2026/02/04 08:27 1/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

Version - 2020.03

Derniere mise-a-jour : 2020/12/31 10:14

DOF304 - Gestion du Réseau, des Services et d'une Architecture de
Microservices

Contenu du Module

* DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices
o Contenu du Module
o LAB #1 - Gestion du Réseau et des Services
= 1.1 - Présentation
= 1.2 - Le Service NodePort
= 1.3 - Le Service ClusterlP
o LAB #2 - Gestion de I'Architecture des Microservices
= 2.1 - Présentation
2.2 - Création des Deployments
2.3 - Création des Services
2.4 - Déployer I'Application
2.5 - Tester I'Application
2.6 - Scaling Up

LAB #1 - Gestion du Réseau et des Services

1.1 - Présentation

Kubernetes impose des conditions pour I'implémentation d'un réseau :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 2/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

e Les PODs sur un nceud peuvent communiquer avec tous les PODs sur tous le nceuds sans utiliser NAT,
e Les agents sur un nceud (par exemple kubelet) peuvent communiquer avec tous les PODs sur le nceud.

Important : La description technique et détaillée de
I'approche réseau de Kubernetes peut étre consultée a
I'adresse :
https://kubernetes.io/docs/concepts/cluster-administr
ation/networking/.

[]
.

Dans le cluster de ce cours, le réseau mis en place entre les noeuds Kubernetes est le 172.18.0.0/16 :

root@debianl0:~# kubectl get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME

kind-control-plane Ready master 26h v1.19.1 172.18.0.5 <none> Ubuntu Groovy Gorilla
(development branch) 4.19.0-6-amd64 containerd://1.4.0

kind-worker2 Ready <none> 26h v1.19.1 172.18.0.4 <none> Ubuntu Groovy Gorilla
(development branch) 4.19.0-6-amd64 containerd://1.4.0

kind-worker3 Ready <none> 26h v1.19.1 172.18.0.3 <none> Ubuntu Groovy Gorilla

(development branch) 4.19.0-6-amd64 containerd://1.4.0
Kind crée les noeuds en tant que conteneurs Docker dans I'h6te Debian_10 :

root@debianlQ:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

2cff99fff93b kindest/node:v1.19.1 “/usr/local/bin/entr.." 27 hours ago Up 27 hours

kind-worker

9b810f08fcca kindest/node:v1.19.1 "/usr/local/bin/entr.." 27 hours ago Up 27 hours

kind-worker?2

23dd96c58ceb kindest/node:v1.19.1 "/usr/local/bin/entr.." 27 hours ago Up 27 hours

www.ittraining.team - https://www.ittraining.team/

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/

2026/02/04 08:27 3/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

127.0.0.1:44833->6443/tcp kind-control-plane
1106161c7cd5 kindest/node:v1.19.1 "/usr/local/bin/entr.." 27 hours ago Up 27 hours
kind-worker3

ainsi que le réseau kind de type bridge pour les relier :

root@debianl0@:~# docker network list

NETWORK ID NAME DRIVER SCOPE
e6d50c85fcc4 bridge bridge local
471d983b1248 host host local
aac5f2655b24 kind bridge local
50b8123f99bf none null local

La commande docker network inspect montre clairement la configuration de chaque conteneur :

root@debianl0:~# docker network inspect kind

[
{

"Name": "kind",
"Id": "aac5f2655b24912d0b7f88c538927edfc8464bd3c7f0Ob3a7fb438069d667eff7",
"Created": "2020-11-30T14:12:57.708788165+01:00",

"Scope": "local",
"Driver": "bridge",
"EnableIPv6": true,
"IPAM": {

"Driver": "default",

"Options": {},

"Config": [

{

“Subnet": "172.18.0.0/16",
“Gateway": "172.18.0.1"
b

{
"Subnet": "fc00:f853:ccd:e793::/64",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 4/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

"Gateway": "fc00:f853:ccd:e793::1"

]
s
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
IE
"ConfigOnly": false,
"Containers": {
"1106161c7cd51db1694b7fe00e97636d5ed20be2cdfa56d32e3¢c335¢c29697539": {
"Name": "kind-worker3",
"EndpointID": "66a2356715009d227026231f0cbe66ccb718939a80e63945501c6d7e0d17b1c9",
"MacAddress": "02:42:ac:12:00:03",
"IPv4Address": "172.18.0.3/16",
"IPvbAddress": "fc00:f853:ccd:e793::3/64"

