
2026/02/04 08:20 1/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

Version - 2020.03

Dernière mise-à-jour : 2020/12/31 10:14

DOF305 - Sécurisation de Kubernetes

Contenu du Module

DOF305 - Sécurisation de Kubernetes
Contenu du Module
LAB #1 - Role Based Acces Control et Certificats TLS

1.1 - Présentation
1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml
1.3 - Création d'un serviceAccount
1.4 - Création d'un Utilisateur
1.5 - Certificats TLS

LAB #2 - Implémentation de la Sécurité au niveau des Pods
2.1 - Présentation
2.2 - Kubernetes Security Context

ReadOnlyRootFilesystem
drop

2.3 - Kubernetes Pod Security Policy
2.4 - Kubernetes Network Policies
2.5 - Kubernetes Resource Allocation Management

LAB #3 - Sécuriser les Composants de Kubernetes
3.1 - L'accès à l'API Kubelet
3.2 - L'accès de Kubelet à l'API Kubernetes
3.3 - Sécuriser etcd

2026/02/04 08:20 2/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

LAB #1 - Role Based Acces Control et Certificats TLS

1.1 - Présentation

Un objet Kubernetes est soit lié à un Namespace soit non-lié à un Namespace.

Kubernetes utilise l'API rbac.authorization.k8s.io pour gérer les autorisations. Les acteurs jouant un rôle dans cette API sont :

Namespaces,
peuvent être considérées comme des clusters virtuels,
permettent l'isolation et la segmentation logique,
permettent le regroupement d'utilisateurs, de rôles et de ressources,
sont utilisés avec des applications, des clients, des projets ou des équipes.

Subjects,
Regular Users - permettent la gestion des accès autorisés depuis l'extérieur du cluster que cela soit par un utilisateur physique ou sous une
autre forme. La gestion des utilisateurs est la responsabilité de l'Administrateur du cluster,
ServiceAccounts - permettent la mise en place de permissions au niveau des entités logiciels. Kubernetes crée un certain nombre de
serviceAccounts automatiquement mais l'Administrateur peut en créer d'autres. Chaque pod a un serviceAccount qui gère les privilèges
accordés au processus et aux conteneurs du pod,
User Groups - Kubernetes regroupe des utilisateurs en utilisant des propriétés communes telles le préfixe d'un serviceAccount ou le champ
de l'organisation dans un certificat. Il est ensuite possible d'accorder des privilèges de type RBAC aux groupes ainsi créés.

Resources,
ce sont des entités auxquelles auront accès les Subjects,
une ressource est une entité telle un pod, un deployment ou des sous-ressources telles les journaux d'un pod,
le Pod Security Policy (PSP) est aussi considéré comme une ressource.

Roles et ClusterRoles,
Roles - permettent de définir des règles représentant un jeu de permissions, telles GET WATCH LIST CREATE UPDATE PATCH et DELETE, qui
peuvent être utilisées avec des ressources dans un Namespace,

On ajoute des permissions, on ne les retire pas. Il n'y a pas donc des règles de type deny.
ClusterRoles - n'est pas lié à un Namespace. Un ClusterRole est utilisé pour :

définir des permissions pour des ressources à être utilisées dans un Namespace

2026/02/04 08:20 3/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

définir des permissions pour des ressources à être utilisées dans tous les Namespaces
définir des permissions pour des ressources du cluster.

Un exemple d'un Role pour accorder les permissions dans le Namespace default est :

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: default
 name: pod-reader
rules:
- apiGroups: [""] # "" indicates the core API group
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Un example d'un ClusterRole pour accorder des permissions de lecture des secrets dans un Namespace spécifique ou dans tous les Namespaces
est :

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: secret-reader
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get", "watch", "list"]

RoleBindings et ClusterRoleBindings,
permettent d'accorder des permissions définies dans des Roles ou ClusterRoles à des Subjects,
RoleBindings sont spécifiques à un NameSpace,
ClusterRoleBindings s'appliquent au niveau du Cluster.

1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml

2026/02/04 08:20 4/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

Connectez-vous au noeud kind-control-plane en utilisant la commande docker :

root@debian10:~# docker exec -it kind-control-plane /bin/bash
root@kind-control-plane:/#

L'utilisation de RBAC est définie par la valeur de la directive –authorization-mode dans le fichier /etc/kubernetes/manifests/kube-apiserver.yaml
:

root@kind-control-plane:/# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 kubeadm.kubernetes.io/kube-apiserver.advertise-address.endpoint: 172.18.0.5:6443
 creationTimestamp: null
 labels:
 component: kube-apiserver
 tier: control-plane
 name: kube-apiserver
 namespace: kube-system
spec:
 containers:
 - command:
 - kube-apiserver
 - --advertise-address=172.18.0.5
 - --allow-privileged=true
 - --authorization-mode=Node,RBAC
 - --client-ca-file=/etc/kubernetes/pki/ca.crt
 - --enable-admission-plugins=NodeRestriction
 - --enable-bootstrap-token-auth=true
 - --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
 - --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
 - --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
 - --etcd-servers=https://127.0.0.1:2379

2026/02/04 08:20 5/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 - --insecure-port=0
 - --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-client.crt
 - --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key
 - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
 - --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt
 - --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.key
 - --requestheader-allowed-names=front-proxy-client
 - --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
 - --requestheader-extra-headers-prefix=X-Remote-Extra-
 - --requestheader-group-headers=X-Remote-Group
 - --requestheader-username-headers=X-Remote-User
 - --runtime-config=
 - --secure-port=6443
 - --service-account-key-file=/etc/kubernetes/pki/sa.pub
 - --service-cluster-ip-range=10.96.0.0/16
 - --tls-cert-file=/etc/kubernetes/pki/apiserver.crt
 - --tls-private-key-file=/etc/kubernetes/pki/apiserver.key
--More--
[q] <--Appuyez sur la touche **q**
root@kind-control-plane:/# exit
exit

1.3 - Création d'un serviceAccount

Il est préférable de créer un serviceAccount par service. Ceci permet une configuration plus fine de la sécurité concernant le service. Si un
serviceAccount n'est pas spécifié lors de la création des pods, ces pods se verront attribués le serviceAccount par défaut du Namespace.

Imaginons que vous souhaitez que votre application interagisse avec l'API de Kubernetes afin d'obtenir des informations sur les pods dans un
Namespace. le serviceAccount par défaut dasn le Namespace default ne peut pas accomplir cette tâche :

root@debian10:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:default:default
no

2026/02/04 08:20 6/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

Important : le format de la valeur de l'option –as est
system:serviceaccount:namespace:Nom_du_serviceac
count.

