2026/02/04 12:35 1/36

DOE308 - Introduction to Securing K8s

Version - 2025.01

Last update : 2025/01/17 16:09

DOE308 - Introduction to Securing K8s

Contents

e DOE308 - Introduction to Securing K8s
o Contents
o LAB #1 - Role Based Access Control and TLS Certificates
= 1.1 - Overview
1.2 - The /etc/kubernetes/manifests/kube-apiserver.yaml File
1.3 - Creating a serviceAccount
1.4 - Creating a User
1.5 - TLS Certificates
o LAB #2 - Pod Security Implementation
= 2.1 - Overview
= 2.2 - Kubernetes Security Context
= 2.3 - Kubernetes Network Policies
= 2.4 - Kubernetes Resource Allocation Management

LAB #1 - Role Based Access Control and TLS Certificates

1.1 - Overview

A Kubernetes object is either linked to a Namespace or not linked to a Namespace.

Kubernetes uses the rbac.authorization.k8s.io APl to manage authorizations. The actors involved in this API are:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 2/36 DOE308 - Introduction to Securing K8s

* Namespaces,

can be considered as virtual clusters,

allow isolation and logical segmentation,

allow users, roles and resources to be grouped together,
o are used with applications, customers, projects or teams.

[¢]

[¢]

o

e Subjects,
o Regular Users - enable management of authorized access from outside the cluster, whether by a physical user or in some other form. User
management is the responsibility of the cluster administrator,
o ServiceAccounts - set permissions on software entities. Kubernetes creates a certain number of serviceAccounts automatically, but the
Administrator can create others. Each pod has a serviceAccount that manages the privileges granted to the pod's process and containers,
o User Groups - Kubernetes groups users using common properties such as the prefix of a serviceAccount or the organization field in a
certificate. It is then possible to grant RBAC-type privileges to the groups thus created.

e Resources,
o These are entities to which Subjects will have access,
o Aresource is an entity such as a pod, a deployment or sub-resources such as pod logs,
o The Pod Security Policy (PSP) is also considered a resource.

* Roles and ClusterRoles,
o Roles - allow you to define rules representing a set of permissions, such as GET WATCH LIST CREATE UPDATE PATCH and DELETE, which
can be used with resources in a Namespace,

» Permissions are added, not removed. So there are no deny rules.

o ClusterRoles - is not linked to a Namespace. A ClusterRole is used to :
= Define permissions for resources to be used in a Namespace
= Set permissions for resources to be used in all Namespaces
= Set permissions for cluster resources.

An example of a Role for granting permissions in the default Namespace is :

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:

namespace: default

name: pod-reader

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 3/36 DOE308 - Introduction to Securing K8s

rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list"]

| Important : apiGroups: [“"] - “” indicates the core or legacy api group. This group is never specified in an apiVersion field, which is why
we write apiVersion: v1 and not apiVersion api/v1.

An example of a ClusterRole for granting read permissions to secrets in a specific Namespace or in all Namespaces is :

apiVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRole
metadata:

name: secret-reader
rules:

- apiGroups: [""]
resources: ["secrets"]
verbs: ["get", "watch", "list"]

¢ RoleBindings and ClusterRoleBindings,

o Allow you to grant permissions defined in Roles or ClusterRoles to Subjects,
o RoleBindings are NameSpace-specific,

o ClusterRoleBindings apply at cluster level.

1.2 - The /etc/kubernetes/manifests/kube-apiserver.yaml File

The use of RBAC is defined by the value of the -authorization-mode directive in the /etc/kubernetes/manifests/kube-apiserver.yaml file:

root@kubemaster:~# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: vl

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 4/36 DOE308 - Introduction to Securing K8s

kind: Pod
metadata:
annotations:
kubeadm. kubernetes.io/kube-apiserver.advertise-address.endpoint: 192.168.56.2:6443
creationTimestamp: null
labels:
component: kube-apiserver
tier: control-plane
name: kube-apiserver
namespace: kube-system
spec:
containers:
- command:
kube-apiserver
- --advertise-address=192.168.56.2
--allow-privileged=true
--authorization-mode=Node, RBAC
- --client-ca-file=/etc/kubernetes/pki/ca.crt
- --enable-admission-plugins=NodeRestriction
- --enable-bootstrap-token-auth=true
- --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
- --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
- --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
- --etcd-servers=https://127.0.0.1:2379
- --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-client.crt
- --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key
- --kubelet-preferred-address-types=InternallIP,ExternalIP,Hostname
- --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt
- --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.key
- --requestheader-allowed-names=front-proxy-client
--requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
--requestheader-extra-headers-prefix=X-Remote-Extra-
--requestheader-group-headers=X-Remote-Group
--requestheader-username-headers=X-Remote-User

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 5/36 DOE308 - Introduction to Securing K8s

- --secure-port=6443
- --service-account-issuer=https://kubernetes.default.svc.cluster.local
- --service-account-key-file=/etc/kubernetes/pki/sa.pub
- --service-account-signing-key-file=/etc/kubernetes/pki/sa.key
- --service-cluster-ip-range=10.96.0.0/12
- --tls-cert-file=/etc/kubernetes/pki/apiserver.crt
- --tls-private-key-file=/etc/kubernetes/pki/apiserver.key
image: k8s.gcr.io/kube-apiserver:vl.24.2
imagePullPolicy: IfNotPresent
livenessProbe:
failureThreshold: 8
httpGet:
host: 192.168.56.2
path: /livez
port: 6443
scheme: HTTPS
initialDelaySeconds: 10
periodSeconds: 10
timeoutSeconds: 15
name: kube-apiserver
readinessProbe:
failureThreshold: 3
httpGet:
host: 192.168.56.2
path: /readyz
port: 6443
scheme: HTTPS
periodSeconds: 1
timeoutSeconds: 15
resources:
requests:
cpu: 250m
startupProbe:
failureThreshold: 24

