2026/02/04 22:03 1/29

RH13401 - Les Scripts Shell

Version : 2024.01

Derniere mise-a-jour : 2024/10/21 11:20

RH13401 - Les Scripts Shell

Contenu du Module

e RH13401 - Les Scripts Shell
o Contenu du Module
o LAB #1 - Les Scripts Shell
= 1.1 - Exécution
1.2 - La commande read
e Code de retour
e La variable IFS
1.3 - La commande test
e Tests de Fichiers
 Tests de chaines de caractere
e Tests sur des nombres
e Les opérateurs
e Tests d'environnement utilisateur
1.4 - La commande [[expression]]
1.5 - Opérateurs du shell
1.6 - L'arithmétique
e La commande expr
o Opérateurs Arithmétiques
o Opérateurs de Comparaison
o Opérateurs Logiques
e La commande let
o Opérateurs Arithmétiques
o Opérateurs de comparaison

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 2/29 RH13401 - Les Scripts Shell

o Opérateurs Logiques
o Opérateurs travaillant sur les bits
1.7 - Structures de controle
e If
* case
o Exemple
1.8 - Boucles
e for
 while
e Exemple
1.9 - Scripts de Démarrage
e ~/.bash_profile
e ~/.bashrc
1.10 - Rappel des Expressions Régulieres dans Bash

LAB #1 - Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point ou vous étes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de controle des services.

Ecrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut étre adressée que lors

d'une formation dédiée a I'écriture des scripts.

1.1 - Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une maniére séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse étre lu au quel cas le script est exécuté par un shell fils soit en I'appelant en argument a I'appel du
shell :

/bin/bash myscript

soit en redirigeant son entrée standard :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 3/29 RH13401 - Les Scripts Shell

/bin/bash < myscript

Dans le cas ou le droit d'exécution est positionné sur le fichier script et a condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
I'utilisateur qui le lance, le script peut étre lancé en I'appelant simplement par son nom :

myscript
Pour lancer le script sans qu'il soit dans un répertoire du PATH, il convient de se placer dans le répertoire contenant le script et de le lancer ainsi :
./myscript

Dans le cas ou le script doit étre exécuté par le shell courant, dans les mémes conditions que I'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. myscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent a d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractere #.

[l existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit étre utilisé pour
I'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de I'utilisateur qui le lance. Le pseudo commentaire commence avec les
caracteres #!. Chaque script commence donc par une ligne similaire a celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent étre saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer I'utilisation de cette commande, saisissez la suite de commandes suivante :

[trainee@redhat9 ~]$ script
Script started, output log file is 'typescript'.

[trainee@redhat9 ~]$ pwd
/home/trainee

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 4/29 RH13401 - Les Scripts Shell

[trainee@redhat9 ~]$ 1s
Desktop Documents Downloads Music Pictures Public Templates typescript Videos

[trainee@redhat9 ~]$ exit
exit
Script done.

[trainee@redhat9 ~]$ cat typescript
Script started on 2024-10-21 11:57:26+02:00 [TERM="xterm-256color" TTY="/dev/pts/0" COLUMNS="86" LINES="24"]

[trainee@redhat9 ~]$ pwd
/home/trainee

[trainee@redhat9 ~]$ 1s
Desktop Documents Downloads Music Pictures Public Templates typescript Videos

[trainee@redhat9 ~]$ exit
exit

Script done on 2024-10-21 11:57:36+02:00 [COMMAND EXIT CODE="0"]
Cette procédure peut étre utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer I'écriture et I'exécution d'un script, créez le fichier myscript avec vi :

[trainee@redhat9 ~]$ vi myscript
[trainee@redhat9 ~]$ cat myscript
pwd
ls

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument a /bin/bash :

[trainee@redhat9 ~]$ /bin/bash myscript

/home/trainee
Desktop Downloads myscript Public typescript
Documents Music Pictures Templates Videos

