2026/02/04 08:20 1/40 DOF305 - Sécurisation de Kubernetes

Version - 2020.03

Derniere mise-a-jour : 2020/12/31 10:14

DOF305 - Sécurisation de Kubernetes

Contenu du Module

* DOF305 - Sécurisation de Kubernetes
o Contenu du Module
o LAB #1 - Role Based Acces Control et Certificats TLS
= 1.1 - Présentation
1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yami|
1.3 - Création d'un serviceAccount
1.4 - Création d'un Utilisateur
1.5 - Certificats TLS
o LAB #2 - Implémentation de la Sécurité au niveau des Pods
= 2.1 - Présentation
= 2.2 - Kubernetes Security Context
e ReadOnlyRootFilesystem
e drop
= 2.3 - Kubernetes Pod Security Policy
= 2.4 - Kubernetes Network Policies
= 2.5 - Kubernetes Resource Allocation Management
o LAB #3 - Sécuriser les Composants de Kubernetes
= 3.1 - L'acces a I'API Kubelet
= 3.2 - L'acces de Kubelet a I'API Kubernetes
» 3.3 - Sécuriser etcd

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 2/40 DOF305 - Sécurisation de Kubernetes

LAB #1 - Role Based Acces Control et Certificats TLS

1.1 - Présentation

Un objet Kubernetes est soit lié a un Namespace soit non-lié a un Namespace.

Kubernetes utilise I'API rbac.authorization.k8s.io pour gérer les autorisations. Les acteurs jouant un role dans cette APl sont :

* Namespaces,
o peuvent étre considérées comme des clusters virtuels,
o permettent l'isolation et la segmentation logique,
o permettent le regroupement d'utilisateurs, de roles et de ressources,
o sont utilisés avec des applications, des clients, des projets ou des équipes.

e Subjects,

o Regular Users - permettent la gestion des acces autorisés depuis I'extérieur du cluster que cela soit par un utilisateur physique ou sous une
autre forme. La gestion des utilisateurs est la responsabilité de I'Administrateur du cluster,

o ServiceAccounts - permettent la mise en place de permissions au niveau des entités logiciels. Kubernetes crée un certain nombre de
serviceAccounts automatiqguement mais I'Administrateur peut en créer d'autres. Chaque pod a un serviceAccount qui gere les privileges
accordés au processus et aux conteneurs du pod,

o User Groups - Kubernetes regroupe des utilisateurs en utilisant des propriétés communes telles le préfixe d'un serviceAccount ou le champ
de l'organisation dans un certificat. Il est ensuite possible d'accorder des privileges de type RBAC aux groupes ainsi créés.

e Resources,
o ce sont des entités auxquelles auront acces les Subjects,
o une ressource est une entité telle un pod, un deployment ou des sous-ressources telles les journaux d'un pod,
o le Pod Security Policy (PSP) est aussi considéré comme une ressource.

* Roles et ClusterRoles,
o Roles - permettent de définir des regles représentant un jeu de permissions, telles GET WATCH LIST CREATE UPDATE PATCH et DELETE, qui
peuvent étre utilisées avec des ressources dans un Namespace,
= On ajoute des permissions, on ne les retire pas. Il n'y a pas donc des regles de type deny.
o ClusterRoles - n'est pas lié a un Namespace. Un ClusterRole est utilisé pour :
= définir des permissions pour des ressources a étre utilisées dans un Namespace

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 3/40 DOF305 - Sécurisation de Kubernetes

= définir des permissions pour des ressources a étre utilisées dans tous les Namespaces
= définir des permissions pour des ressources du cluster.

e Un exemple d'un Role pour accorder les permissions dans le Namespace default est :

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
namespace: default
name: pod-reader
rules:
- apiGroups: [""] # "" indicates the core API group
resources: ["pods"]
verbs: ["get", "watch", "list"]

e Un example d'un ClusterRole pour accorder des permissions de lecture des secrets dans un Namespace spécifique ou dans tous les Namespaces
est:

apiVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRole
metadata:
name: secret-reader
rules:
- apiGroups: [""]
resources: ["secrets"]
verbs: ["get", "watch", "list"]

¢ RoleBindings et ClusterRoleBindings,
o permettent d'accorder des permissions définies dans des Roles ou ClusterRoles a des Subjects,
o RoleBindings sont spécifiques a un NameSpace,
o ClusterRoleBindings s'appliquent au niveau du Cluster.

1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 4/40 DOF305 - Sécurisation de Kubernetes

Connectez-vous au noeud kind-control-plane en utilisant la commande docker :

root@debianl@:~# docker exec -it kind-control-plane /bin/bash
root@kind-control-plane:/#

L'utilisation de RBAC est définie par la valeur de la directive -authorization-mode dans le fichier /etc/kubernetes/manifests/kube-apiserver.yaml

root@kind-control-plane:/# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: vl
kind: Pod
metadata:
annotations:
kubeadm. kubernetes.io/kube-apiserver.advertise-address.endpoint: 172.18.0.5:6443
creationTimestamp: null
labels:
component: kube-apiserver
tier: control-plane
name: kube-apiserver
namespace: kube-system
spec:
containers:
- command:
- kube-apiserver
- --advertise-address=172.18.0.5
--allow-privileged=true
--authorization-mode=Node, RBAC
- --client-ca-file=/etc/kubernetes/pki/ca.crt
- --enable-admission-plugins=NodeRestriction
- --enable-bootstrap-token-auth=true
- --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
- --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
--etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
- --etcd-servers=https://127.0.0.1:2379

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 5/40 DOF305 - Sécurisation de Kubernetes

- --insecure-port=0
- --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-client.crt
- --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key
- --kubelet-preferred-address-types=InternallIP,ExternallIP,Hostname
- --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt
- --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.key
- --requestheader-allowed-names=front-proxy-client
- --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
- --requestheader-extra-headers-prefix=X-Remote-Extra-
- --requestheader-group-headers=X-Remote-Group
- --requestheader-username-headers=X-Remote-User
- --runtime-config=
- --secure-port=6443
- --service-account-key-file=/etc/kubernetes/pki/sa.pub
- --service-cluster-ip-range=10.96.0.0/16
- --tls-cert-file=/etc/kubernetes/pki/apiserver.crt
- --tls-private-key-file=/etc/kubernetes/pki/apiserver.key
--More- -
[Q] Smmmmmmmm o oo Appuyez sur la touche **q**
root@kind-control-plane:/# exit
exit

1.3 - Création d'un serviceAccount

Il est préférable de créer un serviceAccount par service. Ceci permet une configuration plus fine de la sécurité concernant le service. Si un
serviceAccount n'est pas spécifié lors de la création des pods, ces pods se verront attribués le serviceAccount par défaut du Namespace.

Imaginons que vous souhaitez que votre application interagisse avec I'API de Kubernetes afin d'obtenir des informations sur les pods dans un
Namespace. le serviceAccount par défaut dasn le Namespace default ne peut pas accomplir cette tache :

root@debianl0:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:default:default
no

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20

6/40

DOF305 - Sécurisation de Kubernetes

Important : le format de la valeur de I'option -as est

system:serviceaccount:namespace:Nom_du_serviceac

count.

