2026/02/04 08:15 1/36 DOF308 - Introduction a la Sécurisation de K8s

Version - 2024.01

Derniere mise-a-jour : 2024/12/15 06:55

DOF308 - Introduction a la Sécurisation de K8s

Contenu du Module

* DOF308 - Introduction a la Sécurisation de K8s
o Contenu du Module
o LAB #1 - Role Based Acces Control et Certificats TLS
= 1.1 - Présentation
1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yami|
1.3 - Création d'un serviceAccount
1.4 - Création d'un Utilisateur
1.5 - Certificats TLS
o LAB #2 - Implémentation de la Sécurité au niveau des Pods
= 2.1 - Présentation
= 2.2 - Kubernetes Security Context
e ReadOnlyRootFilesystem
e drop
» 2.3 - Kubernetes Network Policies
= 2.4 - Kubernetes Resource Allocation Management

Ressources

Lab #1

e https://www.dropbox.com/scl/fi/ttklc9ejfhpuyg3eh7wbo/flask.yamli?rlkey=gt1fxvfd8alvxh75e8y8bz6yw&dl=0

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/ttklc9ejfhpuyq3eh7wbo/flask.yaml?rlkey=gt1fxvfd8a1vxh75e8y8bz6yw&dl=0

2026/02/04 08:15 2/36 DOF308 - Introduction a la Sécurisation de K8s

e https://www.dropbox.com/scl/fi/ujyzyh5ixqgibqgtychuyzr/deployment.yaml?rlkey=u4tnbrh2f0b6ewk1mt15y6y63&dl=0

Lab #2

https://www.dropbox.com/scl/fi/sbzoft6ioo6gmo5n56035/readonly.yaml?rikey=xsqnve5dvkg313nbuep06j0tj&dI=0
https://www.dropbox.com/scl/fi/enbctxxwp95s10ssw3113/drop.yaml?rlkey=pfo8r09cv9zk2xrxohyies9ki&dl=0
https://www.dropbox.com/scl/fi/qptbh8103gtI8bnii9ler/guestbook-all-in-one.yaml?rlkey=5g3cr8a5llggdrme0le254pip&dl=0
https://www.dropbox.com/scl/fi/6640bj0d9d0y95kj3czsd/guestbook-network-policy.yaml?rlkey=u308yrgpgratq30jgk12rtj90&dI=0
https://www.dropbox.com/scl/fi/ff4f3mb8epcy7xr9cgmjlm/flask-resources.yaml?rlkey=I9gptrnet3mh4x5p2v09xvu06&d|=0

LAB #1 - Role Based Acces Control et Certificats TLS

1.1 - Présentation

Un objet Kubernetes est soit lié a un Namespace soit non-lié a un Namespace.
Kubernetes utilise I'API rbac.authorization.k8s.io pour gérer les autorisations. Les acteurs jouant un role dans cette APl sont :

* Namespaces,
o peuvent étre considérées comme des clusters virtuels,
o permettent I'isolation et la segmentation logique,
o permettent le regroupement d'utilisateurs, de réles et de ressources,
o sont utilisés avec des applications, des clients, des projets ou des équipes.

e Subjects,

o Regular Users - permettent la gestion des acces autorisés depuis I'extérieur du cluster que cela soit par un utilisateur physique ou sous une
autre forme. La gestion des utilisateurs est la responsabilité de I'Administrateur du cluster,

o ServiceAccounts - permettent la mise en place de permissions au niveau des entités logiciels. Kubernetes crée un certain nombre de
serviceAccounts automatiquement mais I'Administrateur peut en créer d'autres. Chague pod a un serviceAccount qui gere les privileges
accordés au processus et aux conteneurs du pod,

o User Groups - Kubernetes regroupe des utilisateurs en utilisant des propriétés communes telles le préfixe d'un serviceAccount ou le champ
de l'organisation dans un certificat. Il est ensuite possible d'accorder des privileges de type RBAC aux groupes ainsi créés.