},
"23dd96c58cebeaf5b5f0fcacl431825444dd91d860c894bece4690ac302b9ab”: {
"Name": "kind-control-plane",
"EndpointID": "147e765d44fca78ee2eaedlea247aefefedfelf97997151240a0f8496b79f095",
"MacAddress": "02:42:ac:12:00:05",
"IPv4Address": "172.18.0.5/16",
"IPvbAddress": "fc00:f853:ccd:e793::5/64"
¥,
"2cff99fff93bf15f2c511dad20cde9fc350823c4224a573a0d8aed5380a28300" : {
"Name": "kind-worker",
"EndpointID": "76e472551da35af4713c3314c1ca93bce09d9d6905fc9ff44db9775¢c65951924",
"MacAddress": "02:42:ac:12:00:02",
"IPv4Address": "172.18.0.2/16",
"IPv6Address": "fc00:f853:ccd:e793::2/64"
}

"9b810f08fccd4a3fcc7755a691af724a3f115dbbcl1f4a8656a6dc9be55f4aclfo": {

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 5/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

"Name": "kind-worker2",
"EndpointID": "b2f3b842915c81211351d181fb13650ea3d4d0e631faf6c50f2a4906d436748e",
"MacAddress": "02:42:ac:12:00:04",
"IPv4Address": "172.18.0.4/16",

"IPv6Address": "fc00:f853:ccd:e793::4/64"

}
}I
“Options": {
“com.docker.network.bridge.enable ip masquerade": "true"
I
"Labels": {}

]

Sous Kubernetes, les adresses IP ne sont pas attachées aux conteneurs dans les PODs de chaque noeud mais aux PODs eux-mémes :

root@debianl0:~# kubectl get pods -o wide

NAME

NODE READINESS GATES
myapp-deployment-6f899c7745-96888
<none>
myapp-deployment-6t899c7745-gdpp8
<none>
myapp-deployment-6f899c7745-rtqghq
<none>

READY

1/1

1/1

1/1

STATUS
Running
Running

Running

RESTARTS

Il est possible d'obtenir les CIDR des PODs en utilisant la commande suivante :

AGE

8h

8h

8h

IP

10.244.1.18

10.244.1.19

10.244.3.15

root@debianl@:~# kubectl get nodes -o jsonpath='{.items[*].spec.podCIDR}"
10.244.0.0/24 10.244.1.0/24 10.244.3.0/24root@debianlQ:~#

NODE

kind-worker?2

kind-worker?2

kind-worker3

NOMINATED

<none>

<none>

<none>

Notez que les adresses 10.244.1.x sont associées aux PODs sur kind-worker2 tandis que les adresses 10.244.3.x sont associées aux PODs sur kind-
worker3. Ces adresses sont issues du réseau 10.244.0.0/16 stipulé par I'option -pod-network-cidr lors de I'initialisation du maitre du cluster :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 6/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

root@debianlQ:~# kubectl cluster-info dump | grep -m 1 cluster-cidr
"--cluster-cidr=10.244.0.0/16",

L'extension réseau utilisée par kind n'est pas une des classiques déja présentées. En fait il s'agit d'une extension propre au projet dénommeée kindnet

root@debianl0:~# kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE
coredns-f9fd979d6-hd5sh 1/1 Running 0 26h
coredns-f9fd979d6-q7tcx 1/1 Running 0 26h
etcd-kind-control-plane 1/1 Running 0 26h
kindnet-2vgnb 1/1 Running 0 26h
kindnet-6x6pk 1/1 Running 0 26h
kindnet-snk42 1/1 Running 0 26h
kube-apiserver-kind-control-plane 1/1 Running 0 26h
kube-controller-manager-kind-control-plane 1/1 Running 0 26h
kube-proxy-1kljb 1/1 Running 0 26h
kube-proxy-mfgcf 1/1 Running 0 26h
kube-proxy-wl4mk 1/1 Running 0 26h
kube-scheduler-kind-control-plane 1/1 Running 0 26h

En sachant que dans chaque POD existe un conteneur Nginx, testez si vous pouvez afficher la page d'accueil de Nginx en vous connectant a kind-
worker2 et kind-worker?2 :

root@debianl@:~# curl 172.18.0.3
curl: (7) Failed to connect to 172.18.0.3 port 80: Connection refused
root@debianl®:~# curl 172.18.0.4
curl: (7) Failed to connect to 172.18.0.4 port 80: Connection refused

Important : Notez |'échec de la connexion.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 7/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

Testez maintenant si vous pouvez afficher la page d'accueil de Nginx en vous connectant a un des PODs :

root@debianl@:~# curl 10.244.1.18
~C

Important : Retenez donc qu'a ce stade il n'est pas
' 1 . possible d'afficher la page d'accueil de Nginx en vous
connectant de I'extérieur du cluster.