Créez maintenant le fichier flask.yaml :

root@debianl0:~# vi flask.yaml
root@debianl0:~# cat flask.yaml
apiVersion: vl
kind: Namespace
metadata:

name: flask
apiVersion: vl
kind: ServiceAccount
metadata:

name: flask-backend

namespace: flask
kind: Role
apiVersion: rbac.authorization.k8s.io/v1l
metadata:

name: flask-backend-role

namespace: flask
rules:

- apiGroups: [""]

resources: ["pods"]
verbs: ["get", "list", "watch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20

7/40

DOF305 - Sécurisation de Kubernetes

metadata:
name: flask-backend-role-binding
namespace: flask
subjects:
- kind: ServiceAccount
name: flask-backend
namespace: flask
roleRef:
kind: Role
name: flask-backend-role

apiGroup: rbac.authorization.k8s.io

Ce fichier crée :

e un Namespace appelé flask,

e un serviceAccount appelé flask-backend pour le Namespace flask,
 un Role appelé flask-backend-role qui accorde les permissions get, watch et list sur les pods dans le Namespace flask,
 un RoleBinding appelé flask-backend-role-binding qui accorde les permissions définies dans le Role flask-backend-role au Subject de type

serviceAccount appelé flask-backend.

[]
-

Appliquez le fichier :

Important : apiGroups: [“"] - “” indique |le groupe api core
ou legacy. Ce groupe se trouve au chemin REST /api/vl. Ce
groupe n'est jamais spécifié dans un champs apiVersion,
d'ou la raison pour laquelle on écrit apiVersion: v1 et non
apiVersion api/vl.

root@debianl0:~# kubectl create -f flask.yaml

namespace/flask created

serviceaccount/flask-backend created

role.rbac.authorization.k8s.io/flask-backend-role created

www.ittraining.team - https://www.ittraining.team/

8/40 DOF305 - Sécurisation de Kubernetes

2026/02/04 08:20
rolebinding.rbac.authorization.k8s.io/flask-backend-role-binding created

Créez maintenant le fichier deployment_flask.yaml qui crée des pods qui utiliseront le serviceAccount appelé flask-backend :

root@debianlQ:~# vi deployment flask.yaml
root@debianlQ:~# cat deployment flask.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: myapp-deployment
namespace: flask
labels:
app: myapp
type: front-end
spec:
template:

metadata:
name: myapp-pod
labels:
app: myapp
type: front-end
spec:
serviceAccount: flask-backend
containers:
- name: nginx-container
image: nginx

replicas: 3
selector:
matchLabels:
type: front-end

www.ittraining.team - https://www.ittraining.team/

9/40

DOF305 - Sécurisation de Kubernetes

2026/02/04 08:20
Exécutez kubectl :

root@debianlQ:~# kubectl create -f deployment flask.yaml
deployment.apps/myapp-deployment created

Vérifiez la présence du deployment :
root@debianl0:~# kubectl get deployment -n flask

NAME READY UP-TO-DATE AVAILABLE AGE
myapp-deployment 3/3 3 3 25s

Vérifiez qu'un token d'acces a I'AP| a été créé :

root@debianl0:~# kubectl get secrets -n flask
DATA AGE

NAME TYPE
default-token-k2s9s kubernetes.io/service-account-token 3 3m8s
3 3m8s

flask-backend-token-b2n9r kubernetes.io/service-account-token

Vérifiez maintenant que le serviceAccount flask-backend peut lister les pods dans le Namespace flask :

root@debianl0:~# kubectl auth can-i list pods -n flask --as=system:serviceaccount:flask:flask-backend

yes

Notez cependant que le serviceAccount flask-backend n'a pas la permission create dans le Namespace flask :

root@debianl0:~# kubectl auth can-i create pods -n flask --as=system:serviceaccount:flask:flask-backend

no

et que le serviceAccount flask-backend n'a pas la permission list dans le Namespace default :

root@debianl0:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:flask:flask-backend

no

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 10/40

DOF305 - Sécurisation de Kubernetes

1.4 - Création d'un Utilisateur

Connectez-vous au noeud kind-control-plane en utilisant la commande docker :

root@debianl@:~# docker exec -it kind-control-plane /bin/bash
root@kind-control-plane:/#

Configurez l'acces au cluster :
root@kind-control-plane:/# mkdir -p $HOME/.kube

root@kind-control-plane:/# cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
root@kind-control-plane:/# chown $(id -u):$(id -g) $HOME/.kube/config

Les utilisateurs font partis du contexte de configuration qui définit le nom du cluster et le nom du Namespace :

root@kind-control-plane:/# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kind kind kubernetes-admin

Important : Un contexte est un élément qui regroupe les
parametres d'acces sous un nom. Les parametres d'acces
sont au nombre de trois, a savoir le cluster, le namespace et
['utilisateur. La commande kubectl utilise les parameétres du
contexte courant pour communiquer avec le cluster.

Consultez le contexte courant :

root@kind-control-plane:/# kubectl config view
apiVersion: vl
clusters:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 11/40

DOF305 - Sécurisation de Kubernetes

- cluster:
certificate-authority-data: DATA+OMITTED
server: https://kind-control-plane:6443
name: kind
contexts:
- context:
cluster: kind
user: kubernetes-admin
name: kubernetes-admin@kind
current-context: kubernetes-admin@kind
kind: Config
preferences: {}
users:
- name: kubernetes-admin
user:
client-certificate-data: REDACTED
client-key-data: REDACTED

| Important : Le mot REDACTED indique que les valeurs
sont cachées pour des raisons de sécurité.

Pour créer un nouveau utilisateur il faut commencer par créer une clef privée pour ['utilisateur :

root@kind-control-plane:/# openssl genrsa -out trainee.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)

e is 65537 (06x010001)

Créez maintenant un CSR :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 12/40

DOF305 - Sécurisation de Kubernetes

root@kind-control-plane:/# openssl req -new -key trainee.key -out trainee.csr -subj "/CN=trainee/O=examplegroup"

| Important : Notez que Kubernetes utilisera la valeur de la

£.% . clef de I'organisation pour le regroupement des utilisateurs.