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/ujyzyh5ixqibqtychuyzr/deployment.yaml?rlkey=u4tnbrh2f0b6ewk1mt15y6y63&dl=0
https://www.dropbox.com/scl/fi/sbzoft6ioo6gmo5n56035/readonly.yaml?rlkey=xsqnve5dvkg3l3nbuep06j0tj&dl=0
https://www.dropbox.com/scl/fi/enbctxxwp95s10ssw3l13/drop.yaml?rlkey=pfo8r09cv9zk2xrxohyies9ki&dl=0
https://www.dropbox.com/scl/fi/qptbh81o3gtl8bnii91er/guestbook-all-in-one.yaml?rlkey=5g3cr8a5llggdrme0le254pip&dl=0
https://www.dropbox.com/scl/fi/664obj0d9d0y95kj3czsd/guestbook-network-policy.yaml?rlkey=u3o8yrgpgratq30jgk12rtj90&dl=0
https://www.dropbox.com/scl/fi/f4f3mb8epcy7xr9cgmj1m/flask-resources.yaml?rlkey=l9gptrnet3mh4x5p2v09xvu06&dl=0

2026/02/04 08:15 3/36 DOF308 - Introduction a la Sécurisation de K8s

¢ Resources,
o ce sont des entités auxquelles auront acces les Subjects,
o une ressource est une entité telle un pod, un deployment ou des sous-ressources telles les journaux d'un pod,
o le Pod Security Policy (PSP) est aussi considéré comme une ressource.

* Roles et ClusterRoles,
o Roles - permettent de définir des regles représentant un jeu de permissions, telles GET WATCH LIST CREATE UPDATE PATCH et DELETE, qui
peuvent étre utilisées avec des ressources dans un Namespace,

= On ajoute des permissions, on ne les retire pas. Il n'y a pas donc des regles de type deny.

o ClusterRoles - n'est pas lié a un Namespace. Un ClusterRole est utilisé pour :
= définir des permissions pour des ressources a étre utilisées dans un Namespace
= définir des permissions pour des ressources a étre utilisées dans tous les Namespaces
= définir des permissions pour des ressources du cluster.

Un exemple d'un Role pour accorder les permissions dans le Namespace default est :

apiVersion: rbac.authorization.k8s.io/v1l
kind: Role
metadata:
namespace: default
name: pod-reader
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list"]

| Important : apiGroups: [“"] - “” indique le groupe api core ou legacy. Ce groupe se trouve au chemin REST /api/v1. Ce groupe n'est jamais

£ spécifié dans un champs apiVersion, d'ou la raison pour laquelle on écrit apiVersion: v1 et non apiVersion api/v1.

Un example d'un ClusterRole pour accorder des permissions de lecture des secrets dans un Namespace spécifique ou dans tous les Namespaces est :

apiVersion: rbac.authorization.k8s.io/v1l

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 4/36 DOF308 - Introduction a la Sécurisation de K8s

kind: ClusterRole
metadata:
name: secret-reader
rules:
- apiGroups: [""]
resources: ["secrets"]
verbs: ["get", "watch", "list"]

* RoleBindings et ClusterRoleBindings,
o permettent d'accorder des permissions définies dans des Roles ou ClusterRoles a des Subjects,
o RoleBindings sont spécifiques a un NameSpace,
o ClusterRoleBindings s'appliquent au niveau du Cluster.