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 5/29 RH13401 - Les Scripts Shell

Lancez ensuite le script en redirigeant son entrée standard :

[trainee@redhat9 ~]$ /bin/bash < myscript

/home/trainee
Desktop Downloads myscript Public typescript
Documents Music Pictures Templates Videos

Pour lancer le script en I'appelant simplement par son nom, son chemin doit étre inclus dans votre PATH:

[trainee@redhat9 ~]$ echo $PATH
/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

Dans le cas de RHEL 9, méme si PATH contient $HOME/bin, le répertoire n'existe pas :

[trainee@redhat9 ~]$ 1s
Desktop Downloads myscript Public typescript
Documents Music Pictures Templates Videos

Créez donc ce répertoire :
[trainee@redhat9 ~]$ mkdir bin

Ensuite déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

[trainee@redhat9 ~]$ mv myscript ~/bin
[trainee@redhat9 ~]$ chmod u+x ~/bin/myscript

Exécutez maintenant votre script en I'appelant par son nom a partir du répertoire /tmp :
[trainee@redhat9 ~]$ cd /tmp

[trainee@redhat9 tmpl$ myscript
/tmp

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 6/29 RH13401 - Les Scripts Shell

dbus-BKNtynzn@b

dbus-G7skg3Wlpv

dbus - pGKMf26gAW
systemd-private-c3bb2399f5814488bf583ccbhbl69e7ffc-colord.service-GbUnUn
systemd-private-c3bb2399f5814488bf583ccbl69e7ffc-dbus-broker.service-94Z0Z9
systemd-private-c3bb2399f5814488bf583cch1l69e7ffc-kdump.service-walLNMP
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-ModemManager.service-7yMSFI
systemd-private-c3bb2399f5814488bf583cch169e7ffc-power-profiles-daemon.service-NPO7Sj
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-rtkit-daemon.service-FHomNd
systemd-private-c3bb2399f5814488bf583cchl69e7ffc-switcheroo-control.service-QyA5XT
systemd-private-c3bb2399f5814488bf583cchl69e7ffc-systemd-logind.service-S5YYJs
systemd-private-c3bb2399f5814488bf583cch169e7ffc-upower.service-Cd1DL]

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :
[trainee@redhat9 tmpl$ cd ~/bin

[trainee@redhat9 bin]$./myscript

/home/trainee/bin

myscript

[trainee@redhat9 bin]$. myscript

/home/trainee/bin
myscript

1.2 - La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est I'espace. Par conséquent il est intéressant de noter les exemples suivants :

[trainee@redhat9 bin]$ read varl var2 var3 var4d
fenestros edu is great!

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03

7129

RH13401 - Les Scripts Shell

[trainee@redhat9
fenestros

[trainee@redhat9
edu

[trainee@redhat9
is

[trainee@redhat9
great!

[trainee@redhat9
fenestros edu is

[trainee@redhat9
fenestros

[trainee@redhat9
edu is great!

bin]$ echo $varl

bin]$ echo $var2

bin]$ echo $var3

bin]$ echo $var4

Important: Notez que chaque champs a été placé dans une variable différente. Notez
aussi que par convention les variables déclarées par des utilisateurs sont en miniscules
afin de les distinguer des variables systéme qui sont en majuscules.

bin]$ read varl var2

great!

bin]$ echo $varl

bin]$ echo $var2

/1. Important : Notez que dans le deuxiéme cas, le reste de la ligne aprés le mot fenestros
d » est mis dans $var2.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 8/29 RH13401 - Les Scripts Shell

Code de retour

La commande read renvoie un code de retour de 0 dans le cas ou elle ne recoit pas l'information fin de fichier matérialisée par les touches CLrI|+g
Le contenu de la variable var peut étre vide et la valeur du code de retour 0 grace a l'utilisation de la touche Entrée| ;