Créez maintenant le fichier flask.yaml :

root@debian10:~# vi flask.yaml
root@debian10:~# cat flask.yaml
apiVersion: v1
kind: Namespace
metadata:
 name: flask

apiVersion: v1
kind: ServiceAccount
metadata:
 name: flask-backend
 namespace: flask

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: flask-backend-role
 namespace: flask
rules:
 - apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "list", "watch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1

2026/02/04 08:20 7/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

metadata:
 name: flask-backend-role-binding
 namespace: flask
subjects:
 - kind: ServiceAccount
 name: flask-backend
 namespace: flask
roleRef:
 kind: Role
 name: flask-backend-role
 apiGroup: rbac.authorization.k8s.io

Ce fichier crée :

un Namespace appelé flask,
un serviceAccount appelé flask-backend pour le Namespace flask,
un Role appelé flask-backend-role qui accorde les permissions get, watch et list sur les pods dans le Namespace flask,
un RoleBinding appelé flask-backend-role-binding qui accorde les permissions définies dans le Role flask-backend-role au Subject de type
serviceAccount appelé flask-backend.

Important : apiGroups: [“”] - “” indique le groupe api core
ou legacy. Ce groupe se trouve au chemin REST /api/v1. Ce
groupe n'est jamais spécifié dans un champs apiVersion,
d'où la raison pour laquelle on écrit apiVersion: v1 et non
apiVersion api/v1.

Appliquez le fichier :

root@debian10:~# kubectl create -f flask.yaml
namespace/flask created
serviceaccount/flask-backend created
role.rbac.authorization.k8s.io/flask-backend-role created

2026/02/04 08:20 8/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

rolebinding.rbac.authorization.k8s.io/flask-backend-role-binding created

Créez maintenant le fichier deployment_flask.yaml qui crée des pods qui utiliseront le serviceAccount appelé flask-backend :

root@debian10:~# vi deployment_flask.yaml
root@debian10:~# cat deployment_flask.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-deployment
 namespace: flask
 labels:
 app: myapp
 type: front-end
spec:
 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
 spec:
 serviceAccount: flask-backend
 containers:
 - name: nginx-container
 image: nginx

 replicas: 3
 selector:
 matchLabels:
 type: front-end

2026/02/04 08:20 9/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

Exécutez kubectl :

root@debian10:~# kubectl create -f deployment_flask.yaml
deployment.apps/myapp-deployment created

Vérifiez la présence du deployment :

root@debian10:~# kubectl get deployment -n flask
NAME READY UP-TO-DATE AVAILABLE AGE
myapp-deployment 3/3 3 3 25s

Vérifiez qu'un token d'accès à l'API a été créé :

root@debian10:~# kubectl get secrets -n flask
NAME TYPE DATA AGE
default-token-k2s9s kubernetes.io/service-account-token 3 3m8s
flask-backend-token-b2n9r kubernetes.io/service-account-token 3 3m8s

Vérifiez maintenant que le serviceAccount flask-backend peut lister les pods dans le Namespace flask :

root@debian10:~# kubectl auth can-i list pods -n flask --as=system:serviceaccount:flask:flask-backend
yes

Notez cependant que le serviceAccount flask-backend n'a pas la permission create dans le Namespace flask :

root@debian10:~# kubectl auth can-i create pods -n flask --as=system:serviceaccount:flask:flask-backend
no

et que le serviceAccount flask-backend n'a pas la permission list dans le Namespace default :

root@debian10:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:flask:flask-backend
no

2026/02/04 08:20 10/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

1.4 - Création d'un Utilisateur

Connectez-vous au noeud kind-control-plane en utilisant la commande docker :

root@debian10:~# docker exec -it kind-control-plane /bin/bash
root@kind-control-plane:/#

Configurez l'accès au cluster :

root@kind-control-plane:/# mkdir -p $HOME/.kube
root@kind-control-plane:/# cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
root@kind-control-plane:/# chown $(id -u):$(id -g) $HOME/.kube/config

Les utilisateurs font partis du contexte de configuration qui définit le nom du cluster et le nom du Namespace :

root@kind-control-plane:/# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kind kind kubernetes-admin

Important : Un contexte est un élément qui regroupe les
paramètres d'accès sous un nom. Les paramètres d'accès
sont au nombre de trois, à savoir le cluster, le namespace et
l'utilisateur. La commande kubectl utilise les paramètres du
contexte courant pour communiquer avec le cluster.

Consultez le contexte courant :

root@kind-control-plane:/# kubectl config view
apiVersion: v1
clusters:

2026/02/04 08:20 11/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://kind-control-plane:6443
 name: kind
contexts:
- context:
 cluster: kind
 user: kubernetes-admin
 name: kubernetes-admin@kind
current-context: kubernetes-admin@kind
kind: Config
preferences: {}
users:
- name: kubernetes-admin
 user:
 client-certificate-data: REDACTED
 client-key-data: REDACTED

Important : Le mot REDACTED indique que les valeurs
sont cachées pour des raisons de sécurité.

Pour créer un nouveau utilisateur il faut commencer par créer une clef privée pour l'utilisateur :

root@kind-control-plane:/# openssl genrsa -out trainee.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
...+++++
.......+++++
e is 65537 (0x010001)

Créez maintenant un CSR :

2026/02/04 08:20 12/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

root@kind-control-plane:/# openssl req -new -key trainee.key -out trainee.csr -subj "/CN=trainee/O=examplegroup"

Important : Notez que Kubernetes utilisera la valeur de la
clef de l'organisation pour le regroupement des utilisateurs.

Le CSR doit être signé par le CA racine de Kubernetes :

root@kind-control-plane:/# ls -l /etc/kubernetes/pki/ca.*
-rw-r--r-- 1 root root 1066 Dec 13 12:34 /etc/kubernetes/pki/ca.crt
-rw------- 1 root root 1675 Dec 13 12:34 /etc/kubernetes/pki/ca.key

Signez donc le CSR :

root@kind-control-plane:/# openssl x509 -req -in trainee.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out trainee.crt
Signature ok
subject=CN = trainee, O = examplegroup
Getting CA Private Key

Visualisez le certificat de trainee :

root@kind-control-plane:/# openssl x509 -in trainee.crt -text
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 65:7a:9f:e1:5d:bd:48:27:b3:50:c9:9f:60:c8:04:85:4e:85:7b:02
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN = kubernetes
 Validity
 Not Before: Dec 15 13:36:03 2020 GMT