1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yami

L'utilisation de RBAC est définie par la valeur de la directive -authorization-mode dans le fichier /etc/kubernetes/manifests/kube-apiserver.yaml

root@kubemaster:~# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: vl
kind: Pod
metadata:
annotations:
kubeadm. kubernetes.io/kube-apiserver.advertise-address.endpoint: 192.168.56.2:6443
creationTimestamp: null
labels:
component: kube-apiserver
tier: control-plane
name: kube-apiserver
namespace: kube-system
spec:
containers:
- command:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 5/36 DOF308 - Introduction a la Sécurisation de K8s

kube-apiserver
- --advertise-address=192.168.56.2
- --allow-privileged=true
- --authorization-mode=Node, RBAC
- --client-ca-file=/etc/kubernetes/pki/ca.crt
- --enable-admission-plugins=NodeRestriction
- --enable-bootstrap-token-auth=true
- --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
- --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
- --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
- --etcd-servers=https://127.0.0.1:2379
- --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-client.crt
- --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key
- --kubelet-preferred-address-types=InternallIP,ExternalIP,Hostname
- --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt
- --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.key
- --requestheader-allowed-names=front-proxy-client
- --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
- --requestheader-extra-headers-prefix=X-Remote-Extra-
- --requestheader-group-headers=X-Remote-Group
- --requestheader-username-headers=X-Remote-User
- --secure-port=6443
- --service-account-issuer=https://kubernetes.default.svc.cluster.local
- --service-account-key-file=/etc/kubernetes/pki/sa.pub
- --service-account-signing-key-file=/etc/kubernetes/pki/sa.key
- --service-cluster-ip-range=10.96.0.0/12
- --tls-cert-file=/etc/kubernetes/pki/apiserver.crt
- --tls-private-key-file=/etc/kubernetes/pki/apiserver.key
image: k8s.gcr.io/kube-apiserver:vl.24.2
imagePullPolicy: IfNotPresent
livenessProbe:
failureThreshold: 8
httpGet:
host: 192.168.56.2

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 6/36

path: /livez

port: 6443
scheme: HTTPS
initialDelaySeconds: 10
periodSeconds: 10
timeoutSeconds: 15
name: kube-apiserver
readinessProbe:
failureThreshold: 3
httpGet:
host: 192.168.56.2
path: /readyz
port: 6443
scheme: HTTPS
periodSeconds: 1
timeoutSeconds: 15
resources:
requests:
cpu: 250m
startupProbe:
failureThreshold: 24
httpGet:
host: 192.168.56.2
path: /livez
port: 6443
scheme: HTTPS
initialDelaySeconds: 10
periodSeconds: 10
timeoutSeconds: 15
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certs
readOnly: true

- mountPath: /etc/ca-certificates

www.ittraining.team - https://www.ittraining.team/

DOF308 - Introduction a la Sécurisation de K8s

2026/02/04 08:15 7/36

DOF308 - Introduction a la Sécurisation de K8s

name: etc-ca-certificates
readOnly: true
- mountPath: /etc/kubernetes/pki
name: k8s-certs
readOnly: true
- mountPath: /usr/local/share/ca-certificates
name: usr-local-share-ca-certificates
readOnly: true
- mountPath: /usr/share/ca-certificates
name: usr-share-ca-certificates
readOnly: true
hostNetwork: true
priorityClassName: system-node-critical
securityContext:
seccompProfile:
type: RuntimeDefault
volumes:
- hostPath:
path: /etc/ssl/certs
type: DirectoryOrCreate
name: ca-certs
- hostPath:
path: /etc/ca-certificates
type: DirectoryOrCreate
name: etc-ca-certificates
- hostPath:
path: /etc/kubernetes/pki
type: DirectoryOrCreate
name: k8s-certs
- hostPath:
path: /usr/local/share/ca-certificates
type: DirectoryOrCreate
name: usr-local-share-ca-certificates
- hostPath:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 8/36 DOF308 - Introduction a la Sécurisation de K8s

path: /usr/share/ca-certificates
type: DirectoryOrCreate
name: usr-share-ca-certificates
status: {}

1.3 - Création d'un serviceAccount

Il est préférable de créer un serviceAccount par service. Ceci permet une configuration plus fine de la sécurité concernant le service. Si un
serviceAccount n'est pas spécifié lors de la création des pods, ces pods se verront attribués le serviceAccount par défaut du Namespace.