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 6/36 DOE308 - Introduction to Securing K8s

httpGet:
host: 192.168.56.2
path: /livez
port: 6443
scheme: HTTPS
initialDelaySeconds: 10
periodSeconds: 10
timeoutSeconds: 15
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certs
readOnly: true
- mountPath: /etc/ca-certificates
name: etc-ca-certificates
readOnly: true
- mountPath: /etc/kubernetes/pki
name: k8s-certs
readOnly: true
- mountPath: /usr/local/share/ca-certificates
name: usr-local-share-ca-certificates
readOnly: true
- mountPath: /usr/share/ca-certificates
name: usr-share-ca-certificates
readOnly: true
hostNetwork: true
priorityClassName: system-node-critical
securityContext:
seccompProfile:
type: RuntimeDefault
volumes:
- hostPath:
path: /etc/ssl/certs
type: DirectoryOrCreate
name: ca-certs

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 7/36 DOE308 - Introduction to Securing K8s

hostPath:
path: /etc/ca-certificates
type: DirectoryOrCreate
name: etc-ca-certificates
- hostPath:
path: /etc/kubernetes/pki
type: DirectoryOrCreate
name: k8s-certs
- hostPath:
path: /usr/local/share/ca-certificates
type: DirectoryOrCreate
name: usr-local-share-ca-certificates
- hostPath:
path: /usr/share/ca-certificates
type: DirectoryOrCreate
name: usr-share-ca-certificates
status: {}

1.3 - Creating a serviceAccount

It is preferable to create one serviceAccount per service. This allows you to fine-tune the security settings for the service. If a serviceAccount is not
specified when pods are created, these pods will be assigned the Namespace default serviceAccount.

Let's say you want your application to interact with the Kubernetes API to obtain information about pods in a Namespace. The default serviceAccount in
the Namespace default cannot perform this task:

root@kubemaster:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:default:default
no

Important: the format of the -as option value is system:serviceaccount:namespace:serviceaccount_name.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 8/36

DOE308 - Introduction to Securing K8s

Now create the flask.yaml file:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi flask.yaml
root@kubemaster:~# cat flask.yaml
apiVersion: vl
kind: Namespace
metadata:

name: flask
apiVersion: vl
kind: ServiceAccount
metadata:

name: flask-backend

namespace: flask
kind: Role
apiVersion: rbac.authorization.k8s.io/vl
metadata:

name: flask-backend-role

namespace: flask
rules:

- apiGroups: [""]

resources: ["pods"]
verbs: ["get", "list", "watch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:

name: flask-backend-role-binding

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/ttklc9ejfhpuyq3eh7wbo/flask.yaml?rlkey=gt1fxvfd8a1vxh75e8y8bz6yw&dl=0

2026/02/04 12:35 9/36

DOE308 - Introduction to Securing K8s

namespace: flask
subjects:
- kind: ServiceAccount
name: flask-backend
namespace: flask
roleRef:
kind: Role
name: flask-backend-role
apiGroup: rbac.authorization.k8s.io

This file creates :

¢ a Namespace called flask,

¢ a serviceAccount called flask-backend for the Namespace flask,
¢ a Role called flask-backend-role that grants get, watch and list permissions on pods in the flask Namespace,

¢ a RoleBinding called flask-backend-role-binding that grants the permissions defined in the flask-backend-role Role to the serviceAccount

called flask-backend.

Apply the yaml file:

root@kubemaster:~# kubectl create -f flask.yaml

namespace/flask created
serviceaccount/flask-backend created

role.rbac.authorization.k8s.io/flask-backend-role created
rolebinding.rbac.authorization.k8s.io/flask-backend-role-binding created

Now create the deployment.yaml file that creates pods that will use the serviceAccount called flask-backend:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi deployment.yaml

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/ujyzyh5ixqibqtychuyzr/deployment.yaml?rlkey=u4tnbrh2f0b6ewk1mt15y6y63&dl=0

10/36

DOE308 - Introduction to Securing K8s

2026/02/04 12:35

root@kubemaster:~# cat deployment.yaml
apiVersion: apps/vl
kind: Deployment
metadata:
name: myapp-deployment
namespace: flask
labels:
app: myapp
type: front-end
spec:
template:

metadata:
name: myapp-pod
labels:
app: myapp
type: front-end
spec:
serviceAccount: flask-backend
containers:
- name: nginx-container
image: nginx

replicas: 3
selector:
matchLabels:
type: front-end

Run kubectl :

root@kubemaster:~# kubectl create -f deployment.yaml
deployment.apps/myapp-deployment created

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 11/36 DOE308 - Introduction to Securing K8s

Check the presence of the deployment:

root@kubemaster:~# kubectl get deployment -n flask
NAME READY UP-TO-DATE AVAILABLE AGE
myapp-deployment 3/3 3 3 32s