2026/02/04 08:20 13/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 Not After : Jan 14 13:36:03 2021 GMT
 Subject: CN = trainee, O = examplegroup
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public-Key: (2048 bit)
 Modulus:
 00:b1:41:77:ae:dd:43:01:ee:73:57:73:46:f4:64:
 84:52:49:7d:75:0c:26:e1:da:4e:46:e0:ba:af:84:
 7d:05:51:db:da:51:99:26:37:b1:6b:a0:29:c7:fa:
 c8:0a:ca:ab:97:34:7d:79:a8:ea:00:75:9c:22:fd:
 40:1e:dd:85:72:29:dd:18:c1:9e:9c:b6:e7:54:a1:
 65:9a:08:e5:e5:22:1a:cc:71:33:6e:71:d2:2b:1d:
 1b:ed:01:06:5e:42:33:db:97:a0:9b:c7:59:b2:ca:
 0f:37:f2:a7:23:a9:6e:cd:63:fd:62:ac:b9:c6:aa:
 47:e7:4c:7f:8b:b5:03:cd:8d:09:b6:98:c4:79:0e:
 97:b5:7b:8c:69:0b:10:a3:05:1d:8f:a6:dd:42:dc:
 60:76:08:1d:a2:9f:76:42:fe:77:6b:4e:d0:dc:a8:
 54:ab:e2:07:9e:0d:d0:1c:18:f5:c0:ca:3f:d9:32:
 5c:45:fd:e5:b3:94:bc:04:0e:49:fa:e6:2e:c1:e1:
 f2:b4:88:38:9b:d5:b8:27:d3:6f:8b:80:ac:bb:59:
 17:20:9c:6a:71:72:5a:3e:c9:05:07:e2:6d:33:e2:
 2e:78:58:85:46:89:ca:74:3e:d1:3a:a5:6c:1b:cb:
 f0:84:62:8b:44:9c:bb:1b:ab:d8:81:77:37:c0:c9:
 27:15
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha256WithRSAEncryption
 33:14:25:3c:51:ac:63:0b:a6:6f:1e:49:aa:3b:9c:e2:56:47:
 ea:23:d7:2f:e7:b0:4b:c0:6f:a7:51:19:2d:2e:ad:5e:ef:be:
 07:3e:96:f5:db:6c:64:6d:83:0d:81:51:04:43:0c:ce:0b:09:
 de:ed:d3:c9:b5:85:b7:09:b9:20:67:31:4d:e1:09:7c:ec:e3:
 ef:b4:10:ff:7a:fe:8e:20:6c:0f:d5:b5:1f:73:f2:a9:d9:ec:
 84:eb:c2:ab:1d:0e:27:ab:a8:b5:11:a6:d6:55:98:e6:90:2d:
 25:e4:85:f1:70:04:e3:8e:9a:a8:bf:aa:a7:6a:ea:9f:5a:72:
 f1:20:7d:f5:a6:1d:0b:0e:bd:ba:d8:93:a6:a1:62:99:01:5d:

2026/02/04 08:20 14/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 bf:70:60:25:cd:cb:a8:62:39:e7:81:5c:79:da:b4:23:4e:54:
 a5:f4:cd:7a:58:13:a7:de:da:02:80:d9:9f:2b:6c:00:c1:43:
 a8:a9:f8:de:1f:fa:ff:a8:12:a0:ea:e8:1c:aa:2f:99:ee:9c:
 9d:09:63:79:f8:7f:2d:12:67:aa:dd:71:70:c1:b6:19:3e:fe:
 1e:74:4e:71:41:01:49:9e:51:38:d2:00:eb:2e:b8:cf:4f:0d:
 19:9b:2b:0c:57:d7:dc:4d:23:d0:17:27:42:39:bf:ec:7c:e9:
 22:ac:23:2e
-----BEGIN CERTIFICATE-----
MIICxTCCAa0CFGV6n+FdvUgns1DJn2DIBIVOhXsCMA0GCSqGSIb3DQEBCwUAMBUx
EzARBgNVBAMTCmt1YmVybmV0ZXMwHhcNMjAxMjE1MTMzNjAzWhcNMjEwMTE0MTMz
NjAzWjApMRAwDgYDVQQDDAd0cmFpbmVlMRUwEwYDVQQKDAxleGFtcGxlZ3JvdXAw
ggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCxQXeu3UMB7nNXc0b0ZIRS
SX11DCbh2k5G4LqvhH0FUdvaUZkmN7FroCnH+sgKyquXNH15qOoAdZwi/UAe3YVy
Kd0YwZ6ctudUoWWaCOXlIhrMcTNucdIrHRvtAQZeQjPbl6Cbx1myyg838qcjqW7N
Y/1irLnGqkfnTH+LtQPNjQm2mMR5Dpe1e4xpCxCjBR2Ppt1C3GB2CB2in3ZC/ndr
TtDcqFSr4geeDdAcGPXAyj/ZMlxF/eWzlLwEDkn65i7B4fK0iDib1bgn02+LgKy7
WRcgnGpxclo+yQUH4m0z4i54WIVGicp0PtE6pWwby/CEYotEnLsbq9iBdzfAyScV
AgMBAAEwDQYJKoZIhvcNAQELBQADggEBADMUJTxRrGMLpm8eSao7nOJWR+oj1y/n
sEvAb6dRGS0urV7vvgc+lvXbbGRtgw2BUQRDDM4LCd7t08m1hbcJuSBnMU3hCXzs
4++0EP96/o4gbA/VtR9z8qnZ7ITrwqsdDierqLURptZVmOaQLSXkhfFwBOOOmqi/
qqdq6p9acvEgffWmHQsOvbrYk6ahYpkBXb9wYCXNy6hiOeeBXHnatCNOVKX0zXpY
E6fe2gKA2Z8rbADBQ6ip+N4f+v+oEqDq6ByqL5nunJ0JY3n4fy0SZ6rdcXDBthk+
/h50TnFBAUmeUTjSAOsuuM9PDRmbKwxX19xNI9AXJ0I5v+x86SKsIy4=
-----END CERTIFICATE-----

Créez un deuxième utilisateur dans la même Organisation :

root@kind-control-plane:/# openssl genrsa -out stagiaire.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
............+++++
...+++++
e is 65537 (0x010001)

root@kind-control-plane:/# openssl req -new -key stagiaire.key -out stagiaire.csr -subj

2026/02/04 08:20 15/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

"/CN=stagiaire/O=examplegroup"

root@kind-control-plane:/# openssl x509 -req -in stagiaire.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out stagiaire.crt
Signature ok
subject=CN = stagiaire, O = examplegroup
Getting CA Private Key

Créez maintenant le contexte trainee :

root@kind-control-plane:/# kubectl config set-credentials trainee --client-certificate=trainee.crt --client-
key=trainee.key
User "trainee" set.
root@kind-control-plane:/# kubectl config set-context trainee@kubernetes --cluster=kubernetes --user=trainee
Context "trainee@kubernetes" created.

