2026/02/04 08:22 1/43 DOE304 - Working with Pods and Containers

Version - 2025.01

Last update : 2025/01/17 16:39

DOE304 - Working with Pods and Containers

Module content

e DOE304 - Working with Pods and Containers
o Curriculum
LAB #1 - Application Configuration
»= 1.1 - Overview
» 1.2 - Creating a ConfigMap
» 1.3 - Creating a Secret
= 1.4 - Using ConfigMaps and Secrets
e Using Environment variables
¢ Using Configuration Volumes
LAB #2 - Container Resource Management
= 2.1 - Overview
= 2.2 - Resource Requests
= 2.3 - Resource Limits
LAB #3 - Container supervision
= 3.1 - Overview
= 3.2 - Liveness Probes
e The exec Probe
e The httpGet Probe
= 3.3 - Startup Probes
» 3.4 - Readiness Probes
LAB #4 - Restart Policy Management
= 4.1 - Overview
= 4.2 - Always

o

[¢]

o

[¢]

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 2/43 DOE304 - Working with Pods and Containers

* 4.3 - OnFailure

= 4.4 - Never
LAB #5 - Creating Multi-container Pods

= 5.1 - Overview

= 5.2 - Implementation
LAB #6 - Init containers

* 6.1 - Overview

* 6.2 - Implementation
LAB #7 - Scheduling

= 7.1 - Overview

= 7.2 - Implementation
LAB #8 - DaemonSets

= 8.1 - Overview

= 8.2 - Implementation
LAB #9 - Static Pods

»= 9.1 - Overview

» 9.2 - Implementation

[¢]

[¢]

[¢]

[¢]

o

LAB #1 - Application Configuration

1.1 - Overview

Application Configuration is the process of passing dynamic values to applications at runtime.
There are two ways of storing information in K8s:

e ConfigMaps,
* Secrets.

Data stored in ConfigMaps and Secrets can be passed to containers using :

¢ Environment variables,

www.ittraining.team - https://www.ittraining.team/

DOE304 - Working with Pods and Containers

2026/02/04 08:22 3/43

e Configuration volumes.
1.2 - Creating a ConfigMap

To begin, create the file myconfigmap.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi myconfigmap.yaml
root@kubemaster:~# cat myconfigmap.yaml
apiVersion: vl
kind: ConfigMap
metadata:
name: my-configmap
data:
keyl: Hello, world!
key2: |
Test
multiple lines
more lines

Important: Note that the data is stored in Key-values. The first data item in the data
. section is keyl: Hello, world!, while the second, key2, is in multiple lines.

Now create the ConfigMap :

root@kubemaster:~# kubectl create -f myconfigmap.yaml

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/7hkyea9v3lc949b9ar5hl/myconfigmap.yaml?rlkey=kv5x17lirugxppbyzgk0yhbhh&dl=0

2026/02/04 08:22

4/43

DOE304 - Working with Pods and Containers

configmap/my-configmap created
To view the contents of the ConfigMap, use the kubectl describe command:

root@kubemaster:~# kubectl describe configmap my-configmap

Name: my-configmap
Namespace: default
Labels: <none>
Annotations: <none>

Data

keyl:

Hello, world!
key2:

Test
multiple lines
more lines

BinaryData

Events: <none>

1.3 - Creating a Secret

Now create the mysecret.yaml file:

4

<)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22

5/43

DOE304 - Working with Pods and Containers

4

To do: Copy the content from here and paste it into your file.

)

root@kubemaster:~# vi mysecret.yaml
root@kubemaster:~# cat mysecret.yaml
apiVersion: vl
kind: Secret
metadata:
name: my-secret
type: Opaque
data:
secretkeyl:
secretkey2:

. u
-

Now encrypt both keys using base64 :

root@kubemaster:~# echo -n 'secret' | base64
c2Vjcmve

root@kubemaster:~# echo -n 'anothersecret' | base64
YW5vdGh1lcnN1Y3J1dA==

Copy and paste the base64 strings into the mysecret.yaml file:

root@kubemaster:~# vi mysecret.yaml
root@kubemaster:~# cat mysecret.yaml
apiVersion: vl

kind: Secret

Important: Note that the secret keys have not yet been defined.

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/o752fqb1gc5shocih9zc7/mysecret.yaml?rlkey=mfof15llfnanksi0ztmzdy7tp&dl=0

6/43 DOE304 - Working with Pods and Containers

2026/02/04 08:22

metadata:

name: my-secret
type: Opaque
data:

secretkeyl: c2VjcmVo
secretkey2: YW5vdGhlcnN1Y3JldA==

Important: Replace the strings with the ones that YOU have created.