Now check that the serviceAccount flask-backend can list pods in the Namespace flask :

root@kubemaster:~# kubectl auth can-i list pods -n flask --as=system:serviceaccount:flask:flask-backend
yes

Note, however, that the flask-backend serviceAccount does not have the create permission in the flask Namespace:

root@kubemaster:~# kubectl auth can-i create pods -n flask --as=system:serviceaccount:flask:flask-backend
no

and the flask-backend serviceAccount does not have the list permission in the default Namespace:

root@kubemaster:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:flask:flask-backend
no

1.4 - Creating a User

Users are part of the configuration context that defines the cluster name and the namespace name:

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin

Important: A context is an element that groups access parameters under a name. There are three access parameters: cluster,
namespace and user. The kubectl command uses the parameters of the current context to communicate with the cluster.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 12/36 DOE308 - Introduction to Securing K8s

Looking at the current context, we see that the user kubernetes-admin@kubernetes has two attributes named :

¢ client-certificate-data: REDACTED
e client-key-data: REDACTED

root@kubemaster:~# kubectl config view
apiVersion: vl
clusters:
- cluster:
certificate-authority-data: DATA+OMITTED
server: https://192.168.56.2:6443
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: kubernetes-admin
name: kubernetes-admin@kubernetes
current-context: kubernetes-admin@kubernetes
kind: Config
preferences: {}
users:
- name: kubernetes-admin
user:
client-certificate-data: REDACTED
client-key-data: REDACTED

! | Important : The word REDACTED indicates that the values are hidden for security reasons.

- -

To create a new user, first create a private key for the user:

root@kubemaster:~# openssl genrsa -out trainee.key 2048
Generating RSA private key, 2048 bit long modulus

www.ittraining.team - https://www.ittraining.team/

DOE308 - Introduction to Securing K8s

2026/02/04 12:35

e 1is 65537 (0x10001)

Now create a CSR:

root@kubemaster:~# openssl req -new -key trainee.key -out trainee.csr -subj “/CN=trainee/O=examplegroup”

Important: Note that Kubernetes will use the organization key value for user grouping.

2 [
-

The CSR must be signed by the Kubernetes root CA:

root@kubemaster:~# 1ls -1 /etc/kubernetes/pki/ca.*
-rw-r--r-- 1 root root 1099 Jul 12 13:23 /etc/kubernetes/pki/ca.crt

1 root root 1679 Jul 12 13:23 /etc/kubernetes/pki/ca.key

Sign the CSR :

root@kubemaster:~# openssl x509 -req -in trainee.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out trainee.crt

Signature ok
subject=/CN=trainee/0=examplegroup
Getting CA Private Key

View the trainee certificate :

root@kubemaster:~# openssl x509 -in trainee.crt -text

Certificate:
Data:
Version: 1 (0x0)
Serial Number:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35

14/36

DOE308 - Introduction to Securing K8s

b6:f7:59:8f:75:19:bc:10
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN = kubernetes

Validity
Not Before:
Not After :

Subject: CN = trainee, 0
Subject Public Key Info:

Jul 14 07:49:14 2022 GMT
Aug 13 07:49:14 2022 GMT

= examplegroup

Public Key Algorithm: rsaEncryption
Public-Key:
Modulus:

00
64:
ee:
38
cb
58:
06:
82
37:
b5
d2:
29
c2:
11
19:
06:
48
69

:9b:
c6:
el
39:
b4 :
c2:
51:
:82:
:d6:
8a:
f9:
86:
1d:

cf

:dl:
164
f6:
29:
:d7

2a

141:
c2:
:08:
3c:
:9a:
:9d:
28:
ae:

b7

c8:
:d4:
169

Exponent:

Signature Algorithm: sha256WithRSAEncryption
6d:c8:0d:cd:7¢c:34:5¢c:08:67:98:b6:ae:80:26:e8:73:f1:14:
3b:02:09:dd:b4:6d:f1l:7f:bb:12:8a:16:86:d6:d6:be:ad:92:
99:a8:23:al:d7:de:d4:e9:03:ec:67:b9:19:46:2d:d8:14:30:

2d:
be:

ff

(2048 bit)

65537

e8:
7b:
143
ab:
73:
51:
79:
5f:
cC:
7b:
of:
le:
38:
:5d:
ad:
c7:
fd:

7d:ba:e9:9f:b3:da:8f:14:13:21:
2c:ee:4f:e6:71:65:a7:e4:ca:ba:
18:e0:b0:1f:ef:ff:53:21:de:d2
b0:8d:78:f4:af:7c:80:b0:1a:c3:
€6:a5:30:33:69:f1:6d:9a:5b:66:
7¢:42:95:16:ac:60:0e:1d:4d:09:
£1:45:70:48:b9:1c:e2:05:fc:5c:
a2:31:13:b5:23:4c:10:bf:a5:8a
ac:c7:¢c0:ad:97:71:95:9e:26:4f:
c5:79:38:02:28:00:88:84:23:0b:
ff:ec:ec:fb:0a:41:d7:7d:f3:90:
e7:cb:ab:cf:56:5e:a9:ba:06:d8:
cc:fa:fd:69:17:4e:c3:7e:79:dd:
32:e4:68:a8:0f:cc:4c:bf:27:bc:
68:45:d9:87:06:74:9f:e4:ad:bf
a4:78:f2:31:b2:6c:c7:9e:90:b8:
65:€9:38:fd:81:30:41:e9:32:f5