[trainee@redhat9 bin]$ read var

= Entrée|

[trainee@redhat9 bin]$ echo $?
0

[trainee@redhat9 bin]$ echo $var
[trainee@redhat9 bin]$

Le contenu de la variable varl peut étre vide et la valeur du code de retour autre que 0 grace a l'utilisation des touches CLrI|+g :

[trainee@redhat9 bin]$ read var

ctrl+o

[trainee@redhat9 bin]$ echo $?
0
[trainee@redhat9 bin]$ read var

[trainee@redhat9 bin]$ echo $?
1

[trainee@redhat9 bin]$

www.ittraining.team - https://www.ittraining.team/

RH13401 - Les Scripts Shell

2026/02/04 22:03 9/29

La variable IFS

La variable IFS contient par défaut les caractéres Espacel, Tab| et Entrée] :

[trainee@redhat9 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de I'entrée
standard au format octal. Ceci est utile afin de visualiser les caracteres non-imprimables.
L'option -c permet de sélectionner des caracteres ASCIl ou des backslash dans le fichier ou

dans le contenu fourni a I'entrée standard.

.,
LT

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut étre modifiée :

[trainee@redhat9 bin]$ IFS=":"

[trainee@redhat9 bin]$ echo "$IFS" | od -c
0000000 : \n
0000002

De cette facon I'espace redevient un caractere normal :

[trainee@redhat9 bin]$ read varl var2 var3
fenestros:edu is:great!

[trainee@redhat9 bin]$ echo $varl
fenestros

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03

10/29

RH13401 - Les Scripts Shell

[trainee@redhat9 bin]$ echo $var2

edu is

[trainee@redhat9 bin]$ echo $var3

great!

Restaurez I'ancienne valeur de IFS :

[trainee@redhat9 binl$ unset IFS

1.3 - La commande test

La commande test peut étre utilisée avec deux syntaxes :

test expression

ou

[Espace|expression Espace|]

Tests de Fichiers

Test Description

-f fichier Retourne vrai si fichier est d'un type standard

-d fichier Retourne vrai si fichier est d'un type répertoire

-r fichier Retourne vrai si l'utilisateur peut lire fichier

-w fichier Retourne vrai si l'utilisateur peut modifier fichier

-x fichier Retourne vrai si l'utilisateur peut exécuter fichier

-e fichier Retourne vrai si fichier existe

-s fichier Retourne vrai si fichier n'est pas vide

fichierl -nt fichier2|Retourne vrai si fichierl est plus récent que fichier2

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 11/29 RH13401 - Les Scripts Shell

Test Description
fichierl -ot fichier2|Retourne vrai si fichierl est plus ancien que fichier2
fichierl -ef fichier2|Retourne vrai si fichierl est identique a fichier2

Testez si le fichier al00 est un fichier ordinaire :
[trainee@redhat9 bin]$ mkdir ../training
[trainee@redhat9 bin]$ cd ../training
[trainee@redhat9 training]$ touch aleo
[trainee@redhat9 training]$ test -f al@o

[trainee@redhat9 trainingl$ echo $?
0

[trainee@redhat9 training]$ [-f al00]

[trainee@redhat9 trainingl$ echo $?
0

Testez si le fichier al01 existe :
[trainee@redhat9 trainingl$ [-f al0l]

[trainee@redhat9 training]$ echo $?
1

Testez si /home/trainee/training est un répertoire :

[trainee@redhat9 training]$ [-d /home/trainee/training]

[trainee@redhat9 training]$ echo $?

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 12/29 RH13401 - Les Scripts Shell

0

Tests de chaines de caractere

Test Description
-n chaine Retourne vrai si chaine n'est pas de longueur 0
-z chaine Retourne vrai si chaine est de longueur 0

stringl = string2 |Retourne vrai si stringl est égale a string2
stringl != string2|Retourne vrai si stringl est différente de string2
stringl Retourne vrai si stringl n'est pas vide

Testez si les deux chaines sont égales :
[trainee@redhat9 trainingl]$ stringl="root"
[trainee@redhat9 training]$ string2="fenestros"

[trainee@redhat9 trainingl$ echo $stringl
root

[trainee@redhat9 training]$ echo $string2
fenestros

[trainee@redhat9 training]$ [$stringl = $string2]

[trainee@redhat9 trainingl$ echo $?
1

Testez si la stringl n'a pas de longueur O :
[trainee@redhat9 training]$ [-n $stringl]

[trainee@redhat9 trainingl$ echo $?