F. u

Now create the Secret :

root@kubemaster:~# kubectl create -f mysecret.yaml
secret/my-secret created

1.4 - Using ConfigMaps and Secret
Using Environment variables

Create the file envpod.yaml:

" : To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi envpod.yaml
root@kubemaster:~# cat envpod.yaml
apiVersion: vl

kind: Pod

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/70g1jb7p4ighdbkk33mre/envpod.yaml?rlkey=31muxz3g7a7k91nd98bjxhkjz&dl=0

2026/02/04 08:22 7/43 DOE304 - Working with Pods and Containers

metadata:
name: envpod
spec:
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'echo "configmap: $CONFIGMAPVAR secret: $SECRETVAR"']
env:
- name: CONFIGMAPVAR
valueFrom:
configMapKeyRef:
name: my-configmap
key: keyl
- name: SECRETVAR
valueFrom:
secretKeyRef:
name: my-secret
key: secretkeyl

y oy Important: Note that the $CONFIGMAPVAR will contain the value of keyl from the
A ! ConfigMap and that the $SECRETVAR will contain the value of secretkeyl from the
Secret.

Now create the pod :

root@kubemaster:~# kubectl create -f envpod.yaml
pod/envpod created

Now check the pod logs:

root@kubemaster:~# kubectl logs envpod

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 8/43 DOE304 - Working with Pods and Containers

configmap: Hello, world! secret: secret

Important: Note that the container in the pod can see the values of both variables.

F u
-

Using Configuration Volumes

Create the file volumepod.yaml :

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi volumepod.yaml
root@kubemaster:~# cat volumepod.yaml
apiVersion: vl
kind: Pod
metadata:
name: volumepod
spec:
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'while true; do sleep 3600; done']
volumeMounts:
- name: configmap-volume
mountPath: /etc/config/configmap
- name: secret-volume
mountPath: /etc/config/secret
volumes:

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/td43bvv8aphqqbwc59j4l/volumepod.yaml?rlkey=sti941svagvli2qbi6jkljaoy&dl=0

2026/02/04 08:22 9/43

DOE304 - Working with Pods and Containers

- name: configmap-volume
configMap:
name: my-configmap
- name: secret-volume
secret:
secretName: my-secret

Now create the pod:

root@kubemaster:~# kubectl create -f volumepod.yaml

pod/volumepod created

Use the kubectl exec command to view the config data files in the container:

root@kubemaster:~# kubectl exec volumepod -- ls /etc/config/configmap

keyl
key?2

root@kubemaster:~# kubectl exec volumepod
Hello, world!root@kubemaster:~# [Enter]

root@kubemaster:~# kubectl exec volumepod
Test

multiple lines

more lines

root@kubemaster:~# kubectl exec volumepod
secretkeyl

secretkey?2

root@kubemaster:~# kubectl exec volumepod
secretroot@kubemaster:~# [Enter]

root@kubemaster:~# kubectl exec volumepod

cat /etc/config/configmap/keyl

cat /etc/config/configmap/key?2

1ls /etc/config/secret

cat /etc/config/secret/secretkeyl

cat /etc/config/secret/secretkey2

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 10/43

DOE304 - Working with Pods and Containers

anothersecretroot@kubemaster:~# [Enter]
root@kubemaster:~#

Lastly, delete the envpod and volumepod pods:
root@kubemaster:~# kubectl delete pod envpod volumepod

pod “envpod” deleted
pod “volumepod” deleted

LAB #2 - Container Resource Management

2.1 - Overview

Two important aspects of container resource management are :

* Resource Requests,

o A Resource Request is used to define resources such as CPU and memory at the time of scheduling. In other words, if the Resource
Request is for 5GB, the pod scheduler will look for a node with 5GB of available RAM. A Resource Request is not a limit, as the pod can use

more or less memory.
e Resource Limits,

o A Resource Limit allows you to set limits on resources such as CPU and memory. Different Container Runtimes react in different ways to a
Resource Limit. For example, some will stop the container process if the limit is exceeded. In the case of Docker, if the CPU limit is
exceeded, Docker will limit CPU usage. On the other hand, if the memory limit is exceeded, Docker will kill the container process.

For both types, memory requests and limits are generally expressed in Mi, while CPU requests and limits are expressed in 1/1000 of a processor. For

example, 250m represents 250/1000 of a CPU or 1/4.

2.2 - Resource Requests

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 11/43 DOE304 - Working with Pods and Containers

Create the file bigrequestpod.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi bigrequestpod.yaml
root@kubemaster:~# cat bigrequestpod.yaml
apiVersion: vl
kind: Pod
metadata:
name: bigrequestpod
spec:
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'while true; do sleep 3600; done']
resources:
requests:
cpu: "10000m"
memory: "128Mi"

Create the pod:

root@kubemaster:~# kubectl create -f bigrequestpod.yaml
pod/bigrequestpod created

Now check the status of the created pod:
root@kubemaster:~# kubectl get pod bigrequestpod

NAME READY STATUS RESTARTS AGE
bigrequestpod 0/1 Pending 0 92s

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/n1147jb572h0dnadwjamm/bigrequestpod.yaml?rlkey=08fpyndzpg720or0h6zkm9vxz&dl=0

DOE304 - Working with Pods and Containers

2026/02/04 08:22 12/43

Important: Note that the pod's status is pending. The pod will remain pending because
= neither kubenodel nor kubenode2 are able to meet the 10000m resource request.

