconds
client

Installez dans le conteneur client, les paquets iputils et iproute :

[trainee@redhat9 ~]$ podman exec -it client dnf install -y iputils iproute

Testez la connectivité du réseau db_net :

[trainee@redhat9 ~]$ podman exec -it client ip a | grep 10.8
 inet 10.87.0.3/16 brd 10.87.255.255 scope global eth0

[trainee@redhat9 ~]$ podman exec -it client ping -c3 db01
PING db01.dns.podman (10.87.0.2) 56(84) bytes of data.
64 bytes from 10.87.0.2 (10.87.0.2): icmp_seq=1 ttl=64 time=0.048 ms
64 bytes from 10.87.0.2 (10.87.0.2): icmp_seq=2 ttl=64 time=0.064 ms
64 bytes from 10.87.0.2 (10.87.0.2): icmp_seq=3 ttl=64 time=0.053 ms

--- db01.dns.podman ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2046ms
rtt min/avg/max/mdev = 0.048/0.055/0.064/0.006 ms

Testez la résolution des noms db_net :

[trainee@redhat9 ~]$ podman exec -it client ping -c3 www.free.fr
PING www.free.fr (212.27.48.10) 56(84) bytes of data.
64 bytes from www.free.fr (212.27.48.10): icmp_seq=1 ttl=254 time=88.3 ms
64 bytes from www.free.fr (212.27.48.10): icmp_seq=2 ttl=254 time=88.1 ms
64 bytes from www.free.fr (212.27.48.10): icmp_seq=3 ttl=254 time=88.3 ms

--- www.free.fr ping statistics ---

2026/02/04 16:26 38/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 88.116/88.250/88.327/0.356 ms

Créez le troisième réseau backend :

[trainee@redhat9 ~]$ podman network create backend
backend

[trainee@redhat9 ~]$ podman network ls
NETWORK ID NAME DRIVER
9c7fcc7b2b5d backend bridge
556c9797ea6d db_net bridge
2f259bab93aa podman bridge

[trainee@redhat9 ~]$ podman network inspect backend
[
 {
 "name": "backend",
 "id": "9c7fcc7b2b5dea98f34acecbd58ef076675edd475f059f36bf6c84f476de653a",
 "driver": "bridge",
 "network_interface": "podman2",
 "created": "2024-10-31T12:10:36.370384672+01:00",
 "subnets": [
 {
 "subnet": "10.89.0.0/24",
 "gateway": "10.89.0.1"
 }
],
 "ipv6_enabled": false,
 "internal": false,
 "dns_enabled": true,
 "ipam_options": {
 "driver": "host-local"
 }

2026/02/04 16:26 39/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 }
]

Placez les deux conteneurs existants dans ce nouveau réseau :

[trainee@redhat9 ~]$ podman network connect backend db01

[trainee@redhat9 ~]$ podman network connect backend client

Constatez que les deux conteneurs se trouvent dans les deux réseaux, backend et db_net :

[trainee@redhat9 ~]$ podman inspect db01
[
...
 "Networks": {
 "backend": {
 "EndpointID": "",
 "Gateway": "10.89.0.1",
 "IPAddress": "10.89.0.2",
 "IPPrefixLen": 24,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "ca:67:46:a3:a9:01",
 "NetworkID": "backend",
 "DriverOpts": null,
 "IPAMConfig": null,
 "Links": null,
 "Aliases": [
 "36c9f95ae52f"
]
 },
 "db_net": {
 "EndpointID": "",

2026/02/04 16:26 40/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 "Gateway": "10.87.0.1",
 "IPAddress": "10.87.0.2",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "3e:ee:2c:34:2e:ed",
 "NetworkID": "db_net",
 "DriverOpts": null,
 "IPAMConfig": null,
 "Links": null,
 "Aliases": [
 "36c9f95ae52f"
]
 }
 }
 },
...
]

[trainee@redhat9 ~]$ podman inspect client
[
...
 "Networks": {
 "backend": {
 "EndpointID": "",
 "Gateway": "10.89.0.1",
 "IPAddress": "10.89.0.3",
 "IPPrefixLen": 24,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "c6:eb:7a:f3:b0:5c",
 "NetworkID": "backend",