Le CSR doit étre signé par le CA racine de Kubernetes :
root@kind-control-plane:/# ls -1 /etc/kubernetes/pki/ca.*
-rw-r--r-- 1 root root 1066 Dec 13 12:34 /etc/kubernetes/pki/ca.crt
-rw------- 1 root root 1675 Dec 13 12:34 /etc/kubernetes/pki/ca.key

Signez donc le CSR :

root@kind-control-plane:/# openssl x509 -req -in trainee.csr -CA /etc/kubernetes/pki/ca.crt -CAkey

/etc/kubernetes/pki/ca.key -CAcreateserial -out trainee.crt
Signature ok

subject=CN = trainee, 0 = examplegroup

Getting CA Private Key

Visualisez le certificat de trainee :

root@kind-control-plane:/# openssl x509 -in trainee.crt -text
Certificate:
Data:
Version: 1 (0x0)
Serial Number:
65:7a:9f:e1:5d:bd:48:27:b3:50:¢c9:9f:60:¢c8:04:85:4e:85:7b:02
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN = kubernetes
Validity
Not Before: Dec 15 13:36:03 2020 GMT

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20

13/40

DOF305 - Sécurisation de Kubernetes

Signature Algorithm:
33:
ea:
07:
de:
ef:
84:
25:
fl:

Not After :
Subject: CN = trainee, 0
Subject Public Key Info:

Public Key Algorithm:

14:
23:
3e:
ed:
b4:
eb:
e4:
20:

Jan 14 13:36:03 2021 GMT
examplegroup

RSA Public-Key:
Modulus:

00:
84:
7d
c8
40:
65
1b
of:
47
97:
60:
54:
5¢
f2:
17:
2e:
o
27:

:05
:0a:

:9a
red

1e’

bl:
52

le:

37:

b5
76:
ab:

:45:;

b4:
20:
78:

:84:

15

Exponent:

25:
d7:
96:
d3:
10:
c2:
85:
7d:

3c:

2f
5

c9:

ff

ab:
fl:

5

51:
:e7:
:db:
b5:
:7a:
1d:
70:
:a6:

bo

ac:

6C:
85:
fe:
Oe:
04:
1d:

41:

:49:
:51:

ca:
dd:

:08:
:01:
:a’l:

2

:4c:
:7b:

08:
e2:
fd:
88:
9c:
58:
62:

655

63:
14b:
64:
b7:
8e:
27:
e3:
0b:

77
7d:
db:
ab:
85:
e5:
06:

7f:
8c:
1d:
07:
e5:
38:
6a:
85
8b:

37

6d

.ae

Ob:
cO:

09:
20:
ab:
8e:
Oe:

(20

75:
da:
97:
72
e5:
5e
23:
8b:
69:
a2
Oe:
b3
9b
71:

146

44

:dd

142

:0f

48

Oc:
51:
34:

:29:

22:
a9:
b5
Ob:

od

:94:
:d5:

72:
89:
Oc:

bit

143

26:
99:
7d:
dd:
la:

:33:

be:

:03:

10:

:76:
:dO:

bc:
b8:
5a:
ca:
bb:

(0x10001)

6f
:83

b6cC

9a

a6:

b9:

a8:

bd:

6f:
:a’:
:0d:
20:
:0f:
b5:
:a8:
ba:

le:
51:
81:
67:
d5:
11:
bf:
ds:

)

01:
el:
26:
79:
18:
ccC:
db:
cd:
cd:
a3:
42
lc:
04:
27:
3e:
74:
1b:

51
31

a6

93

b5:
:d6:
aa:
:a6:

rsaEncryption

ee:
da
37:
a8
cl:
71:
97:
63:
8d:
05:
fe:
18:
Oe
d3:
c9:
3e
ab

aa

:4d
1f

a’l

:de

.€a

2d:
:04:

73:

bl

9e
33
a0
fd
09:
1d
77
f5:

:49:
:8b:
:07
:dl:
:d8

6f
05

sha256WithRSAEncryption
49:
19:

:3b:
2e:
43:
:el:
:73:
55:
:6a:
al:

:8f
:6b:

57

b6:

cO:
fa

3a

173
:46:
:6b:
:00:
:9c:
16e:
:9b:
162

9c:
ad:
Oc:
09:
f2:
98:
ea:
62:

e0:
ao:
75:
b6:
71:
c7/:

.ac:

98:

:a6:

de:
ca:

:e6:

80:

1e2:
:ab:
:81:

77 :

5e
ce
7c
a9
€6

e2:

:46:

ba:
29:
9c:
e7:
d2:
59:
b9:
c4:
dd
do:
3f:
2e:
ac:
6d:
6¢C:
37:

.ec

:d9:
:90:
of:
99:

5a

142

56:
ref:
:0b:

01:

4
af:
c7:
22:
54:
2b:
b2:
cb6:
79:

dc:
d9:
cl
bb:
33
1b:
cO:

164:
84:
fa:
fd:
al:
1d:
ca:
aa:
Oe:
:dc:
as8:
32:
:el:
59:
1e2:
cb:
c9:

47 :
be:
09:

1e3:

ec:
2d:

172

5d:

www.ittraining.team -

https://www.ittraining.team/

2026/02/04 08:20 14/40 DOF305 - Sécurisation de Kubernetes

bf:70:60:25:cd:cb:a8:62:39:e7:81:5c:79:da:b4:23:4e:54:
ab:f4:cd:7a:58:13:a7:de:da:02:80:d9:9f:2b:6c:00:c1:43:
a8:a9:f8:de:1f:fa:ff:a8:12:a0:ea:e8:1c:aa:21:99:ee:9c:
9d:09:63:79:f8:7f:2d:12:67:aa:dd:71:70:c1:b6:19:3e: fe:
le:74:4e:71:41:01:49:9€:51:38:d2:00:eb:2e:b8:cf:4f:0d:
19:9b:2b:0c:57:d7:dc:4d:23:d0:17:27:42:39:bf:ec:7c:e9:
22:ac:23:2e

MIICxTCCAaO@CFGV6Nn+FdvUgns1DIn2DIBIVOhXsCMAOGCSqGSIb3DQEBCWUAMBUX
EzZARBgNVBAMTCmt1YmVybmVOZXMwHhcNMjAxMjEIMTMzNjAzWhcNMj EwWMTEOMTMz
NjAzWjApMRAWDgYDVQQDDAdOcmFpbmVIMRUWEWYDVQQKDAXx1eGFtcGx1Z3JvdXAw
ggEiMAOGCSqGSIb3DQEBAQUAA4IBDWAwWggEKAOIBAQCXQXeu3UMB7nNXcObOZIRS
SX11DCbh2k5G4LqvhHOFUdvaUZkmN7FroCnH+sgKyquXNH15900AdZwi/UAe3YVy
KdOYwZ6ctudUoWwWaCOXLIhrMcTNucdIrHRvtAQZeQjPbl6Cbx1myyg838qcjqw7N
Y/1irLnGgkfnTH+LtQPNjQm2mMR5DpeledxpCxCjBR2Ppt1C3GB2CB2in3ZC/ndr
TtDcqFSr4geeDdAcGPXAyj/ZMIxF/eWz1LwEDkn6517B4fK0iDib1lbgn02+LgKy7
WRcgnGpxclo+yQUH4m0z41i54WIVGicpOPtE6pWwby/CEYotEnLsbq9iBdzfAyScV
AgMBAAEwWDQYJKoZIhvcNAQELBQADggEBADMUJTXRrGMLpm8eSao7n0JWR+0j1ly/n
SEVAb6dRGSOurV7vvgc+1vXbbGRtgw2BUQRDDM4LCA7t08m1lhbcJuSBnMU3hCXzs
4++0EP96/04gbA/VtR9z8qnZ7ITrwgsdDiergLURptZVm0OaQLSXkhfFwBOOOmqgi/
ggqdq6p9acvEgffWmHQsOvbrYk6ahYpkBXb9wYCXNy6hiOeeBXHnatCNOVKXOQzXpY
E6Tfe2gKA2Z8rbADBQ6ip+N4f+v+0EqDg6ByqL5nunJ01Y3n4fy0SZ6rdcXDBthk+
/h50TnFBAUmMeUT j SAOSuuM9PDRMbKwxX19XNI9AXJOI5v+x86SKsIyd=