2.3 - Resource Limits

Create the file resourcepod.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi resourcepod.yaml
root@kubemaster:~# cat resourcepod.yaml
apiVersion: vl
kind: Pod
metadata:
name: resourcepod
spec:
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'while true; do sleep 3600; done']
resources:
requests:
cpu: "250m"
memory: "128Mi"
limits:
cpu: "500m"

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/3lo335z508wo4sutr8zwk/resourcepod.yaml?rlkey=ezycaxxvyf74u7xdtawhnssje&dl=0

2026/02/04 08:22

13/43

DOE304 - Working with Pods and Containers

memory: "256Mi"

Create the pod:

root@kubemaster:~# kubectl create -f resourcepod.yaml

pod/resourcepod created

Check pod status:

root@kubemaster:~# kubectl get pods

NAME

bigrequestpod
my-deployment-67b5d4bf57-6wcrq
myapp-deployment-689f9d59-c25f9
myapp-deployment-689f9d59-nn9sw
myapp-deployment-689f9d59-rnc4dr
resourcepod

LAB #3 - Container Supervision

3.1 - Overview

READY
0/1
1/1
1/1
1/1
1/1
1/1

STATUS

Pending
Running
Running
Running
Running
Running

RESTARTS

[cNoNoNoNOoNO)

AGE
20m
22h
7d

7d

7d
5m49s

Important: Note that the status of the bigrequestpod pod is still pending.

Container supervision involves monitoring the health of containers to ensure robust applications and solutions by restarting broken containers. To

accomplish this task, K8s uses probes.

There are several types of probe:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 14/43 DOE304 - Working with Pods and Containers

e Liveness Probes,
o By default, K8s considers a container to be out of service only when it stops,

o Liveness probes allow more sophisticated configuration of this mechanism.

e Startup Probes,
o Similar to Liveness Probes, Startup Probes only intervene at container startup and stop when the application has started.

e Readiness Probes,
o Similar to Startup Probes in that they only intervene at pod startup, Readiness Probes are responsible for blocking traffic to pods until all

containers in the pod have passed met the Readiness Probes criteria.
3.2 - Liveness Probes
The exec Probe

Create the file livenesspod.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi livenesspod.yaml
root@kubemaster:~# cat livenesspod.yaml
apiVersion: vl
kind: Pod
metadata:
name: livenesspod
spec:
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'while true; do sleep 3600; done']
livenessProbe:

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/9igcin5jo18z1bpjjx9vx/livenesspod.yaml?rlkey=23f17olf3jo8l12h972noijve&dl=0

2026/02/04 08:22 15/43 DOE304 - Working with Pods and Containers

exec:
command: ["echo", "Hello, world!"]

initialDelaySeconds: 5
periodSeconds: 5

Important: In the file above, if the command echo “Hello, World!” returns a exit code
) of 0, the container will be considered healthy. The Liveness Probe will start 5 seconds after
. the container is started, thanks to the initialDelaySeconds directive. The probe will then
run every 5 seconds using the periodSeconds directive.

Create the pod:

root@kubemaster:~# kubectl create -f livenesspod.yaml
pod/livenesspod created

Check the pod status:

root@kubemaster:~# kubectl get pod livenesspod
NAME READY STATUS RESTARTS AGE

livenesspod 1/1 Running 0O 90s

Important: Note that the pod is healthy and in a running status.

F.]
_—)

The httpGet Probe

Create the file livenesspodhttp.yaml:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 16/43 DOE304 - Working with Pods and Containers

" : To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi livenesspodhttp.yaml
root@kubemaster:~# cat livenesspodhttp.yaml
apiVersion: vl
kind: Pod
metadata:
name: livenesspodhttp
spec:
containers:
- name: nginx
image: nginx:1.19.1
livenessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 5
periodSeconds: 5

Important: In the above file, if the GET / command executes without error, the container
will be considered healthy. The Liveness Probe will start 5 seconds after the container is
started, thanks to the initialDelaySeconds directive. The probe will then run every 5

seconds using the periodSeconds directive.

Create the pod:

root@kubemaster:~# kubectl create -f livenesspodhttp.yaml
pod/livenesspodhttp created

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/tqno3tjsif093kpxo0jrg/livenesspodhttp.yaml?rlkey=lsn5q2d9goe619jnkpz3p6ok2&dl=0

17/43

DOE304 - Working with Pods and Containers

2026/02/04 08:22

Check the pod status:

root@kubemaster:~# kubectl get pod livenesspodhttp
NAME READY STATUS RESTARTS AGE

livenesspodhttp 1/1 Running 0 52s
!

3.3 - Startup Probes
Create the startuppod.yaml file:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi startuppod.yaml
root@kubemaster:~# cat startuppod.yaml
apiVersion: vl
kind: Pod
metadata:
name: startuppod
spec:
containers:
- name: nginx
image: nginx:1.19.1
startupProbe:
httpGet:
path: /

Important: Note that the pod is healthy and in the running status.

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/s4pst2ezp0qpylu6m8frx/startuppod.yaml?rlkey=xbaenkztscopqzuq8u4dxxcx8&dl=0

2026/02/04 08:22 18/43 DOE304 - Working with Pods and Containers

port: 80
failureThreshold: 30
periodSeconds: 10

/. Important: In the above file, the Startup Probe will wait a maximum of 30 seconds for the
/ 3 . application to start, thanks to the failureThreshold directive. The probe will run every 10

|

seconds, thanks to the periodSeconds directive.