(0x10001)

83:
23:
:e8:
a2:
2e:
aa:
33:
(47
60:
18:
2f:
83:
34:
2e:
(df:
bf:
:de:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 15/36

DOE308 - Introduction to Securing K8s

71:8c:f0:6e:43:ad:d8:10:46:15:ab:9f:46:c1:56:4c:6c:81:
ab:ba:dd:5b:78:6a:57:82:d3:1a:d7:1a:5f:63:ca:4e:0f:fb:
ce:fe:f1:a5:78:64:a5:03:41:ad:¢c5:b7:28:45:62:31:ce:02:
09:1b:73:1d:€0:96:a4:1b:c4:09:18:a6:b1:5e:8c:88:03:75:
92:64:47:d3:0c:ce:87:91:9¢c:25:17:72:a7:44:9d:36:41:87:
48:61:71:31:9a:24:3e:36:41:40:c8:13:08:32:f5:b1:9d:f5:
8a:0a:71:80:e6:70:d9:af:e1:96:55:81:9f:a1:95:39:53:b5:
1b:f3:37:3e:50:d5:al:6b:d1:4b:d1:c6:75:fb:63:T0:63:06:
ce:99:fb:c3:15:c1:51:3b:ed:d9:c8:68:43:66:3c:ef:92:ba:
ae:a5:0d:02:48:8d:42:1a:70:22:13:75:47:ad:69:d5:48:11:
6b:b1:24:80:7e€:d6:0d:17:92:0c:bb:28:91:6e:d4:4c:al:14:
c9:2d:47:2c

MIICujCCAaICCQC291mPdRmM8EDANBgkghkiGO9wOBAQsFADAVMRMwWEQYDVQQDEwWpr
dwWJ1cm51dGVzMB4XDTIyMDcXNDA3NDkxNFoXDTIyMDgxMzA3NDkxNFowKTEQMA4G
A1UEAwwHdHIhaW51ZTEVMBMGA1UECgwMZXhhbXBsZWdyb3VwMIIBI jANBgkqhkiG
9wOBAQEFAAOCAQBAMIIBCgKCAQEAmy30fbrpn7PajxQTIYNkxm57L0O5P5nF1p+TK
aiPuz+FDGOCwH+//UyHe@ug40TmrsI149K98gLAawbLLZLRz5qUwM2nxbZpbZi5Y
9sJRTEKVFgxgDh1NCaoGKVF58UVwSLkc4gX8XD0C14]JfojETtSNMEL+11ik83KtbM
rMfArZdx1Z4mT2C1QYp7xXk4A1iwiIQjCxjSwvmf/+zs+wpB133zkC8pCIYe58ur
z1ZeqboG2IPCPBO4zPr9aRd0w3553TQRmv9dMuRoqA/MTL8NvC4Zt52taEXZhwZ0
n+Stv98GyCjHpH]jyMbJIsx56QuL9I1K79Zek4/Y8wQeky9d5paQIDAQABMAOGCSQG
SIb3DQEBCwWUAA4IBAQBtyA3NfDRcCGeYtqb6AJuhz8RQ7AgndtG3xf7sSihaGlta+
rZKZqCOh197U6QPsb7kZRi3Y9DBx jPBUQ63YEEYV(Q59GwVZMbIGrutlbeGpXgtMa
1xpfY8p0OD/v0/vGleGSLAOGtxbcoRWIXxzgIJG3Md4JakG8QIGKaxXoyIA3WSZETT
DM6HkZw193KnRJ02QYdIYXExmiSuNk9AYyPMIMvWXxnfWKCNGASNDZr+GWVYGToZU5
U7Ub8zc+UNWha9FLOcZ1+2PwYwbOmfvDFcFRO+3ZyGhDZjzvkrqupQOCSI1CGnAi
E3VHrWnVSBFrsSSATftYN95IMuyiRbtRMoRTJLUCS

----- END CERTIFICATE-----

Create a second user in the same Organization:

root@kubemaster:~# openssl genrsa -out stagiaire.key 2048
Generating RSA private key, 2048 bit long modulus

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 16/36 DOE308 - Introduction to Securing K8s

e 1s 65537 (0x10001)

root@kubemaster:~# openssl req -new -key stagiaire.key -out stagiaire.csr -subj “/CN=stagiaire/O=examplegroup”
root@kubemaster:~# openssl x509 -req -in stagiaire.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out stagiaire.crt

Signature ok

subject=/CN=stagiaire/0=examplegroup

Getting CA Private Key

Now create the trainee context:

root@kubemaster:~# kubectl config set-credentials trainee --client-certificate=trainee.crt --client-
key=trainee.key
User “trainee” set.

root@kubemaster:~# kubectl config set-context trainee@kubernetes --cluster=kubernetes --user=trainee
Context “trainee@kubernetes” created.