Lors de l'installation du cluster contenant kubemaster, kubenodel et kubenode2 nous avons spécifié I'utilisation d'une extension réseau appelée
Calico, issue de la liste suivante :

e Calico,

Cilium,

Flannel,

Kube-router,

Romana,

WeaveNet,

Antrea,

kube-ovn,

e Canal (utilise Flannel pour le réseau et Calico pour le pare-feu).

Important : Une étude comparative des extensions réseau
pour Kubernetes peut étre trouvée a la page :
https://itnext.io/benchmark-results-of-kubernetes-net
work-plugins-cni-over-10gbit-s-network-updated-
august-2020-6elb757b9%e49.

~
Fy

A,

—

Ces extensions permettent la mise en place de Services :

www.ittraining.team - https://www.ittraining.team/

https://www.projectcalico.org/
https://cilium.io/
https://coreos.com/flannel/docs/latest/
https://www.kube-router.io/
https://romana.io/
https://www.weave.works/oss/net/
https://antrea.io/docs/master/getting-started/
https://github.com/alauda/kube-ovn
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49

2026/02/04 08:27 8/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

e NodePort,
o Ce Service rend un POD accessible sur un port du nceud le contenant,
e ClusterlP
o Ce Service crée une adresse IP virtuelle afin de permettre la communication entre de services différents dans le cluster, par exemple des
serveurs front-end avec des serveurs back-end,
e LoadBalancer
o Ce service provisionne un équilibrage de charge pour une application dans certains fournisseurs de Cloud publique tels Amazon Web
Services et Google Cloud Platform.

1.2 - Le Service NodePort

Le Service NodePort définit trois ports :

e TargetPort : e port sur le POD,
e Port : le port sur le Service lié a un IP du Cluster,
e NodePort : |e port sur le Neeud issu de la plage 30000-32767.

MNodePort SERVICE 80 Port
30000-3276T 10.109.119.46 TargetPort
192.168.56.3 B0
POD
192.168.1.30

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 9/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

Si dans le méme nceud, plusieurs PODs ont les étiquettes qui correspondent au selector du Service, le Service identifie les PODs et s'étend
automatiquement pour englober tous les PODs. Les PODs sont appelés des End-Points :

selector ©
app © myapp
SERVICE
POD POD ‘ POD
labels: labels: labels:
app : myapp app : myapp app : myapp

/. Important : Notez que dans ce cas I'équilibrage de charge

- . est automatique est utilise I'algorithme Random avec une
affinité de session..

De méme, quand les PODs sont distribués sur plusieurs nceuds, le Service s'étend pour tout englober :

www.ittraining.team - https://www.ittraining.team/

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

2026/02/04 08:27 10/40
SERVICE |
POD POD POoD POD POD POD
labsis: labeds: labeis: labeis: labeds: labels:
app : myapg Hpp - myapp Bpp - myapp app : myapp Hpp - myapp app : myapp

Créez donc le fichier YAML service-definition.yaml :

root@debianl@:~# vi service-definition.yaml
root@debianl0:~# cat service-definition.yaml
apiVersion: vl
kind: Service
metadata:

name: myapp-service

spec:
type: NodePort
ports:

- targetPort: 80
port: 80
nodePort: 30008

selector:

app: myapp

type: front-end

? Important : Notez que si le champ type: est manquant, sa
/ » . valeur par défaut est ClusterlP. Notez aussi que dans
ports, seul le champ port est obligatoire. Si le champ

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 11/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

targetPort est manquant, sa valeur par défaut est celle du
champ port. Si le champ nodePort est manquant, sa
valeur par défaut est le premier port disponible dans la
plage entre 30 000 et 32 767. Dernierement, il est possible
de spécifier de multiples définitions de ports dans le service.

[]
-

Le champs selector contient les étiquettes des PODs concernés par la mise en place du Service :

root@debianlQ:~# cat pod-definition.yaml
apiVersion: vl
kind: Pod
metadata:
name: myapp-pod
labels:
app: myapp
type: front-end
spec:
containers:
- name: nginx-container
image: nginx

Créez le Service en utilisant le fichier service-definition.yaml :

root@debianl0:~# kubectl create -f service-definition.yaml
service/myapp-service created

Constatez la création du Service :

root@debianl0:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 27h

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 12/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

myapp-service NodePort 10.96.228.251 <none> 80:30008/TCP 25s

| Important : Notez que le Service a une adresse IP du

£.% % cluster et qu'il a exposé le port 30 008.