Create the pod:

root@kubemaster:~# kubectl create -f startuppod.yaml
pod/startuppod created

Check the pod status:
root@kubemaster:~# kubectl get pod startuppod

NAME READY STATUS RESTARTS AGE
livenesspod 1/1 Running 0 90s

Important: Note that the pod is healthy and in the running status.

u
-

3.4 - Readiness Probes

Create the readinesspod.yaml file:

4

D

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 19/43 DOE304 - Working with Pods and Containers

To do: Copy the content from here and paste it into your file.

<)
root@kubemaster:~# vi readinesspod.yaml
root@kubemaster:~# cat readinesspod.yaml
apiVersion: vl
kind: Pod
metadata:
name: readinesspod
spec:
containers:
- name: nginx
image: nginx:1.19.1
readinessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 5
periodSeconds: 5

Important: In the above file, if the GET / command executes without error, the container
_ will be considered in a READY state. The Readiness Probe will start 5 seconds after
&% container startup, thanks to the initialDelaySeconds directive. The probe will then run
every 5 seconds using the periodSeconds directive.

Create the pod and check its status

root@kubemaster:~# kubectl create -f readinesspod.yaml;kubectl get pod readinesspod;sleep 1;kubectl get pod
readinesspod;sleep 3;kubectl get pod readinesspod;sleep 3;kubectl get pod readinesspod;sleep 3;kubectl get pod

readinesspod;sleep 3;kubectl get pod readinesspod
pod/readinesspod created

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/a0hdk8shspxsi23hkf7vi/readinesspod.yaml?rlkey=w230asyme4ywxitfzgzy4ehsw&dl=0

2026/02/04 08:22

20/43

DOE304 - Working with Pods and Containers

NAME
readinesspod
NAME
readinesspod
NAME
readinesspod
NAME
readinesspod
NAME
readinesspod
NAME
readinesspod

READY
0/1
READY
0/1
READY
0/1
READY
0/1
READY
0/1
READY
1/1

STATUS RESTARTS

Pending 0O
STATUS
ContainerCreating

STATUS RESTARTS
Running 0O
STATUS RESTARTS
Running 0
STATUS RESTARTS
Running 0
STATUS RESTARTS
Running 0O

AGE
0s
RESTARTS
0
AGE
4s
AGE
7s
AGE
10s
AGE
13s

AGE
1s

/= Important: Note that the pod has a Running status 4 seconds after startup. On the other
/ &+ . hand, the pod only switches to READY after 13 seconds when the Readiness Probe is

-

successful.

LAB #4 - Restart Policy Management

4.1 - Overview

K8s can restart containers in the event of problems. There are three restart policies:

e Always,

o Always is the default policy,
o Always restarts a container regardless of the exit code when the container is stopped.

¢ OnFailure,

o OnFailure restarts a container only if it exits with a exit code other than 0, or if a Liveness Probe has reported poor container health. In the
opposite case, where the container has completed its task and exits with a exit code of 0, the policy does not restart it.

www.ittraining.team - https://www.ittraining.team/

21/43 DOE304 - Working with Pods and Containers

2026/02/04 08:22

e Never,
o Never is the opposite of Always. The container is never restarted in the event of a container shutdown, whatever the cause.

4.2 - Always
Create the file alwayspod.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi alwayspod.yaml
root@kubemaster:~# cat alwayspod.yaml
apiVersion: vl
kind: Pod
metadata:
name: alwayspod
spec:
restartPolicy: Always
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'sleep 10']

Create the pod and check its status

root@kubemaster:~# kubectl create -f alwayspod.yaml;kubectl get pod alwayspod;sleep 9;kubectl get pod
alwayspod;sleep 9;kubectl get pod alwayspod;sleep 9;kubectl get pod alwayspod

pod/alwayspod created

NAME READY STATUS RESTARTS AGE
alwayspod 0/1 ContainerCreating 0O 0s
NAME READY STATUS RESTARTS AGE

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/y8bu7cryzv5wfkln2r6wc/alwayspod.yaml?rlkey=n5rmuhmy4o1gojvez1yz3w1ys&dl=0

DOE304 - Working with Pods and Containers

2026/02/04 08:22 22/43
alwayspod 1/1 Running 0 9s
NAME READY STATUS RESTARTS
alwayspod 1/1 Running 1 (6s ago)
NAME READY STATUS RESTARTS
alwayspod 0/1 Completed 1 (15s ago)

4.3 - OnFailure

Create the onfailure.yaml file:

4

root@kubemaster:~# vi onfailure.yaml
root@kubemaster:~# cat onfailure.yaml
apiVersion: vl
kind: Pod
metadata:
name: onfailure
spec:
restartPolicy: OnFailure
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'sleep 10']

Important: Note that the pod has been restarted.

- To do: Copy the content from here and paste it into your file.