2026/02/04 16:26 41/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 "DriverOpts": null,
 "IPAMConfig": null,
 "Links": null,
 "Aliases": [
 "00b2b82c2adf"
]
 },
 "db_net": {
 "EndpointID": "",
 "Gateway": "10.87.0.1",
 "IPAddress": "10.87.0.3",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "06:e3:cb:75:63:6b",
 "NetworkID": "db_net",
 "DriverOpts": null,
 "IPAMConfig": null,
 "Links": null,
 "Aliases": [
 "00b2b82c2adf"
]
 }
 }
 },
...
]

LAB #5 - Gestion des Conteneurs en tant que Services Système

Sans faire appel à un Orchestrateur de Conteneurs tel Kubernetes, il est possible de gérer des petites infrastructures en utilisant simplement -

2026/02/04 16:26 42/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

systemd.

5.1 - Création du Gestionnaire de Conteneurs

Commencez par créer un compte qui sera utilisé pour gérer les conteneurs :

[trainee@redhat9 ~]$ su -
Password: fenestros

[root@redhat9 ~]# groupadd fenestros && useradd fenestros -c FenestrOs -d /home/fenestros -g fenestros -s
/bin/bash

[root@redhat9 ~]# passwd fenestros
Changing password for user fenestros.
New password: fenestros
BAD PASSWORD: The password contains the user name in some form
Retype new password: fenestros
passwd: all authentication tokens updated successfully.

Devenez l'utilisateur et constatez l'erreur lors de l'exécution de la commande podman info :

[root@redhat9 ~]# su - fenestros

[fenestros@redhat9 ~]$ podman info
WARN[0000] The cgroupv2 manager is set to systemd but there is no systemd user session available
WARN[0000] For using systemd, you may need to log in using a user session
WARN[0000] Alternatively, you can enable lingering with: `loginctl enable-linger 1001` (possibly as root)
WARN[0000] Falling back to --cgroup-manager=cgroupfs
...

Podman est un utilitaire sans état et nécessite une session de connexion complète. Podman doit être utilisé dans une session SSH et ne peut pas être
utilisé dans un shell sudo ou su :

2026/02/04 16:26 43/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

[fenestros@redhat9 ~]$ exit
logout

[root@redhat9 ~]# ssh fenestros@localhost
The authenticity of host 'localhost (::1)' can't be established.
ED25519 key fingerprint is SHA256:k/cooDrUynjprBohmFjJd22Ii2xlCXFdTHt/HAXpDE4.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'localhost' (ED25519) to the list of known hosts.
fenestros@localhost's password: fenestros
Register this system with Red Hat Insights: insights-client --register
Create an account or view all your systems at https://red.ht/insights-dashboard
Last login: Thu Oct 31 13:04:30 2024

[fenestros@redhat9 ~]$ podman info
host:
 arch: amd64
 buildahVersion: 1.33.8
 cgroupControllers:
 - memory
 - pids
 cgroupManager: systemd
 cgroupVersion: v2
 conmon:
 package: conmon-2.1.10-1.el9.x86_64
 path: /usr/bin/conmon
 version: 'conmon version 2.1.10, commit: fb8c4bf50dbc044a338137871b096eea8041a1fa'
 cpuUtilization:
 idlePercent: 49.45
 systemPercent: 1.22
 userPercent: 49.33
 cpus: 4
 databaseBackend: sqlite
 distribution:

2026/02/04 16:26 44/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 distribution: rhel
 version: "9.4"
...

5.2 - Création d'un Conteneur de Serveur Web

Commencez par créer un répertoire dans l'hôte pour contenir les pages à publier par le serveur web :

[fenestros@redhat9 ~]$ mkdir www

Créez ensuite un conteneur, appelé webserver avec un mappage de ports, à partir de l'image registry.access.redhat.com/ubi8/httpd-24 :

[fenestros@redhat9 ~]$ podman run -d --name webserver -p 8080:8080 -v ~/www:/var/www/html:Z
registry.access.redhat.com/ubi8/httpd-24
Trying to pull registry.access.redhat.com/ubi8/httpd-24:latest...
Getting image source signatures
Checking if image destination supports signatures
Copying blob c302a7fbb8d5 done |
Copying blob 148a3ed2f70e done |
Copying blob 4de1bba6ee61 done |
Copying config e11bc11181 done |
Writing manifest to image destination
Storing signatures
e8afda5806a98f378865230e6d5c900c85afc0ea152609602a65d05c60cd68dc

Utilisez la commande podman generate systemd pour créer un fichier d'unité de service pour le conteneur webserveur :

[fenestros@redhat9 ~]$ podman generate systemd --name webserver --new --files

DEPRECATED command:
It is recommended to use Quadlets for running containers and pods under systemd.