————— END CERTIFICATE-----

Créez un deuxieme utilisateur dans la méme Organisation :

root@kind-control-plane:/# openssl genrsa -out stagiaire.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)

e is 65537 (0x010001)

root@kind-control-plane:/# openssl req -new -key stagiaire.key -out stagiaire.csr -subj

www.ittraining.team - https://www.ittraining.team/

15/40 DOF305 - Sécurisation de Kubernetes

2026/02/04 08:20
"/CN=stagiaire/0O=examplegroup"

root@kind-control-plane:/# openssl x509 -req -in stagiaire.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out stagiaire.crt

Signature ok
subject=CN = stagiaire, 0 = examplegroup

Getting CA Private Key
Créez maintenant le contexte trainee :

root@kind-control-plane:/# kubectl config set-credentials trainee --client-certificate=trainee.crt --client-

key=trainee.key

User "trainee" set.
root@kind-control-plane:/# kubectl config set-context trainee@kubernetes --cluster=kubernetes --user=trainee

Context "trainee@kubernetes" created.

Vérifiez que le contexte soit présent :

root@kind-control-plane:/# kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE

* kubernetes-admin@kind kind kubernetes-admin
trainee@kubernetes kubernetes trainee

Utilisez le contexte de trainee :

root@kind-control-plane:/# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

Vérifiez que vous utilisez le contexte de trainee :

root@kind-control-plane:/# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
kind kubernetes-admin

kubernetes-admin@kind

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20

16/40 DOF305 - Sécurisation de Kubernetes

* trainee@kubernetes

kubernetes trainee

Revenez au contexte de kubernetes-admin@kind :

root@kind-control-plane:/# kubectl config use-context kubernetes-admin@kind

Switched to context "kubernetes-

root@kind-control-plane:/# exit
exit
root@debianl®:~#

1.5 - Certificats TLS

admin@kind".

Par défaut la communication entre kubectl et I'API Kubernetes est cryptée. Les certificats se trouvent dans le répertoire /var/lib/kubelet/pki/ de

chaque noeud :

root@kind-control-plane:/# ls -1 /var/lib/kubelet/pki/

total 12

-rw------- 1 root root 2818 Dec
lrwxrwxrwx 1 root root 59 Dec
client-2020-12-13-12-34-39.pem
-rw-r--r-- 1 root root 2319 Dec
-rW------- 1 root root 1679 Dec
root@kind-control-plane:/# exit

13 12:34 kubelet-client-2020-12-13-12-34-39.pem
13 12:34 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-

13 12:34 kubelet.crt
13 12:34 kubelet.key

root@debianl0@:~# docker exec -it kind-worker2 /bin/bash
root@kind-worker2:/# 1ls -1 /var/lib/kubelet/pki/

total 12

-rwW------- 1 root root 1118 Dec
lrwxrwxrwx 1 root root 59 Dec
client-2020-12-13-12-35-43.pem
-rw-r--r-- 1 root root 2279 Dec
-rW------- 1 root root 1679 Dec
root@kind-worker2:/# exit

exit

13 12:35 kubelet-client-2020-12-13-12-35-43.pem
13 12:35 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-

13 12:35 kubelet.crt
13 12:35 kubelet.key

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 17/40 DOF305 - Sécurisation de Kubernetes

root@debianl0:~# docker exec -it kind-worker3 /bin/bash

root@kind-worker3:/# ls -1 /var/lib/kubelet/pki/

total 12

SrwW------- 1 root root 1118 Dec 13 12:35 kubelet-client-2020-12-13-12-35-45.pem

lrwxrwxrwx 1 root root 59 Dec 13 12:35 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-
client-2020-12-13-12-35-45.pem

-rw-r--r-- 1 root root 2279 Dec 13 12:35 kubelet.crt

SrwW------- 1 root root 1675 Dec 13 12:35 kubelet.key
root@kind-worker3:/# exit
exit

Im-ﬁt!ftant : Par défaut les certificats de kubelet expirent au bout d'un an.

LAB #2 - Implémentation de la Sécurité au niveau des Pods

2.1 - Présentation

Un Admission Controller est un morceau de code qui intercepte les requétes a destination de I'API de Kubernetes. L'utilisation des Admission
Controllers est définie part la directive -admission-control du fichier /etc/kubernetes/manifests/kube-apiserver.yaml, par exemple :

--admission-control=Initializers, NamespacelLifecycle, LimitRanger, ServiceAccount, PersistentVolumelLabel,
DefaultStorageClass, DefaultTolerationSeconds, NodeRestriction, ResourceQuota

Les Admission Controllers les plus importants en termes de sécurité sont :

* DenyEscalatingExec,
o interdit I'exécution des commandes avec un escalated container dans un pod priviligié. Les commandes concernées sont exec et attach.
Un escalated container dans un pod priviligié n'est pas isolé et permet donc l'acces a I'hote.
* NodeRestriction,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 18/40 DOF305 - Sécurisation de Kubernetes

o limite les objets d'un nceud et d'un pod que kubectl est capable de modifier,

e PodSecurityPolicy,
o agit lors de la création ou de la modification d'un pod pour décider si celui-ci est admis au cluster en fonction du Contexte de Sécurité et les

policies applicables,

¢ ValidatingAdmissionWebhooks,
o permet d'appeler un service externe qui implémente une politique de sécurité, tel que Grafeas.

2.2 - Kubernetes Security Context

La configuration du Contexte de Sécurité se fait du pod ou du conteneur. Voici quelques exemples.

ReadOnlyRootFilesystem

Créez le fichier readonly.yaml :

root@debianl0O:~# vi readonly.yaml
root@debianl@:~# cat readonly.yaml
apiVersion: vl
kind: Pod
metadata:
name: flask-ro
namespace: default
spec:
containers:
- image: mateobur/flask
name: flask-ro
securityContext:
readOnlyRootFilesystem: true

Exécutez kubectl :

www.ittraining.team - https://www.ittraining.team/

https://grafeas.io/

2026/02/04 08:20 19/40

DOF305 - Sécurisation de Kubernetes

root@kubemaster:~# kubectl create -f readonly.yaml

pod/flask-ro created

Vérifiez que le pod est en état de READY :

root@debianl0:~# kubectl create -f readonly.yaml

pod/flask-ro created

root@debianl0:~# kubectl get pods

NAME

flask-ro
postgres-deployment-746bc85b8-81lwbc
redis-deployment-64cff75679-8zqr8
result-app-deployment-7cdc94dfcd-nddsh
result-app-deployment-7cdc94dfcd-ntbdj
result-app-deployment-7cdc94dfcd-wsm2d
voting-app-deployment-678c67fc7-59q7z
voting-app-deployment-678c67fc7-sgczf
voting-app-deployment-678c67fc7-zcs6¢
worker-app-deployment-767d5b67ff-sgj2x

root@debianl0:~# kubectl get pods

NAME

flask-ro
postgres-deployment-746bc85b8-81lwbc
redis-deployment-64cff75679-8zqr8
result-app-deployment-7cdc94dfcd-nddsh
result-app-deployment-7cdc94dfcd-ntbdj
result-app-deployment-7cdc94dfcd-wsm2d
voting-app-deployment-678c67fc7-59q7z
voting-app-deployment-678c67fc7-sgczf
voting-app-deployment-678c67fc7-zcs6¢
worker-app-deployment-767d5b67ff-sgj2x