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/m6wy0x16vdsd87vuriyl9/onfailure.yaml?rlkey=ox8nfznllrjui1mal4idtzx3u&dl=0

2026/02/04 08:22

23/43

DOE304 - Working with Pods and Containers

Create the pod and check its status

root@kubemaster:~# kubectl create -f onfailure.yaml;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod

onfailure;sleep 9;kubectl get pod onfailure

pod/onfailure created

NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure

READY
0/1
READY
1/1
READY
0/1
READY
0/1
READY
0/1
READY
0/1

STATUS
Pending
STATUS
Running
STATUS
Completed
STATUS
Completed
STATUS
Completed
STATUS
Completed

Now delete the onfailure pod:

root@kubemaster:~# kubectl delete pod onfailure

pod “onfailure” deleted

Then modify the onfailure.yaml file by adding the string this is a bad command :

RESTARTS

0

RESTARTS

0

RESTARTS
0
RESTARTS
0
RESTARTS
0
RESTARTS
0

root@kubemaster:~# vi onfailure.yaml
root@kubemaster:~# cat onfailure.yaml
apiVersion: vl

AGE

Os

AGE

Os

AGE
19s
AGE
28s
AGE
37s
AGE
46s

Important: Note that the pod has not been restarted.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22

24/43

DOE304 - Working with Pods and Containers

kind: Pod
metadata:

name: onfailure

spec:

restartPolicy: OnFailure

containers:

- name: busybox
image: busybox

command:

['sh',

-C ,

'sleep 10;this is a bad command']

Create the pod and check its status

root@kubemaster:~# kubectl create -f onfailure.yaml;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure
pod/onfailure created
STATUS RESTARTS AGE

NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure

READY
0/1
READY
1/1
READY
1/1
READY
0/1
READY
0/1
READY
1/1

Pending 0O 0s
STATUS RESTARTS AGE
Running 0 9s
STATUS RESTARTS AGE
Running 1 (5s ago) 18s
STATUS RESTARTS AGE
Error 1 (14s ago) 27s
STATUS RESTARTS AGE
Error 1 (23s ago) 36s

STATUS RESTARTS AGE
Running 2 (21s ago) 46s

2 []
-

Important: Note that the pod has been restarted due to the error.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 25/43

DOE304 - Working with Pods and Containers

4.4 - Never

Create the file never.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi never.yaml
root@kubemaster:~# cat never.yaml
apiVersion: vl
kind: Pod
metadata:
name: never
spec:
restartPolicy: Never
containers:
- name: busybox
image: busybox
command: ['sh',

Create the pod and check its status

'-c', 'sleep 10;this is a bad command']

root@kubemaster:~# kubectl create -f never.yaml;kubectl get pod never;sleep 9;kubectl get pod never;sleep
9;kubectl get pod never;sleep 9;kubectl get pod never;sleep 9;kubectl get pod never;sleep 9;kubectl get pod never

pod/never created
NAME READY STATUS

never 0/1 ContainerCreating

NAME READY STATUS RESTARTS
never 1/1 Running 0

NAME READY STATUS RESTARTS

never 0/1 Error 0

RESTARTS

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/7oyo26ackzdxjm78ipjvg/never.yaml?rlkey=hqf5f07kvmiuhdehyjc9r6mni&dl=0

2026/02/04 08:22

26/43

DOE304 - Working with Pods and Containers

NAME READY
never 0/1
NAME READY
never 0/1
NAME READY
never 0/1

STATUS
Error
STATUS
Error
STATUS
Error

F u
i

RESTARTS AGE

0 27s
RESTARTS AGE
0 36s
RESTARTS AGE
0 45s

Important: Note that the pod has not been restarted.

LAB #5 - Creating Multi-container Pods

5.1 - Overview

It's always best to put only one container in a pod. The exception to this rule is when two or more pods need to interact in order to fulfill their
respective roles. The other containers are called sidecars or helpers. The interaction is called Cross-Container Interaction.

This interaction takes the form of sharing :

* the same network space,

o containers can communicate on all ports, even if the ports are not exposed to the cluster,
e the same storage space,

o containers can share the same volumes.

5.2 - Implementation

Start by creating the file multicontainerpod.yamil:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 27/43 DOE304 - Working with Pods and Containers

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi multicontainerpod.yaml
root@kubemaster:~# cat multicontainerpod.yaml
apiVersion: vl
kind: Pod
metadata:
name: multicontainerpod
spec:
containers:
- name: nginx
image: nginx
- name: redis
image: redis
- name: couchbase
image: couchbase

Important: Note that the file will create three containers - nginx, redis and couchbase.

2 []
-

Next, create the pod:

root@kubemaster:~# kubectl create -f multicontainerpod.yaml
pod/multicontainerpod created

Check the pod status:

root@kubemaster:~# kubectl get pod multicontainerpod
NAME READY STATUS RESTARTS AGE

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/4j0nnzgt8ammsfzpqm3ul/multicontainerpod.yaml?rlkey=n08saexw65stxvy4twd9x2npr&dl=0

28/43

DOE304 - Working with Pods and Containers

2026/02/04 08:22

multicontainerpod 0/3 ContainerCreating 0 65s

Important: Note that there are currently 0 of 3 pods in a READY state.