Vérifiez que le contexte soit présent :

root@kind-control-plane:/# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kind kind kubernetes-admin
 trainee@kubernetes kubernetes trainee

Utilisez le contexte de trainee :

root@kind-control-plane:/# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

Vérifiez que vous utilisez le contexte de trainee :

root@kind-control-plane:/# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
 kubernetes-admin@kind kind kubernetes-admin

2026/02/04 08:20 16/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

* trainee@kubernetes kubernetes trainee

Revenez au contexte de kubernetes-admin@kind :

root@kind-control-plane:/# kubectl config use-context kubernetes-admin@kind
Switched to context "kubernetes-admin@kind".
root@kind-control-plane:/# exit
exit
root@debian10:~#

1.5 - Certificats TLS

Par défaut la communication entre kubectl et l'API Kubernetes est cryptée. Les certificats se trouvent dans le répertoire /var/lib/kubelet/pki/ de
chaque noeud :

root@kind-control-plane:/# ls -l /var/lib/kubelet/pki/
total 12
-rw------- 1 root root 2818 Dec 13 12:34 kubelet-client-2020-12-13-12-34-39.pem
lrwxrwxrwx 1 root root 59 Dec 13 12:34 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-
client-2020-12-13-12-34-39.pem
-rw-r--r-- 1 root root 2319 Dec 13 12:34 kubelet.crt
-rw------- 1 root root 1679 Dec 13 12:34 kubelet.key
root@kind-control-plane:/# exit
root@debian10:~# docker exec -it kind-worker2 /bin/bash
root@kind-worker2:/# ls -l /var/lib/kubelet/pki/
total 12
-rw------- 1 root root 1118 Dec 13 12:35 kubelet-client-2020-12-13-12-35-43.pem
lrwxrwxrwx 1 root root 59 Dec 13 12:35 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-
client-2020-12-13-12-35-43.pem
-rw-r--r-- 1 root root 2279 Dec 13 12:35 kubelet.crt
-rw------- 1 root root 1679 Dec 13 12:35 kubelet.key
root@kind-worker2:/# exit
exit

2026/02/04 08:20 17/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

root@debian10:~# docker exec -it kind-worker3 /bin/bash
root@kind-worker3:/# ls -l /var/lib/kubelet/pki/
total 12
-rw------- 1 root root 1118 Dec 13 12:35 kubelet-client-2020-12-13-12-35-45.pem
lrwxrwxrwx 1 root root 59 Dec 13 12:35 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-
client-2020-12-13-12-35-45.pem
-rw-r--r-- 1 root root 2279 Dec 13 12:35 kubelet.crt
-rw------- 1 root root 1675 Dec 13 12:35 kubelet.key
root@kind-worker3:/# exit
exit

Important : Par défaut les certificats de kubelet expirent au bout d'un an.

LAB #2 - Implémentation de la Sécurité au niveau des Pods

2.1 - Présentation

Un Admission Controller est un morceau de code qui intercepte les requêtes à destination de l'API de Kubernetes. L'utilisation des Admission
Controllers est définie part la directive –admission-control du fichier /etc/kubernetes/manifests/kube-apiserver.yaml, par exemple :

--admission-control=Initializers, NamespaceLifecycle, LimitRanger, ServiceAccount, PersistentVolumeLabel,
DefaultStorageClass, DefaultTolerationSeconds, NodeRestriction, ResourceQuota

Les Admission Controllers les plus importants en termes de sécurité sont :

DenyEscalatingExec,
interdit l'exécution des commandes avec un escalated container dans un pod priviligié. Les commandes concernées sont exec et attach.
Un escalated container dans un pod priviligié n'est pas isolé et permet donc l'accès à l'hôte.

NodeRestriction,

2026/02/04 08:20 18/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

limite les objets d'un nœud et d'un pod que kubectl est capable de modifier,
PodSecurityPolicy,

agit lors de la création ou de la modification d'un pod pour décider si celui-ci est admis au cluster en fonction du Contexte de Sécurité et les
policies applicables,

ValidatingAdmissionWebhooks,
permet d'appeler un service externe qui implémente une politique de sécurité, tel que Grafeas.

2.2 - Kubernetes Security Context

La configuration du Contexte de Sécurité se fait du pod ou du conteneur. Voici quelques exemples.

ReadOnlyRootFilesystem

Créez le fichier readonly.yaml :

root@debian10:~# vi readonly.yaml
root@debian10:~# cat readonly.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-ro
 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-ro
 securityContext:
 readOnlyRootFilesystem: true

Exécutez kubectl :

https://grafeas.io/

2026/02/04 08:20 19/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# kubectl create -f readonly.yaml
pod/flask-ro created

Vérifiez que le pod est en état de READY :

root@debian10:~# kubectl create -f readonly.yaml
pod/flask-ro created

root@debian10:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-ro 0/1 ContainerCreating 0 11s
postgres-deployment-746bc85b8-8lw6c 1/1 Running 1 4h23m
redis-deployment-64cff75679-8zqr8 1/1 Running 1 4h23m
result-app-deployment-7cdc94dfcd-nddsh 1/1 Running 1 4h23m
result-app-deployment-7cdc94dfcd-ntbdj 1/1 Running 0 3h15m
result-app-deployment-7cdc94dfcd-wsm2d 1/1 Running 0 3h15m
voting-app-deployment-678c67fc7-59q7z 1/1 Running 0 3h15m
voting-app-deployment-678c67fc7-sgczf 1/1 Running 0 3h15m
voting-app-deployment-678c67fc7-zcs6c 1/1 Running 1 4h23m
worker-app-deployment-767d5b67ff-sgj2x 1/1 Running 2 4h23m

root@debian10:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-ro 1/1 Running 0 29s
postgres-deployment-746bc85b8-8lw6c 1/1 Running 1 4h24m
redis-deployment-64cff75679-8zqr8 1/1 Running 1 4h24m
result-app-deployment-7cdc94dfcd-nddsh 1/1 Running 1 4h24m
result-app-deployment-7cdc94dfcd-ntbdj 1/1 Running 0 3h15m
result-app-deployment-7cdc94dfcd-wsm2d 1/1 Running 0 3h15m
voting-app-deployment-678c67fc7-59q7z 1/1 Running 0 3h15m
voting-app-deployment-678c67fc7-sgczf 1/1 Running 0 3h15m
voting-app-deployment-678c67fc7-zcs6c 1/1 Running 1 4h23m
worker-app-deployment-767d5b67ff-sgj2x 1/1 Running 2 4h23m