Check that the context is present:

root@kubemaster:~# kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin
trainee@kubernetes kubernetes trainee

Use the trainee context :

root@kubemaster:~# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

www.ittraining.team - https://www.ittraining.team/

DOE308 - Introduction to Securing K8s

2026/02/04 12:35 17/36

root@kubemaster:~# kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE
kubernetes-admin@kubernetes kubernetes kubernetes-admin

* trainee@kubernetes kubernetes trainee

root@kubemaster:~# kubectl get pods
Error from server (Forbidden): pods is forbidden: User "trainee" cannot list resource "pods" in API group ""

the namespace "default"

in

. ! Important: Note that trainee cannot list pods because RBAC permissions have not been set.
Return to the administrator context:

root@kubemaster:~# kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".

root@kubemaster:~# kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin
trainee@kubernetes kubernetes trainee

Now create a clusterrolebinding for the examplegroup :
root@kubemaster:~# kubectl create clusterrolebinding examplegroup-admin-binding --clusterrole=cluster-admin --

group=examplegroup
clusterrolebinding. rbac.authorization.k8s.io/examplegroup-admin-binding created

Use the trainee context again:

root@kubemaster:~# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 18/36

DOE308 - Introduction to Securing K8s

root@kubemaster:~# kubectl config get-contexts

CURRENT NAME CLUSTER
kubernetes-admin@kubernetes kubernetes
* trainee@kubernetes kubernetes

root@kubemaster:~# kubectl get pods -n kube-system
NAME

calico-kube-controllers-6766647d54-v4hrm
calico-node-5mrjl

calico-node-6881lw

calico-node-j25xd

coredns-6d4b75chb6d-dw4ph

coredns-6d4b75cb6d-ms2jm
etcd-kubemaster.ittraining.loc
kube-apiserver-kubemaster.ittraining.loc
kube-controller-manager-kubemaster.ittraining. loc
kube-proxy-bwctz

kube-proxy-j89vg

kube-proxy-jx76x
kube-scheduler-kubemaster.ittraining.loc
metrics-server-7cb867d5dc-g55k5

1.5 - TLS Certificates

AUTHINFO

kubernetes-admin
trainee

READY STATUS
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running

NAMESPACE

RESTARTS

(44h ago)

(44h ago)
0 (75m ago)

1 (75m ago)

O P OO OHMHMHOOOO OO

AGE
44h
41h
44h
41h
44h
44h
44h
44h
44h
41h
41h
44h
44h
28h

By default, communication between kubectl and the Kubernetes API is encrypted. Certificates are located in the /var/lib/kubelet/pki/ directory of each

node:

root@kubemaster:~# ls -1 /var/lib/kubelet/pki/
total 12

-rW------- 1 root root 2851 Jul. 12 13:23 kubelet-client-2022-07-12-13-23-12.pem
lrwxrwxrwx 1 root root 59 Jul. 12 13:23 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-

client-2022-07-12-13-23-12.pem

-rw-r--r-- 1 root root 2367 Jul. 12 13:23 kubelet.crt

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 19/36 DOE308 - Introduction to Securing K8s

-rW------- 1 root root 1675 Jul. 12 13:23 kubelet.key

Important: By default, kubelet certificates expire after one year.

LAB #2 - Pod Security Implementation

2.1 - Overview

An Admission Controller is a piece of code that intercepts requests to the Kubernetes API. The use of Admission Controllers is defined by the
-admission-control directive in the /etc/kubernetes/manifests/kube-apiserver.yaml file, for example :

--admission-control=Initializers, NamespacelLifecycle, LimitRanger, ServiceAccount, PersistentVolumelLabel,
DefaultStorageClass, DefaultTolerationSeconds, NodeRestriction, ResourceQuota

The most important Admission Controllers in terms of security are :

e DenyEscalatingExec,
o Prohibits the execution of commands with an escalated container in a privileged pod. The commands concerned are exec and attach. An

escalated container in a privileged pod is not isolated and therefore allows access to the host.
* NodeRestriction,
o Limits the number of node and pod objects that kubectl can modify,
e PodSecurityPolicy,
o Acts when a pod is created or modified to decide whether it can be admitted to the cluster according to the Security Context and applicable
policies,
e ValidatingAdmissionWebhooks,
o Allows you to call an external service that implements a security policy, such as Grafeas.

www.ittraining.team - https://www.ittraining.team/

https://grafeas.io/

2026/02/04 12:35 20/36 DOE308 - Introduction to Securing K8s

2.2 - Kubernetes Security Context

The Security Context is configured from the pod or container. Here are a few examples.

ReadOnlyRootFilesystem

Create the file readonly.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi readonly.yaml
root@kubemaster:~# cat readonly.yaml
apiVersion: vl
kind: Pod
metadata:
name: flask-ro
namespace: default
spec:
containers:
- image: mateobur/flask
name: flask-ro
securityContext:
readOnlyRootFilesystem: true

Run kubectl :

root@kubemaster:~# kubectl create -f readonly.yaml
pod/flask-ro created

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/sbzoft6ioo6gmo5n56035/readonly.yaml?rlkey=xsqnve5dvkg3l3nbuep06j0tj&dl=0

2026/02/04 12:35 21/36

DOE308 - Introduction to Securing K8s

Check that the pod is in READY state:

root@kubemaster:~# kubectl get pods
NAME

flask-ro
postgres-deployment-5b8bd66778-j99zz
redis-deployment-67d4c466c4-9wzfn
result-app-deployment-b8f9dc967-nzbgd
result-app-deployment-b8f9dc967-r84k6
result-app-deployment-b8f9dc967-zbsk2
voting-app-deployment-669dccccfb-jpn6h
voting-app-deployment-669dccccfb-ktd7d
voting-app-deployment-669dccccfb-x868p
worker-app-deployment-559f7749b6-jh86r