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03

13/29

RH13401 - Les Scripts Shell

0

Testez si la stringl a une longueur de O :

[trainee@redhat9 training]l$ [-z $stringl]

[trainee@redhat9 training]$ echo $?

1

Tests sur des nombres

Test

Description

valuel -eq value2

Retourne vrai si valuel est égale a value2

valuel -ne value2

Retourne vrai si valuel n'est pas égale a value2

valuel -t value2

Retourne vrai si valuel est inférieure a value2

valuel -le value?2

Retourne vrai si valuel est inférieur ou égale a value2

valuel -gt value2

Retourne vrai si valuel est supérieure a value2

valuel -ge value2

Retourne vrai si valuel est supérieure ou égale a value2

Comparez les deux nombres valuel et value2 :

[trainee@redhat9 trainingl$ read valuel

35

[trainee@redhat9 trainingl$ read value2

23

[trainee@redhat9 training]$ [$valuel -1t $value2]

[trainee@redhat9 trainingl$ echo $?

1

[trainee@redhat9 trainingl]$ [$value2 -1t $valuel]

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03

14/29

RH13401 - Les Scripts Shell

[trainee@redhat9 trainingl$ echo $?

0

[trainee@redhat9 trainingl]$ [$value2 -eq $valuel]

[trainee@redhat9 trainingl$ echo $?

1

Les opérateurs

Test

Description

lexpression

Retourne vrai si expression est fausse

expressionl -a expression2

Représente un et logique entre expressionl et expression?2

expressionl -0 expression2

Représente un ou logique entre expressionl et expression2

\(expression\)

Les parentheses permettent de regrouper des expressions

Testez si $file n'est pas un répertoire :

[trainee@redhat9 training]$ file=al00

[trainee@redhat9 training]$ [! -d $file]

[trainee@redhat9 trainingl$ echo $?

0

Testez si $directory est un répertoire et si I'utilisateur a le droit de le traverser :

[trainee@redhat9 training]$ directory=/usr

[trainee@redhat9 training]$ [-d $directory -a -x $directory |

[trainee@redhat9 trainingl$ echo $?

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 15/29 RH13401 - Les Scripts Shell

0

Testez si I'utilisateur peut écrire dans le fichier al00 et /usr est un répertoire ou /tmp est un répertoire :
[trainee@redhat9 trainingl$ [-w al@® -a \(-d /usr -o -d /tmp \) 1]

[trainee@redhat9 training]$ echo $?
0

Tests d'environnement utilisateur

Test Description
-0 option|Retourne vrai si I'option du shell “option” est activée

[trainee@redhat9 training]$ [-o allexport]

[trainee@redhat9 training]$ echo $?
1

1.4 - La commande [[expression]]

La commande [[Espace|expression Espace|]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression]] sauf -a et -0 qui sont remplacés par && et || respectivement :

Test Description

lexpression Retourne vrai si expression est fausse

expressionl && expression2|Représente un et logique entre expressionl et expression2
expressionl || expression2 |Représente un ou logique entre expressionl et expression2
(expression) Les parentheses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 16/29 RH13401 - Les Scripts Shell

Test Description

string = modele |Retourne vrai si chaine correspond au modele

string != modele|Retourne vrai si chaine ne correspond pas au modele

stringl < string2|Retourne vrai si stringl est lexicographiguement avant string2
stringl > string2|Retourne vrai si stringl est lexicographiquement aprés string2