READY
0/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

ContainerCreating

Running
Running
Running
Running
Running
Running
Running
Running
Running

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

NPFPOOOOKRHEFEFEO

RESTARTS

0
1
1
1
0
0
0
0
1
2

AGE

29s

4h24m
4h24m
4h24m
3h15m
3h15m
3h15m
3h15m
4h23m
4h23m

AGE

11s

4h23m
4h23m
4h23m
3h15m
3h15m
3h15m
3h15m
4h23m
4h23m

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 20/40 DOF305 - Sécurisation de Kubernetes

Connectez-vous au conteneur :

root@debianl0@:~# kubectl exec -it flask-ro -- bash
root@flask-ro:/#

Notez que le systeme est en lecture seule :

root@flask-ro:/# mount | grep "/ "

overlay on / type overlay
(ro,relatime, lowerdir=/var/lib/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/57/fs:/var/lib/contain

erd/io.containerd.snapshotter.vl.overlayfs/snapshots/56/fs:/var/lib/containerd/io.containerd.snapshotter.vl.overl
ayfs/snapshots/55/fs:/var/lib/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/54/fs,upperdir=/var/lib
/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/58/fs,workdir=/var/lib/containerd/io.containerd.snap

shotter.vl.overlayfs/snapshots/58/work)

root@flask-ro:/# touch test
touch: cannot touch 'test': Read-only file system

root@flask-ro:/# exit
exit
command terminated with exit code 1

drop

Créez le fichier drop.yaml :

root@debianlO:~# vi drop.yaml
root@debianl0:~# cat drop.yaml
apiVersion: vl
kind: Pod
metadata:

name: flask-cap

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 21/40

DOF305 - Sécurisation de Kubernetes

namespace: default

spec:

containers:

- image: mateobur/flask
name: flask-cap
securityContext:

capabilities:
drop:
- NET_RAW
- CHOWN

Exécutez kubectl :

root@debianlQ:~# kubectl create -f drop.yaml

pod/flask-cap created
Vérifiez que le pod est en état de READY :

root@debianl0:~# kubectl get pods

NAME

flask-cap

flask-ro
postgres-deployment-746bc85b8-81lwbc
redis-deployment-64cff75679-8zqr8
result-app-deployment-7cdc94dfcd-nddsh
result-app-deployment-7cdc94dfcd-ntbhdj
result-app-deployment-7cdc94dfcd-wsm2d
voting-app-deployment-678c67fc7-59q7z
voting-app-deployment-678c67fc7-sgczf
voting-app-deployment-678c67fc7-zcs6¢
worker-app-deployment-767d5b67ff-sgj2x

Connectez-vous au conteneur ;

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

NPFRPOOOOKHRMHFEFEFEF OO

AGE

23s

5m42s
4h29m
4h29m
4h29m
3h20m
3h20m
3h21m
3h21m
4h29m
4h29m

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 22/40 DOF305 - Sécurisation de Kubernetes

root@debianl0:~# kubectl exec -it flask-cap -- bash
root@flask-cap:/#

Notez la mise en place des restrictions :

root@flask-cap:/# ping 8.8.8.8
ping: Lacking privilege for raw socket.

root@flask-cap:/# chown daemon /tmp
chown: changing ownership of '/tmp': Operation not permitted

root@flask-cap:/# exit
exit
command terminated with exit code 1

HERE
2.3 - Kubernetes Pod Security Policy

Créez le fichier psp.yaml :

root@kubemaster:~# vi psp.yaml
root@kubemaster:~# cat psp.yaml
apiVersion: policy/vlbetal
kind: PodSecurityPolicy
metadata:

name: example
spec:

privileged: true

seLinux:

rule: RunAsAny
supplementalGroups:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 23/40

DOF305 - Sécurisation de Kubernetes

rule: RunAsAny

runAsUser:
rule: 'MustRunAs'
ranges:
- min: 1
max: 65535
fsGroup:
rule: 'MustRunAs'
ranges:
- min: 1
max: 65535
volumes:

I*I

Exécutez kubectl :

root@kubemaster:~# kubectl create -f psp.yaml

podsecuritypolicy.policy/example created
Consultez la présence de la Pod Security Policy :

root@kubemaster:~# kubectl get psp

NAME PRIV ~ CAPS SELINUX RUNASUSER
example true RunAsAny MustRunAs

La Pod Security Policy créée empéche I'exécution d'un pod en utilisant I'utilisateur et le groupe root.

2.4 - Kubernetes Network Policies

Installez I'application exemple Guestbook de Kubernetes :

root@kubemaster:~# kubectl create -f

SUPGROUP
RunAsAny

READONLYROOTFS
MustRunAs

VOLUMES

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 24/40 DOF305 - Sécurisation de Kubernetes

https://raw.githubusercontent.com/fabric8io/kansible/master/vendor/k8s.1io/kubernetes/examples/guestbook/all-in-on
e/guestbook-all-in-one.yaml

service/redis-master created

replicationcontroller/redis-master created

service/redis-slave created

replicationcontroller/redis-slave created

service/frontend created

replicationcontroller/frontend created

Cette application crée des pods de type backend et frontend :

root@kubemaster:~# kubectl describe pod redis-master-8rczl | grep tier
tier=backend

root@kubemaster:~# kubectl describe pod frontend-762mw | grep tier
tier=frontend

Créez le fichier guestbook-network-policy.yaml qui empéchera la communication d'un pod backend vers un pod frontend :

root@kubemaster:~# vi guestbook-network-policy.yaml
root@kubemaster:~# cat guestbook-network-policy.yaml
apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:
name: deny-backend-egress
namespace: default
spec:
podSelector:
matchLabels:
tier: backend
policyTypes:
- Egress
egress:
- to:
- podSelector:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 25/40 DOF305 - Sécurisation de Kubernetes

matchLabels:
tier: backend

Exécutez kubect! :

root@kubemaster:~# kubectl create -f guestbook-network-policy.yaml
networkpolicy.networking.k8s.io/deny-backend-egress created

Attendez que tous les pods soient dans un état de READY :

root@kubemaster:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

flask-cap 1/1 Running 1 139m 192.168.205.242 kubenodel <none>
<none>

flask-ro 1/1 Running 0 65m 192.168.35.141 kubenode2 <none>
<none>

frontend-762mw 1/1 Running 0 17m 192.168.205.250 kubenodel <none>
<none>

frontend- Lhw8b 1/1 Running 0 17m 192.168.35.143 kubenode2 <none>
<none>

frontend-n75vs 1/1 Running 0 17m 192.168.205.252 kubenodel <none>
<none>

postgres-deployment-5b8bd66778-j99zz 1/1 Running 8 4d3h 192.168.35.138 kubenode2 <none>
<none>

redis-deployment-67d4c466c4-9wzfn 1/1 Running 8 4d3h 192.168.205.246 kubenodel <none>
<none>

redis-master-8rczl 1/1 Running 0 17m 192.168.205.249 kubenodel <none>
<none>

redis-slave-c8jzv 1/1 Running 0 17m 192.168.35.142 kubenode2 <none>
<none>

redis-slave-fjrjm 1/1 Running 0 17m 192.168.205.251 kubenodel <none>
<none>

result-app-deployment-b8f9dc967-nzbgd 1/1 Running 8 4d3h 192.168.205.245 kubenodel <none>