2026/02/04 08:20 20/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

Connectez-vous au conteneur :

root@debian10:~# kubectl exec -it flask-ro -- bash
root@flask-ro:/#

Notez que le système est en lecture seule :

root@flask-ro:/# mount | grep "/ "
overlay on / type overlay
(ro,relatime,lowerdir=/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/57/fs:/var/lib/contain
erd/io.containerd.snapshotter.v1.overlayfs/snapshots/56/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overl
ayfs/snapshots/55/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/54/fs,upperdir=/var/lib
/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/58/fs,workdir=/var/lib/containerd/io.containerd.snap
shotter.v1.overlayfs/snapshots/58/work)

root@flask-ro:/# touch test
touch: cannot touch 'test': Read-only file system

root@flask-ro:/# exit
exit
command terminated with exit code 1

drop

Créez le fichier drop.yaml :

root@debian10:~# vi drop.yaml
root@debian10:~# cat drop.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-cap

2026/02/04 08:20 21/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-cap
 securityContext:
 capabilities:
 drop:
 - NET_RAW
 - CHOWN

Exécutez kubectl :

root@debian10:~# kubectl create -f drop.yaml
pod/flask-cap created

Vérifiez que le pod est en état de READY :

root@debian10:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-cap 1/1 Running 0 23s
flask-ro 1/1 Running 0 5m42s
postgres-deployment-746bc85b8-8lw6c 1/1 Running 1 4h29m
redis-deployment-64cff75679-8zqr8 1/1 Running 1 4h29m
result-app-deployment-7cdc94dfcd-nddsh 1/1 Running 1 4h29m
result-app-deployment-7cdc94dfcd-ntbdj 1/1 Running 0 3h20m
result-app-deployment-7cdc94dfcd-wsm2d 1/1 Running 0 3h20m
voting-app-deployment-678c67fc7-59q7z 1/1 Running 0 3h21m
voting-app-deployment-678c67fc7-sgczf 1/1 Running 0 3h21m
voting-app-deployment-678c67fc7-zcs6c 1/1 Running 1 4h29m
worker-app-deployment-767d5b67ff-sgj2x 1/1 Running 2 4h29m

Connectez-vous au conteneur :

2026/02/04 08:20 22/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

root@debian10:~# kubectl exec -it flask-cap -- bash
root@flask-cap:/#

Notez la mise en place des restrictions :

root@flask-cap:/# ping 8.8.8.8
ping: Lacking privilege for raw socket.

root@flask-cap:/# chown daemon /tmp
chown: changing ownership of '/tmp': Operation not permitted

root@flask-cap:/# exit
exit
command terminated with exit code 1

HERE

2.3 - Kubernetes Pod Security Policy

Créez le fichier psp.yaml :

root@kubemaster:~# vi psp.yaml
root@kubemaster:~# cat psp.yaml
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: example
spec:
 privileged: true
 seLinux:
 rule: RunAsAny
 supplementalGroups:

2026/02/04 08:20 23/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 rule: RunAsAny
 runAsUser:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535
 fsGroup:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535
 volumes:
 - '*'

Exécutez kubectl :

root@kubemaster:~# kubectl create -f psp.yaml
podsecuritypolicy.policy/example created

Consultez la présence de la Pod Security Policy :

root@kubemaster:~# kubectl get psp
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP READONLYROOTFS VOLUMES
example true RunAsAny MustRunAs MustRunAs RunAsAny false *

La Pod Security Policy créée empêche l'exécution d'un pod en utilisant l'utilisateur et le groupe root.

2.4 - Kubernetes Network Policies

Installez l'application exemple Guestbook de Kubernetes :

root@kubemaster:~# kubectl create -f

2026/02/04 08:20 24/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

https://raw.githubusercontent.com/fabric8io/kansible/master/vendor/k8s.io/kubernetes/examples/guestbook/all-in-on
e/guestbook-all-in-one.yaml
service/redis-master created
replicationcontroller/redis-master created
service/redis-slave created
replicationcontroller/redis-slave created
service/frontend created
replicationcontroller/frontend created

Cette application crée des pods de type backend et frontend :

root@kubemaster:~# kubectl describe pod redis-master-8rczl | grep tier
 tier=backend
root@kubemaster:~# kubectl describe pod frontend-762mw | grep tier
 tier=frontend

Créez le fichier guestbook-network-policy.yaml qui empêchera la communication d'un pod backend vers un pod frontend :

root@kubemaster:~# vi guestbook-network-policy.yaml
root@kubemaster:~# cat guestbook-network-policy.yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-backend-egress
 namespace: default
spec:
 podSelector:
 matchLabels:
 tier: backend
 policyTypes:
 - Egress
 egress:
 - to:
 - podSelector:

2026/02/04 08:20 25/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 matchLabels:
 tier: backend

Exécutez kubectl :

root@kubemaster:~# kubectl create -f guestbook-network-policy.yaml
networkpolicy.networking.k8s.io/deny-backend-egress created

Attendez que tous les pods soient dans un état de READY :

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
flask-cap 1/1 Running 1 139m 192.168.205.242 kubenode1 <none>
<none>
flask-ro 1/1 Running 0 65m 192.168.35.141 kubenode2 <none>
<none>
frontend-762mw 1/1 Running 0 17m 192.168.205.250 kubenode1 <none>
<none>
frontend-lhw8b 1/1 Running 0 17m 192.168.35.143 kubenode2 <none>
<none>
frontend-n75vs 1/1 Running 0 17m 192.168.205.252 kubenode1 <none>
<none>
postgres-deployment-5b8bd66778-j99zz 1/1 Running 8 4d3h 192.168.35.138 kubenode2 <none>
<none>
redis-deployment-67d4c466c4-9wzfn 1/1 Running 8 4d3h 192.168.205.246 kubenode1 <none>
<none>
redis-master-8rczl 1/1 Running 0 17m 192.168.205.249 kubenode1 <none>
<none>
redis-slave-c8jzv 1/1 Running 0 17m 192.168.35.142 kubenode2 <none>
<none>
redis-slave-fjrjm 1/1 Running 0 17m 192.168.205.251 kubenode1 <none>
<none>
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 8 4d3h 192.168.205.245 kubenode1 <none>

2026/02/04 08:20 26/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

<none>
result-app-deployment-b8f9dc967-r84k6 1/1 Running 8 4d 192.168.35.135 kubenode2 <none>
<none>
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 8 4d 192.168.35.137 kubenode2 <none>
<none>
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 8 4d3h 192.168.35.136 kubenode2 <none>
<none>
voting-app-deployment-669dccccfb-ktd7d 1/1 Running 8 4d 192.168.35.140 kubenode2 <none>
<none>
voting-app-deployment-669dccccfb-x868p 1/1 Running 8 4d 192.168.205.243 kubenode1 <none>
<none>
worker-app-deployment-559f7749b6-jh86r 1/1 Running 21 4d3h 192.168.205.248 kubenode1 <none>
<none>