Connect to the container:

root@kubemaster:~# kubectl exec -it flask-ro bash

root@flask-ro:/#
Note that the system is read-only:

root@flask-ro:/# mount | grep “/ "
overlay on / type overlay

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

P NN NNNNNYNO

AGE
13m
4d1h
4d1h
4d1h
3d22h
3d22h
4d1h
3d22h
3d22h
4d1h

(ro,relatime, lowerdir=/var/lib/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/72/fs:/var/lib/contain
erd/io.containerd.snapshotter.vl.overlayfs/snapshots/71/fs:/var/lib/containerd/io.containerd.snapshotter.vl.

overlayfs/snapshots/70/fs:/var/lib/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/69/fs,upperdir=/va
r/lib/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/73/fs,workdir=/var/lib/containerd/io.containerd
.snapshotter.vl.overlayfs/snapshots/73/work)

root@flask-ro:/# touch test

touch: cannot touch 'test': Read-only file system

root@flask-ro:/# exit

www.ittraining.team - https://www.ittraining.team/

DOE308 - Introduction to Securing K8s

2026/02/04 12:35 22/36

exit
command terminated with exit code 1

drop

Create the file drop.yamil:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi drop.yaml
root@kubemaster:~# cat drop.yaml
apiVersion: vl
kind: Pod
metadata:

name: flask-cap

namespace: default
spec:

containers:

- image: mateobur/flask
name: flask-cap
securityContext:

capabilities:
drop:
- NET_RAW
- CHOWN

Run kubectl :

root@kubemaster:~# kubectl create -f drop.yaml

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/enbctxxwp95s10ssw3l13/drop.yaml?rlkey=pfo8r09cv9zk2xrxohyies9ki&dl=0

2026/02/04 12:35 23/36

DOE308 - Introduction to Securing K8s

pod/flask-cap created
Check that the pod is in a READY state:

root@kubemaster:~# kubectl get pods

NAME READY STATUS
flask-cap 1/1 Running
flask-ro 1/1 Running
postgres-deployment-5b8bd66778-j99zz 1/1 Running
redis-deployment-67d4c466c4-9wzfn 1/1 Running
result-app-deployment-b8f9dc967-nzbgd 1/1 Running
result-app-deployment-b8f9dc967-r84k6 1/1 Running
result-app-deployment-b8f9dc967-zbsk2 1/1 Running
voting-app-deployment-669dccccfb-jpn6h 1/1 Running
voting-app-deployment-669dccccfb-ktd7d 1/1 Running
voting-app-deployment-669dccccfb-x868p 1/1 Running
worker-app-deployment-559f7749b6-jh86r 1/1 Running
Connect to the container:

root@kubemaster:~# kubectl exec -it flask-cap -- bash

root@flask-cap:/#
Note the restrictions:

root@flask-cap:/# ping 8.8.8.8
ping: Lacking privilege for raw socket.

root@flask-cap:/# chown daemon /tmp

RESTARTS

RF NNNNNNNYNO O

chown: changing ownership of '/tmp': Operation not permitted

root@flask-cap:/# exit
exit

AGE
dm4s
13m
4d1h
4d1h
4d1h
3d22h
3d22h
4d1h
3d22h
3d22h
4d1h

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 24/36 DOE308 - Introduction to Securing K8s

command terminated with exit code 1
2.3 - Kubernetes Network Policies

Create the file guestbook-all-in-one.yaml :

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi guestbook-all-in-one.yaml
root@kubemaster:~# cat guestbook-all-in-one.yaml
apiVersion: vl
kind: Service
metadata:
name: redis-master
labels:
app: redis
tier: backend
role: master
spec:
ports:
the port that this service should serve on
- port: 6379
targetPort: 6379
selector:
app: redis
tier: backend
role: master
apiVersion: vl
kind: ReplicationController

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/qptbh81o3gtl8bnii91er/guestbook-all-in-one.yaml?rlkey=5g3cr8a5llggdrme0le254pip&dl=0

2026/02/04 12:35 25/36

DOE308 - Introduction to Securing K8s

metadata:
name: redis-master
these labels can be applied automatically
from the labels in the pod template if not set
labels:
app: redis
role: master
tier: backend
spec:
this replicas value is default
modify it according to your case
replicas: 1
selector can be applied automatically
from the labels in the pod template if not set
selector:
app: guestbook
role: master
tier: backend
template:
metadata:
labels:
app: redis
role: master
tier: backend
spec:
containers:
- name: master

#
#
#
#
#
#

image: gcr.io/google containers/redis:e2e # or just image:

resources:
requests:
Cpu: 100m
memory: 100Mi
ports:

- containerPort: 6379

redis

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 26/36 DOE308 - Introduction to Securing K8s

apiVersion: vl
kind: Service
metadata:
name: redis-slave
labels:
app: redis
tier: backend
role: slave
spec:
ports:
the port that this service should serve on
- port: 6379
selector:
app: redis
tier: backend
role: slave
apiVersion: vl
kind: ReplicationController
metadata:
name: redis-slave
these labels can be applied automatically
from the labels in the pod template if not set
labels:
app: redis
role: slave
tier: backend
spec:
this replicas value is default
modify it according to your case
replicas: 2
selector can be applied automatically
from the labels in the pod template if not set