Testez maintenant si vous pouvez afficher la page d'accueil de Nginx en vous connectant a un des PODs en utilisant le service NodePort :

root@debianl®:~# curl 172.18.0.3:30008
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 13/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

</body>
</html>

1.3 - Le Service ClusterlIP

Le Service ClusterlIP permet de regrouper les PODs offrant le méme service afin de faciliter la communication, par exemple :

e 3 PODs front-end = une adresse ClusterlP,
e 3 PODs back-end = une autre adresse ClusterlP.

Pour créer un Service ClusterlP, créez le fichier clusterip-definition.yaml :

root@debianl@:~# vi clusterip-definition.yaml
root@debianlQ:~# cat clusterip-definition.yaml
apiVersion: vl
kind: Service
metadata:

name: back-end

spec:
type: ClusterIP
ports:
- targetPort: 80
port: 80
selector:
app: myapp
type: front-end

Créez le Service en utilisant le fichier clusterip-definition.yaml :

root@debianl@:~# kubectl create -f clusterip-definition.yaml

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 14/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

service/back-end created
Vérifiez maintenant la présence du Service :

root@debianl0:~# kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
back-end ClusterIP 10.96.188.7 <none> 80/TCP 14s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 45h
myapp-service NodePort 10.96.228.251 <none> 80:30008/TCP 17h

Supprimez maintenant les Services créés :

root@debianl0:~# kubectl delete service myapp-service
service "myapp-service" deleted

root@debianl0@:~# kubectl delete service back-end
service "back-end" deleted

Dernierement supprimez le Deployment myapp-deployment :

root@debianl0:~# kubectl delete deployment myapp-deployment
deployment.apps "myapp-deployment" deleted

Vérifiez qu'il ne reste que le service par défaut kubernetes :
root@debianlQ:~# kubectl get all

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 45h

LAB #2 - Gestion d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 15/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

2.1 - Présentation

Vous allez mettre en place une application simple, appelé demo-voting-app et développé par Docker, sous forme de microservices :

voting-app
Python

n-memory DB
Redis

result-app
NodelS

db
PostgresSQL

]

Worker
NET

Dans cette application le conteneur voting-app permet de voter pour des chats ou des chiens. Cette application tourne sous Python et fournit une

interace HTML :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 16/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

[4 Cats s Dogs! x [4 cCatsvsDogs - Result ® | [4 Catswvs Dogs! ¥ | [CatsvsDogs - Result W + -

“ ['D D Mon sécurisé i & 0 M B M . (/) ﬂ

it applcations [HowtoCreate an & Telafriend W ifach Europe (8L NS Mes ressources EMD 2 Suggested Namir E simple-Help Senw & VirtualEowes - Fre & virtualfoo virtual -

Cats vs Dogs!

Lors de la vote, le résultat de celle-ci est stocké dans Redis dans une base de données en mémoire. Le résultat est ensuite passé au conteneur
Worker qui tourne sous .NET et qui met a jour la base de données persistante dans le conteneur db qui tourne sous PostgreSQL.

L'application result-app qui tourne sous Node)S lit ensuite la table dans la base de données PostgreSQL et affiche le résultat sous forme HTML :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 17/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices
[4 Cats w5 Dogs! X | [} catsvsDogs - Result ® [4 Catswvs Dogs! ¥ | [} CatsvsDogs - Result x® + - ¢ D
€ 2 C ft @ Honsécurisé i &« pEmBEBDO M
it applcations [HowtoCreate an & Tellafriend W iwchEwope (@2 [f§ Mesressources ENI 2 Suggested Naomins § simple-Help Serve 4 WirtuaBowes - Fre: o wirtualfox Virtual =

CATS DOGS

100.0% 0.0%

Cette application peut étre mise en place sous docker avec les commandes suivantes :

docker
docker
docker
docker
docker

run
run
run
run
run

-d --name=redis redis

-d --name=db -e POSTGRES PASSWORD=postgres -e POSTGRES USER=postgres postgres:9.4

-d --name=vote -p 5000:80 --link redis:redis dockersamples/examplevotingapp vote

-d --name=result -p 5001:80 --link db:db dockersamples/examplevotingapp result

-d --name=worker --link db:db ---link redis:redis dockersamples/examplevotingapp worker

Par contre, Docker annonce le retrait éventuel de I'option -lien et indique qu'il vaudrait mieux utiliser des réseaux pour assurer la communication entre
les conteneurs :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 18/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

“Warning: The -link flag is a legacy feature of Docker. It may eventually be removed. Unless you absolutely need to continue using it, we recommend
that you use user-defined networks to facilitate communication between two containers instead of using -link. One feature that user-defined networks
do not support that you can do with -link is sharing environment variables between containers. However, you can use other mechanisms such as

volumes to share environment variables between containers in a more controlled way.”