Connectez-vous au pod redis-master :

root@kubemaster:~# kubectl exec -it redis-master-8rczl bash
[root@redis-master-8rczl:/data]$

Essayez de contacter un pod du même tier :

[root@redis-master-8rczl:/data]$ ping -c 4 192.168.35.142
PING 192.168.35.142 (192.168.35.142) 56(84) bytes of data.
64 bytes from 192.168.35.142: icmp_seq=1 ttl=62 time=0.402 ms
64 bytes from 192.168.35.142: icmp_seq=2 ttl=62 time=0.301 ms
64 bytes from 192.168.35.142: icmp_seq=3 ttl=62 time=0.291 ms
64 bytes from 192.168.35.142: icmp_seq=4 ttl=62 time=0.395 ms

--- 192.168.35.142 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 0.291/0.347/0.402/0.053 ms

Essayez maintenant de contacter un pod d'un tier différent :

2026/02/04 08:20 27/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

[root@redis-master-8rczl:/data]$ ping -c 4 192.168.205.250
PING 192.168.205.250 (192.168.205.250) 56(84) bytes of data.

--- 192.168.205.250 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 3017ms

Déconnectez-vous du pod redis-master et connectez-vous à un pod frontend :

root@kubemaster:~# kubectl exec -it frontend-762mw bash
root@frontend-762mw:/var/www/html#

Essayez de contacter un pod du même tier :

root@frontend-762mw:/var/www/html# ping -c 4 192.168.35.143
PING 192.168.35.143 (192.168.35.143): 56 data bytes
64 bytes from 192.168.35.143: icmp_seq=0 ttl=62 time=0.476 ms
64 bytes from 192.168.35.143: icmp_seq=1 ttl=62 time=0.263 ms
64 bytes from 192.168.35.143: icmp_seq=2 ttl=62 time=0.231 ms
64 bytes from 192.168.35.143: icmp_seq=3 ttl=62 time=0.289 ms
--- 192.168.35.143 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.231/0.315/0.476/0.095 ms

Essayez maintenant de contacter un pod d'un tier différent :

root@frontend-762mw:/var/www/html# ping -c 4 192.168.205.249
PING 192.168.205.249 (192.168.205.249): 56 data bytes
64 bytes from 192.168.205.249: icmp_seq=0 ttl=63 time=0.454 ms
64 bytes from 192.168.205.249: icmp_seq=1 ttl=63 time=0.052 ms
64 bytes from 192.168.205.249: icmp_seq=2 ttl=63 time=0.069 ms
64 bytes from 192.168.205.249: icmp_seq=3 ttl=63 time=0.050 ms
--- 192.168.205.249 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

2026/02/04 08:20 28/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

round-trip min/avg/max/stddev = 0.050/0.156/0.454/0.172 ms

2.5 - Kubernetes Resource Allocation Management

Les ressources qui peuvent être limitées au niveau d'un pod sont :

CPU
Mémoire
Stockage local

Créez le fichier flask-resources.yaml :

root@kubemaster:~# vi flask-resources.yaml
root@kubemaster:~# cat flask-resources.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-resources
 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-resources
 resources:
 requests:
 memory: 512Mi
 limits:
 memory: 700Mi

Dans ce fichier on peut constater deux allocations de ressources :

requests,
la quantité de mémoire qui doit être libre au moment du scheduling du pod,

2026/02/04 08:20 29/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

limits,
la limite de mémoire pour le pod concerné.

Exécutez kubectl :

root@kubemaster:~# kubectl create -f flask-resources.yaml
pod/flask-resources created

Attendez que le statut du pod soit READY :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-cap 1/1 Running 1 161m
flask-resources 1/1 Running 0 4m47s
flask-ro 1/1 Running 0 87m
frontend-762mw 1/1 Running 0 39m
frontend-lhw8b 1/1 Running 0 39m
frontend-n75vs 1/1 Running 0 39m
postgres-deployment-5b8bd66778-j99zz 1/1 Running 8 4d3h
redis-deployment-67d4c466c4-9wzfn 1/1 Running 8 4d3h
redis-master-8rczl 1/1 Running 0 39m
redis-slave-c8jzv 1/1 Running 0 39m
redis-slave-fjrjm 1/1 Running 0 39m
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 8 4d3h
result-app-deployment-b8f9dc967-r84k6 1/1 Running 8 4d
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 8 4d
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 8 4d3h
voting-app-deployment-669dccccfb-ktd7d 1/1 Running 8 4d
voting-app-deployment-669dccccfb-x868p 1/1 Running 8 4d
worker-app-deployment-559f7749b6-jh86r 1/1 Running 21 4d3h

Connectez-vous au pod :

root@kubemaster:~# kubectl exec -it flask-resources bash

2026/02/04 08:20 30/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

root@flask-resources:/#

Installez le paquet stress :

root@flask-resources:~# apt install stress
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 stress
0 upgraded, 1 newly installed, 0 to remove and 3 not upgraded.
Need to get 18.5 kB of archives.
After this operation, 44.0 kB of additional disk space will be used.
Get:1 http://deb.debian.org/debian/ jessie/main stress amd64 1.0.1-1+deb8u1 [18.5 kB]
Fetched 18.5 kB in 5s (3605 B/s)
debconf: delaying package configuration, since apt-utils is not installed
Selecting previously unselected package stress.
(Reading database ... 9595 files and directories currently installed.)
Preparing to unpack .../stress_1.0.1-1+deb8u1_amd64.deb ...
Unpacking stress (1.0.1-1+deb8u1) ...
Setting up stress (1.0.1-1+deb8u1) ...
root@flask-resources:~# which stress
/usr/bin/stress

Testez la limite mise en place :

root@flask-resources:~# stress --cpu 1 --io 1 --vm 2 --vm-bytes 800M
stress: info: [42] dispatching hogs: 1 cpu, 1 io, 2 vm, 0 hdd
stress: FAIL: [42] (416) <-- worker 46 got signal 9
stress: WARN: [42] (418) now reaping child worker processes
stress: FAIL: [42] (452) failed run completed in 1s

2026/02/04 08:20 31/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

LAB #3 - Sécuriser les Composants de Kubernetes

3.1 - L'accès à l'API Kubelet

L'accès à l'API Kubelet est sécurisé par défaut. Par contre il convient de vérifier que la configuration ne comporte pas d'erreurs.