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 27/36 DOE308 - Introduction to Securing K8s

selector:
app: guestbook
role: slave
tier: backend
template:
metadata:
labels:
app: redis
role: slave
tier: backend
spec:
containers:
- name: slave
image: gcr.io/google samples/gb-redisslave:vl
resources:
requests:
cpu: 100m
memory: 100Mi
env:
- name: GET HOSTS FROM

value: dns
If your cluster config does not include a dns service, then to

instead access an environment variable to find the master

service's host, comment out the 'value: dns' line above, and
uncomment the line below.

value: env

ports:
- containerPort: 6379
apiVersion: vl
kind: Service
metadata:
name: frontend
labels:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 28/36 DOE308 - Introduction to Securing K8s

app: guestbook
tier: frontend
spec:
if your cluster supports it, uncomment the following to automatically create
an external load-balanced IP for the frontend service.
type: LoadBalancer
ports:
the port that this service should serve on
- port: 80
selector:
app: guestbook
tier: frontend
apiVersion: vl
kind: ReplicationController
metadata:
name: frontend
these labels can be applied automatically
from the labels in the pod template if not set
labels:
app: guestbook
tier: frontend
spec:
this replicas value is default
modify it according to your case
replicas: 3
selector can be applied automatically
from the labels in the pod template if not set
selector:
app: guestbook
tier: frontend
template:
metadata:
labels:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 29/36 DOE308 - Introduction to Securing K8s

app: guestbook
tier: frontend
spec:
containers:
- name: php-redis

image: corelab/gb-frontend:v5

resources:
requests:

Cpu: 100m
memory: 100Mi

env:

- name: GET HOSTS FROM
value: dns
If your cluster config does not include a dns service, then to
instead access environment variables to find service host
info, comment out the 'value: dns' line above, and uncomment the
line below.
value: env

ports:

- containerPort: 80

Install the Guestbook application:
root@kubemaster:~# kubectl create -f guestbook-all-in-one.yaml
Wait until all pods are in a READY state:

root@kubemaster:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED
NODE READINESS GATES

flask-cap 1/1 Running 0 53m 192.168.239.26 kubenodel.ittraining.loc <none>
<none>

flask-ro 1/1 Running 0 59m 192.168.150.14 kubenode2.ittraining.loc <none>
<none>

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 30/36 DOE308 - Introduction to Securing K8s

frontend-dhd4w 1/1 Running 0 32m 192.168.150.16 kubenode2.ittraining.loc <none>
<none>
frontend-dmbbf 1/1 Running 0 32m 192.168.150.17 kubenode2.ittraining.loc <none>
<none>
frontend-rqrép 1/1 Running 0 32m 192.168.239.29 kubenodel.ittraining.loc <none>
<none>
redis-master-zrrr4 1/1 Running 0 32m 192.168.239.27 kubenodel.ittraining.loc <none>
<none>
redis-slave-jsrt6 1/1 Running 0 32m 192.168.150.15 kubenode2.ittraining.loc <none>
<none>
redis-slave-rrnx9 1/1 Running 0 32m 192.168.239.28 kubenodel.ittraining.loc <none>
<none>

This application creates backend and frontend pods:

root@kubemaster:~# kubectl describe pod redis-master-zrrr4 | grep tier
tier=backend

root@kubemaster:~# kubectl describe pod frontend-dhd4w | grep tier
tier=frontend

Create the guestbook-network-policy.yaml file that will prevent communication from a backend pod to a frontend pod:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi guestbook-network-policy.yaml
root@kubemaster:~# cat guestbook-network-policy.yaml
apiVersion: networking.k8s.io/vl

kind: NetworkPolicy

metadata:

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/664obj0d9d0y95kj3czsd/guestbook-network-policy.yaml?rlkey=u3o8yrgpgratq30jgk12rtj90&dl=0

2026/02/04 12:35 31/36

DOE308 - Introduction to Securing K8s

name: deny-backend-egress
namespace: default
spec:
podSelector:
matchLabels:
tier: backend
policyTypes:
- Egress
egress:
- to:
- podSelector:
matchLabels:
tier: backend

Run kubectl :

root@kubemaster:~# kubectl create -f guestbook-network-policy.yaml
networkpolicy.networking.k8s.io/deny-backend-egress created

Connect to the redis-master pod:

root@kubemaster:~# kubectl exec -it redis-master-zrrr4 -- bash
[root@redis-master-zrrr4:/data 1%

Try to contact a pod of the same tier :

[root@redis-master-zrrr4d:/data]1$ ping -c 4 192.168.150.15
PING 192.168.150.15 (192.168.150.15) 56(84) bytes of data.

64 bytes from 192.168.150.15: icmp seq=1 ttl=62 time=0.324 ms
64 bytes from 192.168.150.15: icmp seq=2 ttl=62 time=0.291 ms
64 bytes from 192.168.150.15: icmp seq=3 ttl=62 time=0.366 ms
64 bytes from 192.168.150.15: icmp seq=4 ttl=62 time=0.379 ms

--- 192.168.150.15 ping statistics ---

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 32/36 DOE308 - Introduction to Securing K8s

4 packets transmitted, 4 received, 0% packet loss, time 3070ms
rtt min/avg/max/mdev = 0.291/0.340/0.379/0.034 ms

Now try to contact a pod on a tier frontend:

[root@redis-master-zrrr4:/data 1$ ping -c 4 192.168.150.16
PING 192.168.150.16 (192.168.150.16) 56(84) bytes of data.