Cette application peut étre mise en place sous docker swarm avec les commandes suivantes :

docker@managerl:~$ docker node 1s

ID

ENGINE VERSION
vwshwppuaoze785gy12kogh62 *
18.09.3
tOrjtq76j35mbn44o0lpOt3yeq
18.09.3
udv7w988tepuba7pférb5klo3
18.09.3
uz2m26ge®@hdf71plb9a5moOysv
18.09.3
sfig9atrbgzt41lsjxhj95wfgu
18.09.3
56azlcupssfOugx9h0yvbmydw
18.09.3

HOSTNAME
managerl
workerl
worker2
worker3
worker4

worker5

docker@managerl:~$ vi docker-stack.yml

docker@managerl:~$ cat docker-stack.yml

version: "3"
services:

redis:
image: redis:alpine
ports:
"6379"
networks:
- frontend

STATUS
Ready
Ready
Ready
Ready
Ready

Ready

AVAILABILITY MANAGER STATUS

Active Leader

Active

Active

Active

Active

Active

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 19/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

deploy:
replicas: 1
update config:
parallelism: 2
delay: 10s
restart policy:
condition: on-failure
db:
image: postgres:9.4
volumes:
- db-data:/var/lib/postgresql/data
networks:
- backend
deploy:
placement:
constraints: [node.role == manager]
vote:
image: dockersamples/examplevotingapp vote:before
ports:
- 5000:80
networks:
- frontend
depends on:
- redis
deploy:
replicas: 2
update config:
parallelism: 2
restart policy:
condition: on-failure
result:
image: dockersamples/examplevotingapp result:before
ports:
- 5001:80

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 20/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices
networks:

- backend
depends _on:
- db
deploy:
replicas: 1
update config:
parallelism: 2
delay: 10s
restart policy:
condition: on-failure

worker:
image: dockersamples/examplevotingapp worker
networks:
- frontend
- backend
deploy:
mode: replicated
replicas: 1
labels: [APP=VOTING]
restart policy:
condition: on-failure
delay: 10s
max_ attempts: 3
window: 120s
placement:
constraints: [node.role ==

== manager]
visualizer:
image: dockersamples/visualizer:stable
ports:
"8080:8080"

stop grace period: 1m30s

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 21/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

volumes:
- "/var/run/docker.sock:/var/run/docker.sock"
deploy:
placement:
constraints: [node.role == manager]

networks:
frontend:
backend:

volumes:
db-data:

docker@managerl:~$ docker stack deploy -c docker-stack.yml app
Creating network app backend

Creating network app frontend

Creating network app default

Creating service app_worker

Creating service app visualizer

Creating service app_ redis

Creating service app _db

Creating service app vote

Creating service app_result

2.2 - Création des Deployments

Créez le répertoire myapp. Placez-vous dans ce répertoire et créez le fichier voting-app-deployment.yaml :

root@debianl0:~# mkdir myapp

root@debianlQ:~# cd myapp

root@debianl0:~/myapp# vi voting-app-deployment.yaml
root@debianl0:~/myapp# cat voting-app-deployment.yaml

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 22/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

apiVersion: apps/vl
kind: Deployment

metadata:
name: voting-app-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:

name: voting-app-pod
app: demo-voting-app
template:
metadata:
name: voting-app-pod
labels:
name: voting-app-pod
app: demo-voting-app

spec:
containers:
- name: voting-app
image: dockersamples/examplevotingapp vote
ports:
- containerPort: 80

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template
contenant un conteneur dénommé voting-app qui utilise le
port 80 et qui est créé a partir de I'image
dockersamples/examplevotingapp_vote.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 23/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

Créez maintenant le fichier redis-deployment.yaml :

root@debianlQ:~/myapp# vi redis-deployment.yaml
root@debianlQ:~/myapp# cat redis-deployment.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: redis-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:
name: redis-pod
app: demo-voting-app
template:
metadata:
name: redis pod
labels:
name: redis-pod
app: demo-voting-app

spec:
containers:
- name: redis
image: redis
ports:
- containerPort: 6379

{_

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 24/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

contenant un conteneur dénommé redis qui utilise le port
! " 6379 et qui est créé a partir de I'image redis.

Créez le fichier worker-deployment.yaml :

root@debianlQ:~/myapp# vi worker-deployment.yaml
root@debianl0:~/myapp# cat worker-deployment.yaml
apiVersion: apps/vl

kind: Deployment

metadata:
name: worker-app-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:

name: worker-app-pod
app: demo-voting-app
template:
metadata:
name: worker-app-pod
labels:
name: worker-app-pod
app: demo-voting-app

spec:
containers:
- name: worker-app
image: dockersamples/examplevotingapp worker

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 25/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template
contenant un conteneur dénommé worker-app qui est créé
a partir de I'image
dockersamples/examplevotingapp_worker.