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 26/40 DOF305 - Sécurisation de Kubernetes

<none>
result-app-deployment-b8f9dc967-r84k6 1/1 Running 8 4d 192.168.35.135 kubenode2 <none>
<none>
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 8 4d 192.168.35.137 kubenode2 <none>
<none>
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 8 4d3h 192.168.35.136 kubenode2 <none>
<none>
voting-app-deployment-669dccccfb-ktd7d 1/1 Running 8 4d 192.168.35.140 kubenode2 <none>
<none>
voting-app-deployment-669dccccfb-x868p 1/1 Running 8 4d 192.168.205.243 kubenodel <none>
<none>
worker-app-deployment-559f7749b6-jh86r 1/1 Running 21 4d3h 192.168.205.248 kubenodel <none>
<none>

Connectez-vous au pod redis-master :

root@kubemaster:~# kubectl exec -it redis-master-8rczl bash
[root@redis-master-8rczl:/data 1%

Essayez de contacter un pod du méme tier :

[root@redis-master-8rczl:/data 1$ ping -c 4 192.168.35.142
PING 192.168.35.142 (192.168.35.142) 56(84) bytes of data.

64 bytes from 192.168.35.142: icmp seq=1 ttl=62 time=0.402 ms
64 bytes from 192.168.35.142: icmp seq=2 ttl=62 time=0.301 ms
64 bytes from 192.168.35.142: icmp seq=3 ttl=62 time=0.291 ms
64 bytes from 192.168.35.142: icmp seq=4 tt1=62 time=0.395 ms

--- 192.168.35.142 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 0.291/0.347/0.402/0.053 ms

Essayez maintenant de contacter un pod d'un tier différent :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20

27/40

DOF305 - Sécurisation de Kubernetes

[root@redis-master-8rczl:/data 1$ ping -c 4 192.168.205.250
PING 192.168.205.250 (192.168.205.250) 56(84) bytes of data.

--- 192.168.205.250 ping statistics ---

4 packets transmitted, O

received, 100% packet loss, time 3017ms

Déconnectez-vous du pod redis-master et connectez-vous a un pod frontend :

root@kubemaster:~# kubectl exec -it frontend-762mw bash
root@frontend-762mw:/var/www/html#

Essayez de contacter un pod du méme tier :

root@frontend-762mw:/var/www/html# ping -c 4 192.168.35.143

PING 192.168.35.143 (192.
64 bytes from 192.168.35.
64 bytes from 192.168.35.
64 bytes from 192.168.35.
64 bytes from 192.168.35.

168.35.143): 56 data bytes

143: icmp seq=0 ttl=62 time=0.476 ms
143: icmp_seqg=1 ttl=62 time=0.263 ms
143: icmp _seq=2 ttl=62 time=0.231 ms
143: icmp_seq=3 ttl=62 time=0.289 ms

--- 192.168.35.143 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.231/0.315/0.476/0.095 ms

Essayez maintenant de contacter un pod d'un tier différent :

root@frontend-762mw: /var/www/html# ping -c 4 192.168.205.249
PING 192.168.205.249 (192.168.205.249): 56 data bytes

64 bytes from 192.168.205.249: icmp seq=0 ttl=63 time=0.454 ms
64 bytes from 192.168.205.249: icmp seq=1 ttl=63 time=0.052 ms
64 bytes from 192.168.205.249: icmp seq=2 ttl=63 time=0.069 ms
64 bytes from 192.168.205.249: icmp seq=3 ttl=63 time=0.050 ms
--- 192.168.205.249 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 28/40

DOF305 - Sécurisation de Kubernetes

round-trip min/avg/max/stddev = 0.050/0.156/0.454/0.172 ms

2.5 - Kubernetes Resource Allocation Management

Les ressources qui peuvent étre limitées au niveau d'un pod sont :

e CPU
e Mémoire
e Stockage local

Créez le fichier flask-resources.yaml :

root@kubemaster:~# vi flask-resources.yaml
root@kubemaster:~# cat flask-resources.yaml
apiVersion: vl
kind: Pod
metadata:
name: flask-resources
namespace: default
spec:
containers:
- image: mateobur/flask
name: flask-resources
resources:
requests:
memory: 512Mi
limits:
memory: 700Mi

Dans ce fichier on peut constater deux allocations de ressources :

¢ requests,

o la quantité de mémoire qui doit étre libre au moment du scheduling du pod,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 29/40

DOF305 - Sécurisation de Kubernetes

¢ limits,
o la limite de mémoire pour le pod concerné.

Exécutez kubectl :

root@kubemaster:~# kubectl create -f flask-resources.yaml

pod/flask-resources created
Attendez que le statut du pod soit READY :

root@kubemaster:~# kubectl get pods
NAME

flask-cap

flask-resources

flask-ro

frontend-762mw

frontend-lhw8b

frontend-n75vs
postgres-deployment-5b8bd66778-j99zz
redis-deployment-67d4c466c4-9wzfn
redis-master-8rczl

redis-slave-c8jzv

redis-slave-fjrjm
result-app-deployment-b8f9dc967-nzbgd
result-app-deployment-b8f9dc967-r84k6
result-app-deployment-b8f9dc967-zbsk2
voting-app-deployment-669dccccfb-jpn6h
voting-app-deployment-669dccccfb-ktd7d
voting-app-deployment-669dccccfb-x868p
worker-app-deployment-559f7749b6-jh86r

Connectez-vous au pod :

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

root@kubemaster:~# kubectl exec -it flask-resources bash

RESTARTS

N OO O OO0 OOOWMODMOOOO OO

AGE
161m
4m47s
87m
39m
39m
39m
4d3h
4d3h
39m
39m
39m
4d3h
4d
4d
4d3h
4d
4d
4d3h

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 30/40

DOF305 - Sécurisation de Kubernetes

root@flask-resources:/#
Installez le paquet stress :

root@flask-resources:~# apt install stress
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
stress
0 upgraded, 1 newly installed, 0 to remove and 3 not upgraded.
Need to get 18.5 kB of archives.
After this operation, 44.0 kB of additional disk space will be used.
Get:1 http://deb.debian.org/debian/ jessie/main stress amd64 1.0.1-1+deb8ul [18.5 kB]
Fetched 18.5 kB in 5s (3605 B/s)
debconf: delaying package configuration, since apt-utils is not installed
Selecting previously unselected package stress.
(Reading database ... 9595 files and directories currently installed.)
Preparing to unpack .../stress 1.0.1-1+deb8ul amd64.deb ...
Unpacking stress (1.0.1-1+deb8ul)
Setting up stress (1.0.1-1+deb8ul)
root@flask-resources:~# which stress
/usr/bin/stress

Testez la limite mise en place :

root@flask-resources:~# stress --cpu 1 --io 1 --vm 2 --vm-bytes 800M
stress: info: [42] dispatching hogs: 1 cpu, 1 io, 2 vm, O hdd
stress: FAIL: [42] (416) <-- worker 46 got signal 9

stress: WARN: [42] (418) now reaping child worker processes

stress: FAIL: [42] (452) failed run completed in 1s

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 31/40 DOF305 - Sécurisation de Kubernetes

LAB #3 - Sécuriser les Composants de Kubernetes

3.1 - L'acces a I'API Kubelet

L'acces a I'API Kubelet est sécurisé par défaut. Par contre il convient de vérifier que la configuration ne comporte pas d'erreurs.