. u
-

Wait a few minutes and check the pod status again:

root@kubemaster:~# kubectl get pod multicontainerpod
NAME READY STATUS RESTARTS AGE

multicontainerpod 3/3 Running 0O 16m

! : Important: Note that there are currently 3 of 3 pods in a READY state.

v - ot

Now create the helper.yaml file:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi helper.yaml
root@kubemaster:~# cat helper.yaml
apiVersion: vl
kind: Pod
metadata:

name: helperpod
spec:

containers:

- name: busyboxl

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/x8fy28yiiyq7rrb5x7gse/helper.yaml?rlkey=9hhvly431j39x2vmfeopk9tk1&dl=0

2026/02/04 08:22 29/43 DOE304 - Working with Pods and Containers

image: busybox
command: ['sh', '-c', 'while true; do echo logs data > /output/output.log; sleep 5; done']
volumeMounts:
- name: sharedvol
mountPath: /output
- name: helper
image: busybox
command: ['sh', '-c', 'tail -f /input/output.log']
volumeMounts:
- name: sharedvol
mountPath: /input
volumes:
- name: sharedvol
emptyDir: {}

. Important: Note that this file will create a pod containing two containers - busybox1 and
| helper. Each container shares an identical volume called sharedvol. In the *busybox1
= container this volume is mounted on /output while in the helper container, the same
volume is mounted on /input.

Create the helper pod:

root@kubemaster:~# kubectl create -f helper.yaml
pod/helperpod created

View the helper container logs in the helperpod pod:

root@kubemaster:~# kubectl logs helperpod -c helper
logs data

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 30/43 DOE304 - Working with Pods and Containers

Important: Note that the busybox1 container has written the logs data string to the
Joutput/output.log file every 5 seconds by executing the while true; do echo logs
data > /output/output.log; sleep 5; done command. The helper container executes
the tail -f /input/output.log command. The helper container log therefore contains the
logs data string from the output.log file, as this file is shared between the two
containers.

LAB #6 - Init containers

6.1 - Overview

An Init Container is a container that runs only once at pod startup. If several Init Containers exist, they run in sequence. An Init container must
complete its execution before the next Init container, or the application if the Init container concerned is the last, can run. The purpose of an Init
container is to execute code that doesn't need to be in the application's containers in order to make the latter lighter, for example:

e Securely isolate sensitive data such as passwords, to prevent them being compromised if an application container is compromised,
e inject data into a shared volume,
e wait for other K8s resources to be created.

6.2 - Implementation

Start by creating the initpod.yaml file:

4

- To do: Copy the content from here and paste it into your file.

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/llvkk1jija3pk227u6w8v/initpod.yaml?rlkey=krtkq8qhc8dalr84jw0p4jwdh&dl=0

DOE304 - Working with Pods and Containers

2026/02/04 08:22 31/43

root@kubemaster:~# vi initpod.yaml
root@kubemaster:~# cat initpod.yaml
apiVersion: vl
kind: Pod
metadata:
name: initpod
spec:
containers:
- name: nginx
image: nginx:1.19.1
initContainers:
- name: delay
image: busybox
command: ['sleep', '30']

Important: Note that the delay container will delay the creation of the nginx container
for 30 seconds.

Create the initpod pod:

root@kubemaster:~# kubectl create -f initpod.yaml
pod/initpod created

Check the pod status:

root@kubemaster:~# kubectl get pod initpod
NAME READY STATUS RESTARTS AGE
initpod 0/1 Init:0/1 0 6s

[F'=

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 32/43

DOE304 - Working with Pods and Containers

A,
Wait at least 30 seconds, then execute the last command again:

root@kubemaster:~# kubectl get pod initpod
NAME READY STATUS RESTARTS AGE
initpod 1/1 Running 0 79s

F []
-

LAB #7 - Scheduling

7.1 - Overview

Important: Note that the pod's STATUS is Init:0/1.

Important: Note that the pod's STATUS is Running.

Scheduling is the process of assigning pods to nodes. This process is performed by the Scheduler, a component of the Control Plane.

The Scheduler makes its decision based on the following criteria:

e the resources available on the nodes, based on Resource Requests,
e configurations of nodeSelectors using Node Labels,
* nodeName instructions that force the choice of one node over another.

7.2 - Implementation

Start by viewing the cluster nodes:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 33/43

DOE304 - Working with Pods and Containers

root@kubemaster:~# kubectl get nodes

NAME STATUS ROLES
kubemaster.ittraining. loc Ready control-plane
kubenodel.ittraining. loc Ready <none>
kubenode2.ittraining. loc Ready <none>

nodeSelector

AGE
11d
11d
11d

Assign the label mylabel=thisone to node kubenodel.ittraining.loc :

root@kubemaster:~# kubectl label nodes kubenodel.ittraining.loc mylabel=thisone

node/kubenodel.ittraining.loc labeled

Now create the file nodeselector.yamil:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi nodeselector.yaml
root@kubemaster:~# cat nodeselector.yaml
apiVersion: vl
kind: Pod
metadata:
name: nodeselector
spec:
nodeSelector:
mylabel: "thisone"
containers:
- name: nginx
image: nginx:1.19.1