Le fichier /etc/systemd/system/kubelet.service.d/10-kubeadm.conf démontre l'emplacement du fichier de configuration de kubelet :

root@kubemaster:~# cat /etc/systemd/system/kubelet.service.d/10-kubeadm.conf
Note: This dropin only works with kubeadm and kubelet v1.11+
[Service]
Environment="KUBELET_KUBECONFIG_ARGS=--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --
kubeconfig=/etc/kubernetes/kubelet.conf"
Environment="KUBELET_CONFIG_ARGS=--config=/var/lib/kubelet/config.yaml"
This is a file that "kubeadm init" and "kubeadm join" generates at runtime, populating the KUBELET_KUBEADM_ARGS
variable dynamically
EnvironmentFile=-/var/lib/kubelet/kubeadm-flags.env
This is a file that the user can use for overrides of the kubelet args as a last resort. Preferably, the user
should use
the .NodeRegistration.KubeletExtraArgs object in the configuration files instead. KUBELET_EXTRA_ARGS should be
sourced from this file.
EnvironmentFile=-/etc/default/kubelet
ExecStart=
ExecStart=/usr/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS
$KUBELET_EXTRA_ARGS

La configuration par défaut de kubelet se trouve dans le fichier /var/lib/kubelet/config.yaml :

root@kubemaster:~# cat /var/lib/kubelet/config.yaml
address: 0.0.0.0
apiVersion: kubelet.config.k8s.io/v1beta1
authentication:

2026/02/04 08:20 32/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 anonymous:
 enabled: false
 webhook:
 cacheTTL: 2m0s
 enabled: true
 x509:
 clientCAFile: /etc/kubernetes/pki/ca.crt
authorization:
 mode: Webhook
 webhook:
 cacheAuthorizedTTL: 5m0s
 cacheUnauthorizedTTL: 30s
cgroupDriver: cgroupfs
cgroupsPerQOS: true
clusterDNS:
- 10.96.0.10
clusterDomain: cluster.local
configMapAndSecretChangeDetectionStrategy: Watch
containerLogMaxFiles: 5
containerLogMaxSize: 10Mi
contentType: application/vnd.kubernetes.protobuf
cpuCFSQuota: true
cpuCFSQuotaPeriod: 100ms
cpuManagerPolicy: none
cpuManagerReconcilePeriod: 10s
enableControllerAttachDetach: true
enableDebuggingHandlers: true
enforceNodeAllocatable:
- pods
eventBurst: 10
eventRecordQPS: 5
evictionHard:
 imagefs.available: 15%
 memory.available: 100Mi

2026/02/04 08:20 33/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 nodefs.available: 10%
 nodefs.inodesFree: 5%
evictionPressureTransitionPeriod: 5m0s
failSwapOn: true
fileCheckFrequency: 20s
hairpinMode: promiscuous-bridge
healthzBindAddress: 127.0.0.1
healthzPort: 10248
httpCheckFrequency: 20s
imageGCHighThresholdPercent: 85
imageGCLowThresholdPercent: 80
imageMinimumGCAge: 2m0s
iptablesDropBit: 15
iptablesMasqueradeBit: 14
kind: KubeletConfiguration
kubeAPIBurst: 10
kubeAPIQPS: 5
makeIPTablesUtilChains: true
maxOpenFiles: 1000000
maxPods: 110
nodeLeaseDurationSeconds: 40
nodeStatusReportFrequency: 1m0s
nodeStatusUpdateFrequency: 10s
oomScoreAdj: -999
podPidsLimit: -1
port: 10250
registryBurst: 10
registryPullQPS: 5
resolvConf: /etc/resolv.conf
rotateCertificates: true
runtimeRequestTimeout: 2m0s
serializeImagePulls: true
staticPodPath: /etc/kubernetes/manifests
streamingConnectionIdleTimeout: 4h0m0s

2026/02/04 08:20 34/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

syncFrequency: 1m0s
topologyManagerPolicy: none
volumeStatsAggPeriod: 1m0s

En termes de sécurité il est important que la connexion anonyme soit désactivé :

...
authentication:
 anonymous:
 enabled: false
...

que kubelet utilise un certificat :

...
 x509:
 clientCAFile: /etc/kubernetes/pki/ca.crt
...

que le mode d’autorisation soit webhook qui délègue les décisions d’autorisation à l'API Kubernetes

...
authorization:
 mode: Webhook
...

3.2 - Sécuriser etcd

La configuration du cluster y compris la configuration du réseau, du stockage, les mots de passe et des données sensibles sont stockées dans etcd.

Il est possible de crypter les données sensibles, appelées des Secrets, mais cette fonctionnalité n'est pas activée par défaut.

Pour pouvoir procéder au cryptage il faut deux binaires etcd et etcdctl :

2026/02/04 08:20 35/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# which etcd
root@kubemaster:~# which etcdctl

Pour obtenir les deux binaires, téléchargez l'archive etcd :

root@kubemaster:~# export RELEASE="3.3.13"
root@kubemaster:~# wget
https://github.com/etcd-io/etcd/releases/download/v${RELEASE}/etcd-v${RELEASE}-linux-amd64.tar.gz

Désarchivez l'archive et placez-vous dans le répertoire etcd-v3.3.13-linux-amd64 :

root@kubemaster:~# tar xvf etcd-v${RELEASE}-linux-amd64.tar.gz
root@kubemaster:~# cd etcd-v${RELEASE}-linux-amd64

Copiez les binaires etcd et etcdctl vers usr/local/bin :

root@kubemaster:~/etcd-v3.3.13-linux-amd64# cp etcd etcdctl /usr/local/bin
root@kubemaster:~/etcd-v3.3.13-linux-amd64# etcd --version
etcd Version: 3.3.13
Git SHA: 98d3084
Go Version: go1.10.8
Go OS/Arch: linux/amd64

Vérifiez le chemin de l'emplacement des certificats ainsi que le port d’écoute :

root@kubemaster:~# grep -- '--etcd' /etc/kubernetes/manifests/kube-apiserver.yaml
 - --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
 - --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
 - --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
 - --etcd-servers=https://127.0.0.1:2379

Vérifiez que le port 2379 soit à l'écoute :

2026/02/04 08:20 36/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~/etcd-v3.3.13-linux-amd64# ss -tunelp | grep 2379
tcp LISTEN 0 128 192.168.56.2:2379 *:*
users:(("etcd",pid=5449,fd=7)) ino:22971 sk:8 <->
tcp LISTEN 0 128 127.0.0.1:2379 *:*
users:(("etcd",pid=5449,fd=6)) ino:22970 sk:9 <->