Créez ensuite le fichier postgres-deployment.yaml :

root@debianlQ:~/myapp# vi postgres-deployment.yaml
root@debianl@:~/myapp# cat postgres-deployment.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: postgres-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:
name: postgres-pod
app: demo-voting-app
template:
metadata:
name: postgres pod
labels:
name: postgres-pod
app: demo-voting-app

spec:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 26/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

containers:
- name: postgres
image: postgres:9.4
env:
- name: POSTGRES USER
value: postgres
- name: POSTGRES PASSWORD
value: postgres
ports:
- containerPort: 5432

Important : Ce fichier décrit un Deployment. Notez que le
/1 Deployment crée un replica du POD spécifié par template

£.% % contenant un conteneur dénommé postgres qui utilise le
port 5432 et qui est créé a partir de I'image postgres:9.4.

Dernierement, créez le fichier result-app-deployment.yaml :

root@debianl0:~/myapp# vi result-app-deployment.yaml
root@debianl0:~/myapp# cat result-app-deployment.yaml
apiVersion: apps/vl

kind: Deployment

metadata:
name: result-app-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 27/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

name: result-app-pod
app: demo-voting-app
template:
metadata:
name: result-app-pod
labels:
name: result-app-pod
app: demo-voting-app

spec:
containers:
- name: result-app

image: dockersamples/examplevotingapp result

ports:
- containerPort: 80

2.3 - Création des Services

Créez maintenant le fichier redis-service.yaml :

root@debianl0:~/myapp# vi redis-service.yaml
root@debianl0:~/myapp# cat redis-service.yaml

apiVersion: vl

L—fﬁ:ﬁ:-

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template
contenant un conteneur dénommé result-app qui utilise le
port 80 et qui est créé a partir de I'image
dockersamples/examplevotingapp_result.

www.ittraining.team - https://www.ittraining.team/

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

2026/02/04 08:27 28/40

kind: Service
metadata:
name: redis
labels:
name: redis-service
app: demo-voting-app

spec:
ports:
- port: 6379
targetPort: 6379
selector:
name: redis-pod
app: demo-voting-app

Créez ensuite le fichier postgres-service.yaml :

F. []
-

Important : Ce fichier décrit un Service ClusterlIP. Notez
que le Service expose le port 6379 sur tout POD ayant le

nom redis-pod.

root@debianlQ:~/myapp# vi postgres-service.yaml
root@debianl0:~/myapp# cat postgres-service.yaml

apiVersion: vl
kind: Service
metadata:
name: db
labels:
name: db-service
app: demo-voting-app

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 29/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

spec:
ports:
- port: 5432
targetPort: 5432
selector:
name: postgres-pod
app: demo-voting-app

Créez le fichier voting-app-service.yaml :

r. []
.

Important : Ce fichier décrit un Service ClusterlP. Notez
que le Service expose le port 5432 sur tout POD ayant le

nom postgres-pod.

root@debianl@:~/myapp# vi voting-app-service.yaml
root@debianl@:~/myapp# cat voting-app-service.yaml

apiVersion: vl
kind: Service
metadata:
name: voting-service
labels:
name: voting-service
app: demo-voting-app

spec:
type: NodePort
ports:
- port: 80
targetPort: 80
selector:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 30/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

name: voting-app-pod
app: demo-voting-app

Important : Ce fichier décrit un Service NodePort. Notez
que le Service expose le port 80 sur tout POD ayant le nom

voting-app-pod.

Dernierement, créez le fichier result-app-service.yaml :

root@debianl@:~/myapp# vi result-app-service.yaml
root@debianl0:~/myapp# cat result-app-service.yaml
apiVersion: vl
kind: Service
metadata:
name: result-service
labels:
name: result-service
app: demo-voting-app

spec:
type: NodePort
ports:
- port: 80
targetPort: 80
selector:
name: result-app-pod
app: demo-voting-app

& Important : Ce fichier décrit un Service NodePort. Notez

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27

31/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

2.4 - Déployer I'Application

que le Service expose le port 80 sur tout POD ayant le nom
result-app-pod.