VERSION
v1.25.0
v1.25.0
v1.25.0

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/qdnl21iip9shwjqc93rpy/nodeselector.yaml?rlkey=x5eumxvmgkeh9vctrwd9rmuwi&dl=0

34/43 DOE304 - Working with Pods and Containers

2026/02/04 08:22

. ! Important: Note the nodeSelector entry.
Create the nodeselector pod:

root@kubemaster:~# kubectl create -f nodeselector.yaml
pod/nodeselector created

Note the location of the nodeselector pod:

root@kubemaster:~# kubectl get pod nodeselector -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES
nodeselector 1/1 Running 0 66s 192.168.239.21 kubenodel.ittraining.loc <none>
<none>

_ ! Important: Note that the nodeselector pod has been scheduled on the kubenodel node.
nodeName

Now create the nodename.yaml file:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi nodename.yaml

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/46npmxik2heh8z3wiw6ah/nodename.yaml?rlkey=blck3kzwgqzm21ttsjxph965k&dl=0

35/43 DOE304 - Working with Pods and Containers

2026/02/04 08:22

root@kubemaster:~# cat nodename.yaml
apiVersion: vl
kind: Pod

metadata:
name: nodename

spec:
nodeName: kubenode2.ittraining.loc

containers:
- name: nginx
image: nginx:1.19.1

_ Important: Note that the pod will be scheduled on kubenode2.ittraining.loc thanks to
= the use of nodeName.

Create the nodename pod:

root@kubemaster:~# kubectl create -f nodename.yaml
pod/nodename created

Note the location of the nodename pod:

root@kubemaster:~# kubectl get pod nodename -0 wide
NOMINATED NODE

NAME READY STATUS RESTARTS AGE IP NODE
READINESS GATES
nodename 1/1 Running 0 67s 192.168.150.25 kubenode2.ittraining.loc <none> <none>

_ Important: Note that the pod has been scheduled on kubenode2.ittraining.loc thanks
&% tothe use of nodeName.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 36/43 DOE304 - Working with Pods and Containers

LAB #8 - DaemonSets

8.1 - Overview

A DaemonSet:

e creates a copy of a pod on all available nodes,
e creates a copy of a pod on any new node added to the cluster,
e respects Node Labels constraints.

8.2 - Implementation

Start by cleaning up the cluster:

root@kubemaster:~# kubectl delete --all pods --namespace=default
pod “alwayspod” deleted

pod “bigrequestpod” deleted

pod “helperpod” deleted

pod “initpod” deleted

pod “liveness-pod” deleted

pod “livenesspodhttp” deleted

pod “multicontainerpod” deleted

pod “my-deployment-67b5d4bf57-6wcrq” deleted
pod “myapp-deployment-689f9d59-c25f9” deleted
pod “myapp-deployment-689f9d59-nn9sw” deleted
pod “myapp-deployment-689f9d59-rnc4r” deleted
pod “never” deleted

pod “nodename” deleted

pod “nodeselector” deleted

pod “onfailure” deleted

pod “readinesspod” deleted

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 37/43 DOE304 - Working with Pods and Containers

pod “resourcepod” deleted
pod “startuppod” deleted

root@kubemaster:~# kubectl delete --all deployments --namespace=default
deployment.apps “my-deployment” deleted
deployment.apps “myapp-deployment” deleted

Then create the file daemonset.yamil:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi daemonset.yaml
root@kubemaster:~# cat daemonset.yaml
apiVersion: apps/vl
kind: DaemonSet
metadata:
name: mydaemonset
spec:
selector:
matchLabels:
app: mydaemonset
template:
metadata:
labels:
app: mydaemonset
spec:
containers:
- name: nginx
image: nginx:1.19.1

Create the DaemonSet mydaemonset :

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/fqxcxm7ia69ne9keruqg2/daemonset.yaml?rlkey=r7hn65en4beq3zvza5jxfysd5&dl=0

2026/02/04 08:22 38/43 DOE304 - Working with Pods and Containers

root@kubemaster:~# kubectl create -f daemonset.yaml
daemonset.apps/mydaemonset created

Check the status of the DaemonSet:

root@kubemaster:~# kubectl get daemonset

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
mydaemonset 2 2 2 2 2 <none> 37s
Now you can see that there is a pod on each node:

root@kubemaster:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

mydaemonset-hmdhp 1/1 Running 0 38s 192.168.239.26 kubenodel.ittraining.loc <none>
<none>
mydaemonset-kmf4z 1/1 Running 0 38s 192.168.150.30 kubenode2.ittraining.loc <none>
<none>

| Important: Note that there is no pod on kubemaster. This is because the kubemaster

&% has the no taint flag set, which prevents pods from being scheduled on it.