Exportez les variables ETCDCTL_CACERT, ETCDCTL_CERT, ETCDCTL_KEY et ETCDCTL_API :

export ETCDCTL_CACERT=/etc/kubernetes/pki/etcd/ca.crt
export ETCDCTL_CERT=/etc/kubernetes/pki/apiserver-etcd-client.crt
export ETCDCTL_KEY=/etc/kubernetes/pki/apiserver-etcd-client.key
export ETCDCTL_API=3

Créez le fichier /etc/kubernetes/pki/encryption-config.yaml afin d'utiliser l'algorithme de cryptage AES avec le mode d'opération Enchaînement
des blocs :

root@kubemaster:~/etcd-v3.3.13-linux-amd64# vi /etc/kubernetes/pki/encryption-config.yaml
root@kubemaster:~/etcd-v3.3.13-linux-amd64# cat /etc/kubernetes/pki/encryption-config.yaml
kind: EncryptionConfig
apiVersion: v1
resources:
 - resources:
 - secrets
 providers:
 - aescbc:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==
 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - identity: {}

Activez experimental-encryption-provider-config dans le fichier /etc/kubernetes/manifests/kube-apiserver.yaml :

https://fr.wikipedia.org/wiki/Mode_d%27op%C3%A9ration_(cryptographie)
https://fr.wikipedia.org/wiki/Mode_d%27op%C3%A9ration_(cryptographie)

2026/02/04 08:20 37/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~/etcd-v3.3.13-linux-amd64# vi /etc/kubernetes/manifests/kube-apiserver.yaml
root@kubemaster:~/etcd-v3.3.13-linux-amd64# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: null
 labels:
 component: kube-apiserver
 tier: control-plane
 name: kube-apiserver
 namespace: kube-system
spec:
 containers:
 - command:
 - kube-apiserver
 - --advertise-address=192.168.56.2
 - --allow-privileged=true
 - --authorization-mode=Node,RBAC
 - --client-ca-file=/etc/kubernetes/pki/ca.crt
 - --enable-admission-plugins=NodeRestriction
 - --enable-bootstrap-token-auth=true
 - --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
 - --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
 - --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
 - --etcd-servers=https://127.0.0.1:2379
 - --insecure-port=0
 - --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-client.crt
 - --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key
 - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
 - --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt
 - --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.key
 - --requestheader-allowed-names=front-proxy-client
 - --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
 - --requestheader-extra-headers-prefix=X-Remote-Extra-

2026/02/04 08:20 38/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

 - --requestheader-group-headers=X-Remote-Group
 - --requestheader-username-headers=X-Remote-User
 - --secure-port=6443
 - --service-account-key-file=/etc/kubernetes/pki/sa.pub
 - --service-cluster-ip-range=10.96.0.0/12
 - --tls-cert-file=/etc/kubernetes/pki/apiserver.crt
 - --tls-private-key-file=/etc/kubernetes/pki/apiserver.key
 - --experimental-encryption-provider-config=/etc/kubernetes/pki/encryption-config.yaml

Re-démarrez le server k8s_kube-apiserver pour la prise en compte de la modification du fichier /etc/kubernetes/manifests/kube-apiserver.yaml
:

root@kubemaster:~/etcd-v3.3.13-linux-amd64# docker stop $(docker ps | grep k8s_kube-apiserver | gawk '{print
$1}')
dcec07c13291

Procédez au cryptage de tous les Secrets :

root@kubemaster:~/etcd-v3.3.13-linux-amd64# export KUBECONFIG=/etc/kubernetes/admin.conf
root@kubemaster:~/etcd-v3.3.13-linux-amd64# kubectl get secrets --all-namespaces -o json | kubectl replace -f -
secret/default-token-jcvl7 replaced
secret/default-token-z8n7g replaced
secret/default-token-9rdpr replaced
secret/attachdetach-controller-token-7r6jg replaced
secret/bootstrap-signer-token-rknhr replaced
secret/calico-kube-controllers-token-n8crt replaced
secret/calico-node-token-272kx replaced
secret/certificate-controller-token-x26pf replaced
secret/clusterrole-aggregation-controller-token-qxvjj replaced
secret/coredns-token-w74l5 replaced
secret/cronjob-controller-token-8s7fj replaced
secret/daemon-set-controller-token-2mmmg replaced
secret/default-token-8ctj2 replaced
secret/deployment-controller-token-d4fl4 replaced

2026/02/04 08:20 39/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

secret/disruption-controller-token-wbpcd replaced
secret/endpoint-controller-token-ldcpj replaced
secret/expand-controller-token-wprmr replaced
secret/generic-garbage-collector-token-lssw7 replaced
secret/horizontal-pod-autoscaler-token-nxp94 replaced
secret/job-controller-token-6lnjs replaced
secret/kube-proxy-token-rjg4f replaced
secret/namespace-controller-token-rfd89 replaced
secret/node-controller-token-pb5pq replaced
secret/persistent-volume-binder-token-99sft replaced
secret/pod-garbage-collector-token-cxsjw replaced
secret/pv-protection-controller-token-gkjgf replaced
secret/pvc-protection-controller-token-j6jmq replaced
secret/replicaset-controller-token-xz7mr replaced
secret/replication-controller-token-vhq7f replaced
secret/resourcequota-controller-token-bvgx5 replaced
secret/service-account-controller-token-lkqwb replaced
secret/service-controller-token-bcxft replaced
secret/statefulset-controller-token-9r4j9 replaced
secret/token-cleaner-token-glqqk replaced
secret/ttl-controller-token-bsrvq replaced

<html> <DIV ALIGN=“CENTER”> Copyright © 2020 Hugh Norris </div> </html>

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s12

Last update: 2020/12/31 10:14

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s12

2026/02/04 08:20 40/40 DOF305 - Sécurisation de Kubernetes

www.ittraining.team - https://www.ittraining.team/

	DOF305 - Sécurisation de Kubernetes
	Contenu du Module
	LAB #1 - Role Based Acces Control et Certificats TLS
	1.1 - Présentation
	1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml
	1.3 - Création d'un serviceAccount
	1.4 - Création d'un Utilisateur
	1.5 - Certificats TLS

	LAB #2 - Implémentation de la Sécurité au niveau des Pods
	2.1 - Présentation
	2.2 - Kubernetes Security Context
	ReadOnlyRootFilesystem
	drop

	2.3 - Kubernetes Pod Security Policy
	2.4 - Kubernetes Network Policies
	2.5 - Kubernetes Resource Allocation Management

	LAB #3 - Sécuriser les Composants de Kubernetes
	3.1 - L'accès à l'API Kubelet
	3.2 - Sécuriser etcd