Testez si I'utilisateur peut écrire dans le fichier al00 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@redhat9 training]$ [[-w al0® && (-d /usr || -d /tmp)]]

[trainee@redhat9 training]$ echo $?
0

1.5 - Opérateurs du shell

Opérateur Description
Commandel && Commande2 Commande 2 est exécutée si la premiere commande renvoie un code vrai
Commandel || Commande2 |Commande 2 est exécutée si la premiere commande renvoie un code faux

[trainee@redhat9 training]$ [[-d /root]] && echo "The root directory exists"
The root directory exists

[trainee@redhat9 trainingl$ [[-d /root]]1 || echo "The root directory exists"

[trainee@redhat9 trainingl$
1.6 - L'arithmétique
La commande expr

La commande expr prend la forme :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 17/29 RH13401 - Les Scripts Shell

expr Espace| valuel Espace| opérateur Espace| value2 Entrée|

ou
expr Tab| valuel Tab| opérateur Tab| value2 Entrée]
ou

expr Espace| chaine Espace| : Espace| expression_réguliére Entrée|

ou

expr Tab| chaine Ta b| : Ta b| expression_réguliere Entrée|

Opérateurs Arithmétiques

Opérateur|Description
+ Addition

- Soustraction

* Multiplication
/ Division

% Modulo

\(\) Parentheses

Opérateurs de Comparaison

Opérateur|Description

\< Inférieur

\<= Inférieur ou égal
\> Supérieur

\>= Supérieur ou égal
= égal

= inégal

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 18/29

RH13401 - Les Scripts Shell

Opérateurs Logiques

Opérateur|Description
\| ou logique
\& et logique

Ajoutez 2 a la valeur de $x :
[trainee@redhat9 training]$ x=2

[trainee@redhat9 trainingl]$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

[trainee@redhat9 trainingl$ expr $x+2
242

Les opérateurs doivent étre protégés :

[trainee@redhat9 trainingl]$ expr $x * 2
expr: syntax error

[trainee@redhat9 trainingl$ expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

[trainee@redhat9 training]$ resultat="expr $x + 10°

[trainee@redhat9 trainingl$ echo $resultat
12

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03

19/29

RH13401 - Les Scripts Shell

La commande let

La commande let est I'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs

pas besoin d'espaces ou de tabulations entre les arguments

pas besoin de préfixer les variables d'un $

les caracteres spéciaux du shell n'ont pas besoin d'étre protégés
les affectations se font dans la commande

exécution plus rapide

Opérateurs Arithmétiques

Opérateur|Description
+ Addition

- Soustraction
* Multiplication
/ Division

% Modulo

~ Puissance

Opérateurs de comparaison

Opérateur|Description

< Inférieur

<= Inférieur ou égal
> Supérieur

>= Supérieur ou égal
== égal

= inégal

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 20/29

RH13401 - Les Scripts Shell

Opérateurs Logiques

Opérateur|Description
&& et logique

[l ou logique

! négation logique

Opérateurs travaillant sur les bits

Opérateur|Description
~ négation binaire

>> décalage binaire a droite
<< décalage binaire a gauche
& et binaire

| ou binaire

ou exclusif binaire

[trainee@redhat9 training]$ x=2
[trainee@redhat9 trainingl$ ((x=$x+10))

[trainee@redhat9 trainingl$ echo $x
12

[trainee@redhat9 trainingl$ ((x=$x+20))

[trainee@redhat9 trainingl$ echo $x
32

1.7 - Structures de controle

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 21/29 RH13401 - Les Scripts Shell

If

La syntaxe de la commande If est la suivante :

if condition
then
commande(s)
else
commande(s)
fi

ou:

if condition
then
commande(s)
commande(s)
fi

Oou encore :

if condition
then

commande(s)
elif condition
then

commande(s)
elif condition
then

commande(s)
else

commande(s)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 22/29

RH13401 - Les Scripts Shell

fi
Créez le script user_check suivant :