Imaginons que vous souhaitez que votre application interagisse avec I'API de Kubernetes afin d'obtenir des informations sur les pods dans un
Namespace. le serviceAccount par défaut dasn le Namespace default ne peut pas accomplir cette tache :

root@kubemaster:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:default:default
no

! Important : le format de la valeur de I'option -as est system:serviceaccount:namespace:Nom_du_serviceaccount.

Créez maintenant le fichier flask.yaml :

root@kubemaster:~# vi flask.yaml
root@kubemaster:~# cat flask.yaml
apiVersion: vl
kind: Namespace
metadata:
name: flask
apiVersion: vl
kind: ServiceAccount
metadata:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 9/36

DOF308 - Introduction a la Sécurisation de K8s

name: flask-backend
namespace: flask
kind: Role
apiVersion: rbac.authorization.k8s.io/vl
metadata:
name: flask-backend-role
namespace: flask
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "list", "watch"]
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:
name: flask-backend-role-binding
namespace: flask
subjects:
- kind: ServiceAccount
name: flask-backend
namespace: flask
roleRef:
kind: Role
name: flask-backend-role
apiGroup: rbac.authorization.k8s.io

Ce fichier crée :

un Namespace appelé flask,

serviceAccount appelé flask-backend.

un serviceAccount appelé flask-backend pour le Namespace flask,
un Role appelé flask-backend-role qui accorde les permissions get, watch et list sur les pods dans le Namespace flask,
un RoleBinding appelé flask-backend-role-binding qui accorde les permissions définies dans le Role flask-backend-role au Subject de type

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 10/36 DOF308 - Introduction a la Sécurisation de K8s

Appliquez le fichier :

root@kubemaster:~# kubectl create -f flask.yaml

namespace/flask created
serviceaccount/flask-backend created
role.rbac.authorization.k8s.io/flask-backend-role created
rolebinding.rbac.authorization.k8s.io/flask-backend-role-binding created

Créez maintenant le fichier deployment.yaml qui crée des pods qui utiliseront le serviceAccount appelé flask-backend :

root@kubemaster:~# vi deployment.yaml
root@kubemaster:~# cat deployment.yaml
apiVersion: apps/vl
kind: Deployment
metadata:
name: myapp-deployment
namespace: flask
labels:
app: myapp
type: front-end
spec:
template:

metadata:
name: myapp-pod
labels:
app: myapp
type: front-end
spec:
serviceAccount: flask-backend
containers:
- name: nginx-container
image: nginx

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 11/36 DOF308 - Introduction a la Sécurisation de K8s

replicas: 3
selector:
matchLabels:
type: front-end
Exécutez kubectl :

root@kubemaster:~# kubectl create -f deployment.yaml
deployment.apps/myapp-deployment created

Vérifiez la présence du deployment :

root@kubemaster:~# kubectl get deployment -n flask

NAME READY UP-TO-DATE AVAILABLE AGE
myapp-deployment 3/3 3 3 32s

Vérifiez maintenant que le serviceAccount flask-backend peut lister les pods dans le Namespace flask :

root@kubemaster:~# kubectl auth can-i list pods -n flask --as=system:serviceaccount:flask:flask-backend
yes

Notez cependant que le serviceAccount flask-backend n'a pas la permission create dans le Namespace flask :

root@kubemaster:~# kubectl auth can-i create pods -n flask --as=system:serviceaccount:flask:flask-backend
no

et que le serviceAccount flask-backend n'a pas la permission list dans le Namespace default :

root@kubemaster:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:flask:flask-backend
no

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 12/36 DOF308 - Introduction a la Sécurisation de K8s

1.4 - Création d'un Utilisateur

Les utilisateurs font partis du contexte de configuration qui définit le nom du cluster et le nom du Namespace :

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE

* kubernetes-admin@kubernetes kubernetes kubernetes-admin

Important : Un contexte est un élément qui regroupe les parametres d'acces sous un nom. Les parametres d'acces sont au nombre de
trois, a savoir le cluster, le namespace et I'utilisateur. La commande kubectl utilise les parametres du contexte courant pour communiquer

avec le cluster.