LAB #9 - Static Pods

9.1 - Presentation

A Static Pod is :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 39/43 DOE304 - Working with Pods and Containers

e a pod that is controlled by the kubelet on the relevant node instead of by the K8s API,
o this type of pod can be created even if there is no Control Plane,
o if the Control Plane exists, a Mirror Pod is created in the Control Plane to represent the static pod, making it easier to check its status.
However, the pod cannot be changed or managed from the Control Plane,
¢ a pod created using a yaml file located in a specific path on the node concerned,
o for a cluster installed with kubeadm, the default “specific” path in each worker is /etc/kubernetes/manifests. Note that it is possible to
modify this path.

9.2 - Implementation

Connect to kubenodel and become the root user:

root@kubemaster:~# ssh -1 trainee 192.168.56.3
trainee@l92.168.56.3's password: trainee
Linux kubenodel.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86 64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Sep 4 13:01:18 2022 from 192.168.56.2
trainee@kubenodel:~$ su -

Password: fenestros

root@kubenodel: ~#

Create the file /etc/kubernetes/manifests/mystaticpod.yaml :

root@kubenodel:~# mkdir /etc/kubernetes/manifests

4

D

www.ittraining.team - https://www.ittraining.team/

DOE304 - Working with Pods and Containers

2026/02/04 08:22 40/43

To do: Copy the content from here and paste it into your file.

4

)

root@kubenodel:~# vi /etc/kubernetes/manifests/mystaticpod.yaml
root@kubenodel:~# cat /etc/kubernetes/manifests/mystaticpod.yaml
apiVersion: vl
kind: Pod
metadata:

name: mystaticpod
spec:

containers:

- name: nginx

image: nginx:1.19.1

Important: Note that kubelet will see that the file has been created and then continue
®_ with the pod creation.

Restart the kubelet service to start the static pod immediately without waiting:
root@kubenodel:~# systemctl restart kubelet

Return to the kubemaster and note the presence of a mirrored pod:

root@kubenodel:~# exit

logout
trainee@kubenodel:~$ exit

logout
Connection to 192.168.56.3 closed.

root@kubemaster:~# kubectl get pods

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/pwvwbsant7onw0hwikmp4/mystaticpod.yaml?rlkey=l6jzgtgcss3atx9emqk3h7qz6&dl=0

2026/02/04 08:22 41/43 DOE304 - Working with Pods and Containers

NAME READY STATUS RESTARTS AGE
mydaemonset-hmdhp 1/1 Running 0 32m
mydaemonset-kmf4z 1/1 Running 0O 32m
mystaticpod-kubenodel.ittraining. loc 1/1 Running 0 3m40s

Now delete the static pod :

root@kubemaster:~# kubectl delete pod mystaticpod-kubenodel.ittraining.loc
pod “mystaticpod-kubenodel.ittraining.loc” deleted

! k Important: Note that the deletion seems to have been successful.

View the running pods:

root@kubemaster:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
mydaemonset-hmdhp 1/1 Running 0 45m
mydaemonset-kmf4z 1/1 Running 0 45m
mystaticpod-kubenodel.ittraining.loc 1/1 Running 0 19s
| Important: Note that the pod mystaticpod-kubenodel.ittraining.loc has returned. In
L% fact, the previous deletion only deleted the mirror, which was then regenerated.

To delete the static pod, connect to kubenodel :

root@kubemaster:~# ssh -1 trainee kubenodel
trainee@kubenodel's password: trainee
Linux kubenodel.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86 64

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 42/43 DOE304 - Working with Pods and Containers

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Thu Sep 15 17:51:03 2022 from 192.168.56.2

trainee@kubenodel:~$ su -
Password: fenestros

root@kubenodel:~# rm -f /etc/kubernetes/manifests/mystaticpod.yaml
root@kubenodel:~# systemctl restart kubelet

root@kubenodel:~# exit
logout

trainee@kubenodel:~$ exit
logout

Connection to kubenodel closed.

root@kubemaster:~#

Copyright © 2025 Hugh Norris

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:22 43/43 DOE304 - Working with Pods and Containers

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s03

Last update: 2025/01/17 16:39

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s03

	DOE304 - Working with Pods and Containers
	Module content
	LAB #1 - Application Configuration
	1.1 - Overview
	1.2 - Creating a ConfigMap
	1.3 - Creating a Secret
	1.4 - Using ConfigMaps and Secret
	Using Environment variables
	Using Configuration Volumes

	LAB #2 - Container Resource Management
	2.1 - Overview
	2.2 - Resource Requests
	2.3 - Resource Limits

	LAB #3 - Container Supervision
	3.1 - Overview
	3.2 - Liveness Probes
	The exec Probe
	The httpGet Probe

	3.3 - Startup Probes
	3.4 - Readiness Probes

	LAB #4 - Restart Policy Management
	4.1 - Overview
	4.2 - Always
	4.3 - OnFailure
	4.4 - Never

	LAB #5 - Creating Multi-container Pods
	5.1 - Overview
	5.2 - Implementation

	LAB #6 - Init containers
	6.1 - Overview
	6.2 - Implementation

	LAB #7 - Scheduling
	7.1 - Overview
	7.2 - Implementation
	nodeSelector
	nodeName

	LAB #8 - DaemonSets
	8.1 - Overview
	8.2 - Implementation

	LAB #9 - Static Pods
	9.1 - Presentation
	9.2 - Implementation