[trainee@redhat9 trainingl$ vi user check
[trainee@redhat9 training]$ cat user check
#!/bin/bash
if [$# -ne 1] ; then

echo "Mauvais nombre d'arguments"

echo "Usage : $0 nom utilisateur"

exit 1
fi
if grep ""$1:" /etc/passwd > /dev/null
then

echo "Utilisateur $1 est défini sur ce systeme"
else

echo "Utilisateur $1 n'est pas défini sur ce systeme"
fi
exit 0O

Testez-le :

[trainee@redhat9 training]$ chmod 770 user check
[trainee@redhat9 trainingl]$./user check

Mauvais nombre d'arguments

Usage : ./user check nom utilisateur

[trainee@redhat9 training]$./user check root
Utilisateur root est défini sur ce systeme

[trainee@redhat9 training]$./user check mickey mouse
Mauvais nombre d'arguments
Usage : ./user check nom utilisateur

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 23/29 RH13401 - Les Scripts Shell

[trainee@redhat9 training]$./user check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce systeme

case

La syntaxe de la commande case est la suivante :

case $variable in
modelel) commande

..
r

modele2) commande

.
r

modele3 | modeled4 | modele5) commande

..
r

esac

Exemple

case "$1" in
start)
start
stop)
stop
restart|reload)
stop
start

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 24/29 RH13401 - Les Scripts Shell

status)
status
*) r
echo $"Usage: $0 {start|stop|restart|status}"
exit 1
esac

Important : L'exemple indique que dans le cas ou le premier argument qui suit le nom du
script contenant la clause case est start, la fonction start sera exécutée. La fonction start
n'a pas besoin d'étre définie dans case et est donc en regle générale définie en début de
script. La méme logique est appliquée dans le cas ou le premier argument est stop,
restart ou reload et status. Dans tous les autres cas, représentés par une étoile, case
affichera la ligne Usage: $0 {start|stop|restart|status} ou $0 est remplacé par le nom
du script

1.8 - Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste variables
do

commande(s)
done

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 25/29 RH13401 - Les Scripts Shell

while

La syntaxe de la commande while est |a suivante :

while condition
do

commande(s)
done

Exemple

u=1
while [$U -1t $MAX ACCOUNTS]

do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null

useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"

let U=U+1

done

1.9 - Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans I'ordre suivant :

* /etc/profile,
e ~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de RHEL 9, le systeme exécute le fichier ~/.bash_profile.

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 26/29

RH13401 - Les Scripts Shell

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

suivants ligne par ligne.

~/.bash_profile

[trainee@redhat9 trainingl]$ cat ~/.bash profile
.bash profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

~/.bashrc

[trainee@redhat9 trainingl]$ cat ~/.bashrc
.bashrc

Source global definitions

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

User specific environment

A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 27/29 RH13401 - Les Scripts Shell

if ' [["$PATH" =~ "$HOME/.local/bin:$HOME/bin:"]]
then
PATH="$HOME/ . local/bin: $HOME/bin: $PATH"
fi
export PATH

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD PAGER=

User specific aliases and functions
if [-d ~/.bashrc.d]; then
for rc in ~/.bashrc.d/*; do
if [-f "$rc"], then
"grc
fi
done
fi

unset rc

1.10 - Rappel des Expressions Régulieres dans Bash

Option |Description
~ Trouver la chaine au début de la ligne
$ Trouver la chaine a la fin de la ligne
\ Annuler I'effet spécial du caractere suivant
[] Trouver n'importe quel des caracteres entre les crochets
[~] Exclure les caracteres entre crochets
Trouver n'importe quel caractere sauf a la fin de la ligne
* Trouver 0 ou plus du caractéere qui précede
\< Trouver la chaine au début d'un mot
\> Trouver la chaine a la fin d'un mot

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 28/29 RH13401 - Les Scripts Shell