2026/02/04 16:26 45/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Please refer to podman-systemd.unit(5) for details.
/home/fenestros/container-webserver.service

Important - Notez l'utilisation de l'option –new. Cette option demande à l'utilitaire
podman de configurer le service systemd pour qu'il crée le conteneur au démarrage du
service, et qu'il le supprime à l'arrêt du service. Sans l'option –new, l'utilitaire podman
configure le fichier d'unité de service pour démarrer et arrêter le conteneur existant sans
le supprimer.

Le fichier est créé dans le répertoire courant :

[fenestros@redhat9 ~]$ cat container-webserver.service
container-webserver.service
autogenerated by Podman 4.9.4-rhel
Thu Oct 31 13:42:12 CET 2024

[Unit]
Description=Podman container-webserver.service
Documentation=man:podman-generate-systemd(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=%t/containers

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman run \
 --cidfile=%t/%n.ctr-id \
 --cgroups=no-conmon \
 --rm \

2026/02/04 16:26 46/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 --sdnotify=conmon \
 --replace \
 -d \
 --name webserver \
 -p 8080:8080 \
 -v /home/fenestros/www:/var/www/html:Z registry.access.redhat.com/ubi8/httpd-24
ExecStop=/usr/bin/podman stop \
 --ignore -t 10 \
 --cidfile=%t/%n.ctr-id
ExecStopPost=/usr/bin/podman rm \
 -f \
 --ignore -t 10 \
 --cidfile=%t/%n.ctr-id
Type=notify
NotifyAccess=all

[Install]
WantedBy=default.target

Pour que systemd puisse prendre en charge le service, le fichier d'unité de service doit être placé dans le répertoire $HOME/.config/systemd/user/ :

[fenestros@redhat9 ~]$ mkdir -p ~/.config/systemd/user/

[fenestros@redhat9 ~]$ mv container-webserver.service ~/.config/systemd/user/

Pour créer le service, utilisez la commande systemctl –user daemon-reload. Notez que l'utilisation de l'option –user informe systemctl de regarder
dans le répertoire $HOME/.config/systemd/user/ et non dans le répertoire /etc/systemd/system/ :

[fenestros@redhat9 ~]$ systemctl --user daemon-reload

Vérifiez le statut du service :

[fenestros@redhat9 ~]$ systemctl --user status container-webserver.service
○ container-webserver.service - Podman container-webserver.service

2026/02/04 16:26 47/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

 Loaded: loaded (/home/fenestros/.config/systemd/user/container-webserver.service; disabled; preset:
disabled)
 Active: inactive (dead)
 Docs: man:podman-generate-systemd(1)

Dans l'état et par défaut, si ce service était activé et démarré, celui-ci s'arrêterait à la fin de la session courante pour être démarrer de nouveau lors de
la prochaine ouverture de session. Ce comportement est configuré par la valeur de la directive Linger :

[fenestros@redhat9 ~]$ loginctl show-user fenestros
UID=1001
GID=1001
Name=fenestros
Timestamp=Thu 2024-10-31 13:09:25 CET
TimestampMonotonic=240322297212
RuntimePath=/run/user/1001
Service=user@1001.service
Slice=user-1001.slice
Display=7200
State=active
Sessions=7200
IdleHint=no
IdleSinceHint=1730379006672000
IdleSinceHintMonotonic=242763627399
Linger=no

Afin que le service reste démarré après la fermeture de la session et qu'il réagisse comme un service de système, il faut modifier la valeur de Linger à
yes :

[fenestros@redhat9 ~]$ loginctl enable-linger

[fenestros@redhat9 ~]$ loginctl show-user fenestros
UID=1001
GID=1001
Name=fenestros