Le fichier /etc/systemd/system/kubelet.service.d/10-kubeadm.conf démontre I'emplacement du fichier de configuration de kubelet :

root@kubemaster:~# cat /etc/systemd/system/kubelet.service.d/10-kubeadm.conf
Note: This dropin only works with kubeadm and kubelet v1.11+

[Service]
Environment="KUBELET KUBECONFIG ARGS=--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --

kubeconfig=/etc/kubernetes/kubelet.conf"
Environment="KUBELET CONFIG ARGS=--config=/var/lib/kubelet/config.yaml"

This is a file that "kubeadm init" and "kubeadm join" generates at runtime, populating the KUBELET KUBEADM ARGS
variable dynamically

EnvironmentFile=-/var/lib/kubelet/kubeadm-flags.env

This is a file that the user can use for overrides of the kubelet args as a last resort. Preferably, the user

should use
the .NodeRegistration.KubeletExtraArgs object in the configuration files instead. KUBELET EXTRA ARGS should be

sourced from this file.
EnvironmentFile=-/etc/default/kubelet

ExecStart=
ExecStart=/usr/bin/kubelet $KUBELET KUBECONFIG ARGS $KUBELET CONFIG ARGS $KUBELET KUBEADM ARGS

$KUBELET EXTRA ARGS

La configuration par défaut de kubelet se trouve dans le fichier /var/lib/kubelet/config.yaml :

root@kubemaster:~# cat /var/lib/kubelet/config.yaml
address: 0.0.0.0

apiVersion: kubelet.config.k8s.io/v1lbetal
authentication:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 32/40

DOF305 - Sécurisation de Kubernetes

anonymous:
enabled: false
webhook:
cacheTTL: 2m0Os
enabled: true
x509:
clientCAFile: /etc/kubernetes/pki/ca.crt
authorization:
mode: Webhook
webhook:
cacheAuthorizedTTL: 5mOs
cacheUnauthorizedTTL: 30s
cgroupDriver: cgroupfs
cgroupsPerQ0S: true
clusterDNS:
- 10.96.0.10
clusterDomain: cluster.local
configMapAndSecretChangeDetectionStrategy: Watch
containerLogMaxFiles: 5
containerLogMaxSize: 10Mi
contentType: application/vnd.kubernetes.protobuf
cpuCFSQuota: true
cpuCFSQuotaPeriod: 100ms
cpuManagerPolicy: none
cpuManagerReconcilePeriod: 10s
enableControllerAttachDetach: true
enableDebuggingHandlers: true
enforceNodeAllocatable:
- pods
eventBurst: 10
eventRecordQPS: 5
evictionHard:
imagefs.available: 15%
memory.available: 100Mi

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 33/40

DOF305 - Sécurisation de Kubernetes

nodefs.available: 10%
nodefs.inodesFree: 5%
evictionPressureTransitionPeriod: 5mOs
failSwapOn: true
fileCheckFrequency: 20s
hairpinMode: promiscuous-bridge
healthzBindAddress: 127.0.0.1
healthzPort: 10248
httpCheckFrequency: 20s
imageGCHighThresholdPercent: 85
imageGCLowThresholdPercent: 80
imageMinimumGCAge: 2m0Os
iptablesDropBit: 15
iptablesMasqueradeBit: 14
kind: KubeletConfiguration
kubeAPIBurst: 10
kubeAPIQPS: 5
makeIPTablesUtilChains: true
max0OpenFiles: 1000000
maxPods: 110
nodeLeaseDurationSeconds: 40
nodeStatusReportFrequency: 1m0Os
nodeStatusUpdateFrequency: 10s
oomScoreAdj: -999
podPidsLimit: -1
port: 10250
registryBurst: 10
registryPullQPS: 5
resolvConf: /etc/resolv.conf
rotateCertificates: true
runtimeRequestTimeout: 2mOs
serializeImagePulls: true
staticPodPath: /etc/kubernetes/manifests
streamingConnectionIdleTimeout: 4hOmOs

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 34/40 DOF305 - Sécurisation de Kubernetes

syncFrequency: 1mOs

topologyManagerPolicy: none

volumeStatsAggPeriod: 1mOs

En termes de sécurité il est important que la connexion anonyme soit désactivé :
authentication:

anonymous:
enabled: false

qgue kubelet utilise un certificat :

x509:
clientCAFile: /etc/kubernetes/pki/ca.crt

que le mode d’autorisation soit webhook qui délegue les décisions d’autorisation a I'API Kubernetes

authorization:
mode: Webhook

3.2 - Sécuriser etcd

La configuration du cluster y compris la configuration du réseau, du stockage, les mots de passe et des données sensibles sont stockées dans etcd.
Il est possible de crypter les données sensibles, appelées des Secrets, mais cette fonctionnalité n'est pas activée par défaut.

Pour pouvoir procéder au cryptage il faut deux binaires etcd et etcdctl :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 35/40

DOF305 - Sécurisation de Kubernetes

root@kubemaster:~# which etcd
root@kubemaster:~# which etcdctl

Pour obtenir les deux binaires, téléchargez I'archive etcd :

root@kubemaster:~# export RELEASE="3.3.13"
root@kubemaster:~# wget

https://github.com/etcd-io/etcd/releases/download/v${RELEASE}/etcd-v${RELEASE}-1linux-amd64.tar.gz

Désarchivez l'archive et placez-vous dans le répertoire etcd-v3.3.13-linux-amd64 :

root@kubemaster:~# tar xvf etcd-v${RELEASE}-linux-amd64.tar.qgz
root@kubemaster:~# cd etcd-v${RELEASE}-1linux-amd64

Copiez les binaires etcd et etcdctl vers usr/local/bin :

root@kubemaster:~/etcd-v3.3.13-1linux-amd64# cp etcd etcdctl /usr/local/bin
root@kubemaster:~/etcd-v3.3.13-linux-amd64# etcd --version

etcd Version: 3.3.13

Git SHA: 98d3084

Go Version: gol.10.8

Go 0S/Arch: linux/amd64

Vérifiez le chemin de I'emplacement des certificats ainsi que le port d’écoute :

root@kubemaster:~# grep -- '--etcd' /etc/kubernetes/manifests/kube-apiserver.yaml

- --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt

- --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
- --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
- --etcd-servers=https://127.0.0.1:2379