Option |Description

? Trouver 0 ou 1 occurrence de ce qui précede

+ Trouver 1 ou n d'occurrences de ce qui précede

{x,y} |[Trouver de x a y occurrences de ce qui précede

{x} Trouver exactement le nombre x d'occurrences de ce qui précede

{x,} Trouver le nombre x ou plus d'occurrences de ce qui précede

{,x} Trouver le nombre x ou moins d'occurrences de ce qui précede

() Faire un ET des expressions régulieres entre les parantheses

| Faire un OU des expressions régulieres se trouvant de chaque c6té du pipe

L:alnum:] Caracteres alphanumériques : [:alpha :] et [:digit :]; dans la locale 'C' et le codage de caractéres ASCII, cette expression est identique a
[0-9A-Za-Z].

[:alpha:] Qaragtéres\ alphabétiques : [:lower :] et [:upper :]; dans les parametres régionaux 'C' et le codage de caracteres ASCII, cette expression est
identique a [A-Za-z].

[:blank:] |Caracteres vides : espace et tabulation.

[:cntrl:] |Caracteres de contréle. En ASCII, ces caracteres ont les codes octaux 000 a 037, et 177 (DEL).

[:digit:] |Chiffres:01234567809.

[:graph:] |Caracteres graphiques : [:alnum :] et [:punct :].

[:lower:] |Lettres minuscules ; dans la locale « C » et le codage de caracteres ASCll:abcdefghijklmnopqgrstuvwxyz

[:print:] |Caracteres imprimables : [:alnum :], [:punct :] et espace.

[:punct:] \C?T\ctt“ar{eis}de ponctuation ; dans les parametres régionaux « C » et le codage des caracteres ASCll : '« # $% &' ()*+ ,-./:;<=>720@[

[:space:] Caracteres d'espacement : dgns les pz?ramétres régionaux « C », il s'agit de la tabulation, de la nouvelle ligne, de la tabulation verticale, du
saut de page, du retour chariot et de I'espacement.

[:upper:] #ezttres majuscules : dans les parametres régionaux « C » et le codage des caracteres ASCII: ABCDEFGHIJKLMNOPQRSTUVWX

[:xdigit:] |Chiffres hexadécimaux: 0123456 789ABCDEFabcdef.

\b Faire correspondre la chaine vide au bord d'un mot.

\B Correspondre a la chaine vide a condition qu'elle ne se trouve pas a la périphérie d'un mot.

\< Correspondre a la chaine vide au début d'un mot.

\> Correspondre a la chaine vide a la fin d'un mot.

\w Correspondre au mot constituant. Synonyme de [_[:alnum :]].

\W Correspondre a un constituant non-mot. Synonyme de [~ [:alnum :]].

www.ittraining.team - https://www.ittraining.team/

2026/02/04 22:03 29/29 RH13401 - Les Scripts Shell

Option |Description
\s Correspondre a I'espace blanc. Synonyme de '[[:espace :] 1.
\S Correspondre a un espace non blanc. Synonyme de [~[:espace :]].

Copyright © 2024 Hugh Norris.

From:
https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:redhat:rh134:1100

Last update: 2024/10/21 11:20

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:redhat:rh134:l100

	RH13401 - Les Scripts Shell
	Contenu du Module
	LAB #1 - Les Scripts Shell
	1.1 - Exécution
	1.2 - La commande read
	Code de retour
	La variable IFS

	1.3 - La commande test
	Tests de Fichiers
	Tests de chaînes de caractère
	Tests sur des nombres
	Les opérateurs
	Tests d'environnement utilisateur

	1.4 - La commande [[expression]]
	1.5 - Opérateurs du shell
	1.6 - L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits

	1.7 - Structures de contrôle
	If
	case
	Exemple

	1.8 - Boucles
	for
	while
	Exemple

	1.9 - Scripts de Démarrage
	~/.bash_profile
	~/.bashrc

	1.10 - Rappel des Expressions Régulières dans Bash