Vérifiez que vous avez crée les fichiers *9 YAML necéssaires :

root@debianl@:~/myapp# ls -1

total 36

-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root

590
222
439
225
494
253
492
253
451

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

15
15
15
15
15
15
15
15
15

10:
11:
10:
11:
11:

11

Utilisez ensuite la commande kubectl create :

59
03
57
01
00

:05
10:
11:
10:

56
04
57

postgres-deployment.yaml
postgres-service.yaml
redis-deployment.yaml
redis-service.yaml
result-app-deployment.yaml
result-app-service.yaml
voting-app-deployment.yaml
voting-app-service.yaml
worker-deployment.yaml

root@debianl0:~/myapp# kubectl create -f .
deployment.apps/postgres-deployment created

service/db created
deployment.apps/redis-deployment created

service/redis created
deployment.apps/result-app-deployment created
service/result-service created
deployment.apps/voting-app-deployment created
service/voting-service created
deployment.apps/worker-app-deployment created

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 32/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

| Important : Notez |'utilisation du caractere . qui indique

Attendez que tous les Deployments soient READY (2 a 3 minutes) :

root@debianl0:~/myapp# kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE
postgres-deployment 0/1 1 0
redis-deployment 0/1 1 0
result-app-deployment 0/1 1 0
voting-app-deployment 0/1 1 0
worker-app-deployment 0/1 1 0

root@debianl0:~/myapp# kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE
postgres-deployment 1/1 1 1
redis-deployment 1/1 1 1
result-app-deployment 1/1 1 1
voting-app-deployment 1/1 1 1
worker-app-deployment 1/1 1 1

Controélez ensuite I'état des PODs :

root@debianl0:~/myapp# kubectl get pods

NAME READY
postgres-deployment-746bc85b8-81lwbc 1/1
redis-deployment-64cff75679-8zqr8 1/1

result-app-deployment-7cdc94dfcd-nddsh 1/1
voting-app-deployment-678c67fc7-zcs6c¢ 1/1
worker-app-deployment-767d5b67ff-sgj2x 1/1

STATUS

Running
Running
Running
Running
Running

tout fichier dans le répertoire courant.

AGE
27s
27s
27s
26s
25s

AGE

2m43s
2m43s
2m43s
2md2s
2mdls

RESTARTS

[olocoNoNONO

AGE

3m34s
3m34s
3m34s
3m33s
3m32s

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 33/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

ainsi que la liste des Services :

root@debianl0:~/myapp# kubectl get services

NAME TYPE CLUSTER-IP
db ClusterIP 10.96.30.165
kubernetes ClusterIP 10.96.0.1
redis ClusterIP 10.96.99.190

result-service NodePort 10.96.128.82
voting-service NodePort 10.96.73.238

EXTERNAL-IP PORT (S) AGE
<none> 5432/TCP 4m2s
<none> 443/TCP 46h
<none> 6379/TCP 4m2s
<none> 80:31801/TCP 4mls
<none> 80:30343/TCP 4m

Dans le cas donc de I'exemple dans ce cours, I'application ressemble maintenant au diagramme suivant :

voling-app
on

Port BD:32413

10.96.42 244

Redis

n-memory DB
Port 6379

10.102.154.105 ‘

2.5 - Tester I'Application

result-app

NodelS
Port B0:31526
10.103.192.107

do
PostgresSQL
Port 5432
10.107.90.45

]

Worker
NET

Connectez-vous a votre serveur cloud en utilisant X2Go. Ouvrez Oracle VirtualBox et double-cliquez sur la machine virtuelle Debian_10. Connectez-

vous a la VM en tant que trainee avec le mot de passe tra

inee :

www.ittraining.team - https://www.ittraining.team/

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

2026/02/04 08:27 34/40

Testez ensuite votre application en vous connectant a http://172.18.0.4:30343 a partir du navigateur dans la machine virtuelle Debian_10.
%]

;13 Important : Modifiez les sockets en fonction de votre
£250 installation.

2.6 - Scaling Up
Editez le fichier voting-app-deployment.yaml et modifiez la valeur du champ replicas de 14 3 :

root@debianl@:~/myapp# vi voting-app-deployment.yaml
root@debianl@:~/myapp# cat voting-app-deployment.yaml
apiVersion: apps/vl

kind: Deployment

metadata:
name: voting-app-deployment
labels:
app: demo-voting-app
spec:
replicas: 3
selector:
matchLabels:

name: voting-app-pod
app: demo-voting-app
template:
metadata:

www.ittraining.team - https://www.ittraining.team/

http://172.18.0.4:30343

2026/02/04 08:27 35/40

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

name: voting-app-pod
labels:
name: voting-app-pod
app: demo-voting-app

spec:
containers:
- name: voting-app

image: dockersamples/examplevotingapp vote

ports:
- containerPort: 80

Editez le fichier result-app-deployment.yaml et modifiez la valeur du champ replicas de 1 a 3 :

root@debianlQ:~/myapp# vi result-app-deployment.yaml
root@debianlQ:~/myapp# cat result-app-deployment.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: result-app-deployment
labels:
app: demo-voting-app

spec:
replicas: 3
selector:
matchLabels:
name: result-app-pod
app: demo-voting-app
template:
metadata:
name: result-app-pod
labels:

name: result-app-pod

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 36/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

app: demo-voting-app

spec:
containers:
- name: result-app
image: dockersamples/examplevotingapp result
ports:
- containerPort: 80