Vérifiez que le port 2379 soit a I'écoute :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 36/40 DOF305 - Sécurisation de Kubernetes

root@kubemaster:~/etcd-v3.3.13-linux-amd64# ss -tunelp | grep 2379

tcp LISTEN 0 128 192.168.56.2:2379 g e
users: (("etcd",pid=5449,fd=7)) ino0:22971 sk:8 <->
tcp LISTEN 0 128 127.0.0.1:2379 W g A

users: (("etcd",pid=5449,fd=6)) ino:22970 sk:9 <->
Exportez les variables ETCDCTL_CACERT, ETCDCTL_CERT, ETCDCTL_KEY et ETCDCTL_API :

export ETCDCTL CACERT=/etc/kubernetes/pki/etcd/ca.crt

export ETCDCTL CERT=/etc/kubernetes/pki/apiserver-etcd-client.crt
export ETCDCTL KEY=/etc/kubernetes/pki/apiserver-etcd-client.key
export ETCDCTL API=3

Créez le fichier /etc/kubernetes/pki/encryption-config.yaml afin d'utiliser I'algorithme de cryptage AES avec le mode d'opération Enchainement
des blocs :

root@kubemaster:~/etcd-v3.3.13-linux-amd64# vi /etc/kubernetes/pki/encryption-config.yaml
root@kubemaster:~/etcd-v3.3.13-linux-amd64# cat /etc/kubernetes/pki/encryption-config.yaml
kind: EncryptionConfig
apiVersion: vl
resources:
- resources:
- secrets
providers:
- aeschbc:
keys:
- name: keyl
secret: c2VjcmVOIGLzIHN1Y3VyZQ==
- name: key2
secret: dGhpcyBpcyBwYXNzd29yZA==
- identity: {}

Activez experimental-encryption-provider-config dans le fichier /etc/kubernetes/manifests/kube-apiserver.yaml :

www.ittraining.team - https://www.ittraining.team/

https://fr.wikipedia.org/wiki/Mode_d%27op%C3%A9ration_(cryptographie)
https://fr.wikipedia.org/wiki/Mode_d%27op%C3%A9ration_(cryptographie)

2026/02/04 08:20 37/40 DOF305 - Sécurisation de Kubernetes

root@kubemaster:~/etcd-v3.3.13-linux-amd64# vi /etc/kubernetes/manifests/kube-apiserver.yaml
root@kubemaster:~/etcd-v3.3.13-linux-amd64# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: vl
kind: Pod
metadata:
creationTimestamp: null
labels:
component: kube-apiserver
tier: control-plane
name: kube-apiserver
namespace: kube-system
spec:
containers:
- command:
- kube-apiserver
- --advertise-address=192.168.56.2
- --allow-privileged=true
- --authorization-mode=Node, RBAC
- --client-ca-file=/etc/kubernetes/pki/ca.crt
- --enable-admission-plugins=NodeRestriction
--enable-bootstrap-token-auth=true
- --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
- --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
- --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
- --etcd-servers=https://127.0.0.1:2379
- --insecure-port=0
- --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-client.crt
- --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key
- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
- --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt
- --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.key
- --requestheader-allowed-names=front-proxy-client
- --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
- --requestheader-extra-headers-prefix=X-Remote-Extra-

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 38/40 DOF305 - Sécurisation de Kubernetes

--requestheader-group-headers=X-Remote-Group

- --requestheader-username-headers=X-Remote-User

- --secure-port=6443

- --service-account-key-file=/etc/kubernetes/pki/sa.pub

- --service-cluster-ip-range=10.96.0.0/12

- --tls-cert-file=/etc/kubernetes/pki/apiserver.crt

- --tls-private-key-file=/etc/kubernetes/pki/apiserver.key

- --experimental-encryption-provider-config=/etc/kubernetes/pki/encryption-config.yaml

Re-démarrez le server k8s_kube-apiserver pour la prise en compte de la modification du fichier /etc/kubernetes/manifests/kube-apiserver.yaml

root@kubemaster:~/etcd-v3.3.13-1linux-amd64# docker stop $(docker ps | grep k8s kube-apiserver | gawk '{print
$1}')
dcec07c13291

Procédez au cryptage de tous les Secrets :

root@kubemaster:~/etcd-v3.3.13-linux-amd64# export KUBECONFIG=/etc/kubernetes/admin.conf
root@kubemaster:~/etcd-v3.3.13-linux-amd64# kubectl get secrets --all-namespaces -o json | kubectl replace -f -
secret/default-token-jcvl7 replaced

secret/default-token-z8n7g replaced

secret/default-token-9rdpr replaced

secret/attachdetach-controller-token-7r6jg replaced

secret/bootstrap-signer-token-rknhr replaced

secret/calico-kube-controllers-token-n8crt replaced

secret/calico-node-token-272kx replaced

secret/certificate-controller-token-x26pf replaced
secret/clusterrole-aggregation-controller-token-gqxvjj replaced
secret/coredns-token-w7415 replaced

secret/cronjob-controller-token-8s7fj replaced

secret/daemon-set-controller-token-2mmmg replaced

secret/default-token-8ctj2 replaced

secret/deployment-controller-token-d4fl4 replaced

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:20 39/40

DOF305 - Sécurisation de Kubernetes

secret/disruption-controller-token-wbpcd replaced
secret/endpoint-controller-token-1ldcpj replaced
secret/expand-controller-token-wprmr replaced
secret/generic-garbage-collector-token-1lssw7 replaced
secret/horizontal-pod-autoscaler-token-nxp94 replaced
secret/job-controller-token-6lnjs replaced
secret/kube-proxy-token-rjg4f replaced
secret/namespace-controller-token-rfd89 replaced
secret/node-controller-token-pb5pq replaced
secret/persistent-volume-binder-token-99sft replaced
secret/pod-garbage-collector-token-cxsjw replaced
secret/pv-protection-controller-token-gkjgf replaced
secret/pvc-protection-controller-token-j6jmqg replaced
secret/replicaset-controller-token-xz7mr replaced
secret/replication-controller-token-vhq7f replaced
secret/resourcequota-controller-token-bvgx5 replaced
secret/service-account-controller-token-lkqwb replaced
secret/service-controller-token-bcxft replaced
secret/statefulset-controller-token-9r4j9 replaced
secret/token-cleaner-token-glqgk replaced
secret/ttl-controller-token-bsrvq replaced

<html> <DIV ALIGN="CENTER"”> Copyright © 2020 Hugh Norris </div> </htm|>

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s12

Last update: 2020/12/31 10:14

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s12

2026/02/04 08:20 40/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

	DOF305 - Sécurisation de Kubernetes
	Contenu du Module
	LAB #1 - Role Based Acces Control et Certificats TLS
	1.1 - Présentation
	1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml
	1.3 - Création d'un serviceAccount
	1.4 - Création d'un Utilisateur
	1.5 - Certificats TLS

	LAB #2 - Implémentation de la Sécurité au niveau des Pods
	2.1 - Présentation
	2.2 - Kubernetes Security Context
	ReadOnlyRootFilesystem
	drop

	2.3 - Kubernetes Pod Security Policy
	2.4 - Kubernetes Network Policies
	2.5 - Kubernetes Resource Allocation Management

	LAB #3 - Sécuriser les Composants de Kubernetes
	3.1 - L'accès à l'API Kubelet
	3.2 - Sécuriser etcd