2026/02/04 16:26 48/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Timestamp=Thu 2024-10-31 13:09:25 CET
TimestampMonotonic=240322297212
RuntimePath=/run/user/1001
Service=user@1001.service
Slice=user-1001.slice
Display=7200
State=active
Sessions=7200
IdleHint=no
IdleSinceHint=1730379080672000
IdleSinceHintMonotonic=242837627399
Linger=yes

Créez un fichier index.html dans le répertoire $HOME/www/ :

[fenestros@redhat9 ~]$ echo "Hello World" > ~/www/index.html

Supprimez le conteneur actuel webserver en utilisant l'option -f de la commande podman rm :

[fenestros@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
e8afda5806a9 registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-http... 44 minutes ago Up 44
minutes 0.0.0.0:8080->8080/tcp webserver

[fenestros@redhat9 ~]$ podman rm -f webserver
webserver

Activez et démarrez le service utilisateur container-webserver :

[fenestros@redhat9 ~]$ systemctl --user enable --now container-webserver
Created symlink /home/fenestros/.config/systemd/user/default.target.wants/container-webserver.service →
/home/fenestros/.config/systemd/user/container-webserver.service.

2026/02/04 16:26 49/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

[fenestros@redhat9 ~]$ systemctl --user status container-webserver
● container-webserver.service - Podman container-webserver.service
 Loaded: loaded (/home/fenestros/.config/systemd/user/container-webserver.service; enabled; preset: disabled)
 Active: active (running) since Thu 2024-10-31 13:59:23 CET; 15s ago
 Docs: man:podman-generate-systemd(1)
 Main PID: 235072 (conmon)
 Tasks: 16 (limit: 48799)
 Memory: 10.7M
 CPU: 132ms
 CGroup: /user.slice/user-1001.slice/user@1001.service/app.slice/container-webserver.service
 ├─235055 /usr/bin/slirp4netns --disable-host-loopback --mtu=65520 --enable-sandbox --enable-seccomp
--enable-ipv6 -c -r 3 -e 4 --netns-type=path /run/user/1001/netns/netns-633c20d2-eef3-b41e-f850->
 ├─235057 rootlessport
 ├─235064 rootlessport-child
 └─235072 /usr/bin/conmon --api-version 1 -c
ed306cecef9e73b928ceb98308aba3e3b4c255c4517212139c87a428548c31e3 -u
ed306cecef9e73b928ceb98308aba3e3b4c255c4517212139c87a428548c31e3 -r /usr/bin/crun -b>

[fenestros@redhat9 ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
ed306cecef9e registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-http... 29 seconds ago Up 28
seconds 0.0.0.0:8080->8080/tcp webserver

Déconnectez-vous du compte fenestros et vérifiez que le serveur Web fonctionne :

[fenestros@redhat9 ~]$ exit
logout
Connection to localhost closed.

[root@redhat9 ~]# curl http://localhost:8080
Hello World

2026/02/04 16:26 50/50 RH13409 - Gestion des Conteneurs avec Podman

www.ittraining.team - https://www.ittraining.team/

Copyright © 2024 Hugh Norris

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:redhat:rh134:l108

Last update: 2024/11/22 08:50

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:redhat:rh134:l108

	RH13409 - Gestion des Conteneurs avec Podman
	Contenu du Cours
	Présentation de la Virtualisation par Isolation
	Historique
	Conteneurs vs Machines Virtuelles
	Conteneurs Rootless et Rootful
	Architecture à base de Conteneurs
	Outils de Gestion des Conteneurs
	Images et Registres des Conteneurs
	Podman
	Présentation
	La Commande Podman

	LAB #1 - Configuration des Registres
	LAB #2 - Gestion des Images
	2.1 - Télécharger une Image
	2.2 - Créer une Image à l'aide d'un Fichier Containerfile

	LAB #3 - Gestion des Conteneurs
	3.1 - Création d'un Conteneur
	3.2 - Démarrage d'un Conteneur
	3.3 - Exécution d'une Commande dans un Conteneur
	3.4 - Suppression des Images et des Conteneurs

	LAB #4 - Gestion du Stockage et du Réseau
	4.1 - Gestion du Stockage Persistant
	4.2 - Gestion du Réseau

	LAB #5 - Gestion des Conteneurs en tant que Services Système
	5.1 - Création du Gestionnaire de Conteneurs
	5.2 - Création d'un Conteneur de Serveur Web