Appliquez les modifications a I'aide de la commande kubectl apply :

root@debianl0:~/myapp# kubectl apply -f voting-app-deployment.yaml

Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/voting-app-deployment configured

root@debianl0:~/myapp# kubectl apply -f result-app-deployment.yaml

Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/result-app-deployment configured

Controlez ensuite les Deployments :

root@debianl0:~/myapp# kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
postgres-deployment 1/1 1 1 68m
redis-deployment 1/1 1 1 68m
result-app-deployment 1/3 3 1 68m
voting-app-deployment 3/3 3 3 68m
worker-app-deployment 1/1 1 1 68m

ainsi que les PODs :

root@debianl0:~/myapp# kubectl get pods

NAME READY STATUS RESTARTS AGE
postgres-deployment-746bc85b8-81lwbC 1/1 Running 1 69m
redis-deployment-64cff75679-8zqr8 1/1 Running 1 69m

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 37/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

result-app-deployment-7cdc94dfcd-nddsh 1/1 Running 1 69m
result-app-deployment-7cdc94dfcd-ntbdj 1/1 Running 0 54s
result-app-deployment-7cdc94dfcd-wsm2d 1/1 Running 0 54s
voting-app-deployment-678c67fc7-59q7z 1/1 Running 0 67s
voting-app-deployment-678c67fc7-sgczf 1/1 Running 0 67s
voting-app-deployment-678c67fc7-zcs6¢ 1/1 Running 1 69m
worker-app-deployment-767d5b67ff-sgj2x 1/1 Running 2 69m

Dans le cas de I'exemple dans ce cours, I'application ressemble maintenant au diagramme suivant :

valing-app wioding-app voting-app resull-app result-app result-app

Python Pythan Python Nodels NodelS MNodel5
Port 80:32413 Port 80:32413 Port 80:32413 Port 80:31526 Port 80:31526 Port B0:31526
10.96.42.244 10.96.42.244 10.96.42.244 10.103.192.107 10.103.182.107 10.103.192.107

n-memaory DB db
port 6379 "onsam
ot G3TE o
10.102.154,105 10.107.90.45

I

Worker
MET

Retournez sur le navigateur de votre VM Debian_10 et rafraichissez la page du voting-app :

(]

/¢ . Important : Notez le POD qui a servi la page.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 38/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

Rafraichissez la page de nouveau :
=

Important : Notez que le POD qui a servi la page a changé.

Notez que ce changement de POD n'indique pas un équilibrage de charge. En effet, sous VirtualBox, il faudrait mettre en place une autre machine
virtuelle sous, par exemple, HAProxy pour obtenir I'équilibrage.

Par contre, dans le cas d'une application sur GCP par exemple, il convient de modifier les deux fichiers suivants en changeant la valeur de champ type
de NodePort a LoadBalancer puis de configurer une instance du Load Balancer natif de GCP :

root@debianl0:~/myapp# cat voting-app-service.yaml
apiVersion: vl
kind: Service
metadata:
name: voting-service
labels:
name: voting-service
app: demo-voting-app

spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 80
selector:

name: voting-app-pod
app: demo-voting-app

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 39/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

Important : Ce fichier décrit un Service LoadBalancer.
Notez que le Service expose le port 80 sur tout POD ayant
le nom voting-app-pod.

—

Dernierement, créez le fichier result-app-service.yaml :

root@debianlQ:~/myapp# cat result-app-service.yaml
apiVersion: vl
kind: Service
metadata:
name: result-service
labels:
name: result-service
app: demo-voting-app

spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 80
selector:

name: result-app-pod
app: demo-voting-app

<html> <DIV ALIGN="CENTER"”> Copyright © 2020 Hugh Norris </div> </htm|>

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:27 40/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

From:
https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s11

Last update: 2020/12/31 10:14

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s11

	DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices
	Contenu du Module
	LAB #1 - Gestion du Réseau et des Services
	1.1 - Présentation
	1.2 - Le Service NodePort
	1.3 - Le Service ClusterIP

	LAB #2 - Gestion d'une Architecture de Microservices
	2.1 - Présentation
	2.2 - Création des Deployments
	2.3 - Création des Services
	2.4 - Déployer l'Application
	2.5 - Tester l'Application
	2.6 - Scaling Up