--- 192.168.150.16 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 3063ms

Disconnect from the redis-master pod and connect to a frontend pod:

[root@redis-master-zrrr4:/data 1$ exit
exit
command terminated with exit code 1

root@kubemaster:~# kubectl exec -it frontend-dhd4w -- bash
root@frontend-dhd4w: /var/www/html#

Install the iputils-ping package:

root@frontend-dhd4w: /var/www/html# apt update
root@frontend-dhd4w: /var/www/html# apt install iputils-ping -y

Try to contact a pod of the same tier :

root@frontend-dhd4w: /var/www/html# ping -c 4 192.168.150.17
PING 192.168.150.17 (192.168.150.17): 56 data bytes

64 bytes from 192.168.150.17: icmp seq=0 ttl=63 time=0.185 ms
64 bytes from 192.168.150.17: icmp seq=1 ttl=63 time=0.112 ms
64 bytes from 192.168.150.17: icmp seq=2 ttl=63 time=0.093 ms
64 bytes from 192.168.150.17: icmp seq=3 ttl=63 time=0.121 ms
--- 192.168.150.17 ping statistics ---

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 33/36

DOE308 - Introduction to Securing K8s

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.093/0.128/0.185/0.035 ms

Now try to contact a pod on a backend tier:

root@frontend-dhd4w: /var/www/html# ping -c 4 192.168.239.27

PING 192.168.239.27 (192.168.239.27): 56 data bytes

64 bytes from 192.168.239.27: icmp seq=0 ttl=62 time=0.371 ms
64 bytes from 192.168.239.27: icmp seq=1 ttl=62 time=0.469 ms
64 bytes from 192.168.239.27: icmp seq=2 ttl=62 time=0.349 ms
64 bytes from 192.168.239.27: icmp seq=3 ttl=62 time=0.358 ms

--- 192.168.239.27 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.349/0.387/0.469/0.048 ms

Exit the frontend pod:

root@frontend-dhd4w: /var/www/html# exit
exit
root@kubemaster:~#

2.4 - Kubernetes Resource Allocation Management

The resources that can be limited at the pod level are :

e CPU
e Memory
e Local storage

Create the file flask-resources.yaml:

4

(-

www.ittraining.team - https://www.ittraining.team/

34/36 DOE308 - Introduction to Securing K8s

2026/02/04 12:35
To do: Copy the content from here and paste it into your file.

4

<)

root@kubemaster:~# vi flask-resources.yaml
root@kubemaster:~# cat flask-resources.yaml
apiVersion: vl

kind: Pod

metadata:
name: flask-resources

namespace: default

spec:

containers:

- image: mateobur/flask
name: flask-resources
resources:

requests:
memory: 512Mi
limits:
memory: 700Mi

This file contains two resource allocations:

¢ requests,
o The amount of memory that must be free at the time of pod scheduling,
¢ limits,

o The memory limit for the pod concerned.

Run kubectl :

root@kubemaster:~# kubectl create -f flask-resources.yaml
pod/flask-resources created

Wait until the pod status is READY :

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/f4f3mb8epcy7xr9cgmj1m/flask-resources.yaml?rlkey=l9gptrnet3mh4x5p2v09xvu06&dl=0

2026/02/04 12:35 35/36

DOE308 - Introduction to Securing K8s

root@kubemaster:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
flask-cap 1/1 Running 0 67m
flask-resources 1/1 Running 0 53s
flask-ro 1/1 Running 0 74m
Connect to the pod :

root@kubemaster:~# kubectl exec -it flask-resources -- bash

root@flask-resources:/#

Install the stress package:

root@flask-resources:/# echo “deb http://archive.debian.org/debian/ jessie main contrib non-free” >

/etc/apt/sources.list

root@flask-resources:/# echo “deb http://archive.debian.org/debian-security jessie/updates main contrib non-free”

>> /etc/apt/sources.list

root@flask-resources:/# cat /etc/apt/sources.list

deb http://archive.debian.org/debian/ jessie main contrib non-free
deb http://archive.debian.org/debian-security jessie/updates main contrib non-free

root@flask-resources:/# apt update
root@flask-resources:/# apt install stress -y

Test the limit:

root@flask-resources:/# stress --cpu 1 --io 1 --vm 2 --vm-bytes 800M
stress: info: [41] dispatching hogs: 1 cpu, 1 io, 2 vm, 0 hdd

stress: FAIL: [41] (416) <-- worker 45 got signal 9

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:35 36/36 DOE308 - Introduction to Securing K8s

stress: WARN: [41] (418) now reaping child worker processes
stress: FAIL: [41] (452) failed run completed in 1s

Exit the flask-resources pod:

root@flask-resources:/# exit
exit
root@kubemaster:~#

Copyright © 2025 Hugh Norris

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s07

Last update: 2025/01/17 16:09

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s07

	DOE308 - Introduction to Securing K8s
	Contents
	LAB #1 - Role Based Access Control and TLS Certificates
	1.1 - Overview
	1.2 - The /etc/kubernetes/manifests/kube-apiserver.yaml File
	1.3 - Creating a serviceAccount
	1.4 - Creating a User
	1.5 - TLS Certificates

	LAB #2 - Pod Security Implementation
	2.1 - Overview
	2.2 - Kubernetes Security Context
	ReadOnlyRootFilesystem
	drop

	2.3 - Kubernetes Network Policies
	2.4 - Kubernetes Resource Allocation Management