En regardant le contexte courant, on voit que l'utilisateur kubernetes-admin@kubernetes a deux attributs dénommés :

¢ client-certificate-data: REDACTED
e client-key-data: REDACTED

root@kubemaster:~# kubectl config view
apiVersion: vl
clusters:
- cluster:
certificate-authority-data: DATA+OMITTED
server: https://192.168.56.2:6443
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: kubernetes-admin
name: kubernetes-admin@kubernetes
current-context: kubernetes-admin@kubernetes
kind: Config

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 13/36 DOF308 - Introduction a la Sécurisation de K8s

preferences: {}
users:
- name: kubernetes-admin
user:
client-certificate-data: REDACTED
client-key-data: REDACTED

! | Important : Le mot REDACTED indique que les valeurs sont cachées pour des raisons de sécurité.

Pour créer un nouveau utilisateur il faut commencer par créer une clef privée pour I'utilisateur :

root@kubemaster:~# openssl genrsa -out trainee.key 2048
Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)
Créez maintenant un CSR :

root@kubemaster:~# openssl req -new -key trainee.key -out trainee.csr -subj "/CN=trainee/O=examplegroup"

Important : Notez que Kubernetes utilisera la valeur de la clef de I'organisation pour le regroupement des utilisateurs.

F []
_)

Le CSR doit étre signé par le CA racine de Kubernetes :

root@kubemaster:~# 1ls -1 /etc/kubernetes/pki/ca.*
-rw-r--r-- 1 root root 1099 juil. 12 13:23 /etc/kubernetes/pki/ca.crt
“rW------- 1 root root 1679 juil. 12 13:23 /etc/kubernetes/pki/ca.key

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 14/36 DOF308 - Introduction a la Sécurisation de K8s

Signez donc le CSR :

root@kubemaster:~# openssl x509 -req -in trainee.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out trainee.crt

Signature ok

subject=/CN=trainee/0O=examplegroup

Getting CA Private Key

Visualisez le certificat de trainee :

root@kubemaster:~# openssl x509 -in trainee.crt -text
Certificate:
Data:
Version: 1 (0x0)
Serial Number:
b6:f7:59:8f:75:19:bc:10
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN = kubernetes
Validity
Not Before: Jul 14 07:49:14 2022 GMT
Not After : Aug 13 07:49:14 2022 GMT
Subject: CN = trainee, 0 = examplegroup
Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)

Modulus:
00:9b:2d:e8:7d:ba:e9:9f:b3:da:8f:14:13:21:83:
64:c6:6e:7b:2c:ee:4f:e6:71:65:a7:e4:ca:6a:23:
ee:cf:e1:43:18:e0:b0:1f:ef:ff:53:21:de:d2:e8:
38:d1:39:ab:b0:8d:78:f4:af:7c:80:b0:1a:c3:a2:
cb:64:b4:73:6:a5:30:33:69:f1:6d:9a:5b:66:2e:
58:f6:c2:51:7c:42:95:16:ac:60:0e:1d:4d:09:aa:
06:29:51:79:f1:45:70:48:b9:1c:e2:05:fc:5c:33:
82:d7:82:5f:a2:31:13:b5:23:4c:10:bf:a5:8a:4f:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15

15/36

DOF308 - Introduction a la Sécurisation de K8s

Signature Algorithm:
:7/cC:
b4 :
d7:
43:
78:
:78:
:e0:
:0c:
9a:
€b6:
50:
15:
:48:
Te:

6d:
3b:
99:
71:
ab:
ce:
09:
92:
48:
8a:
1b:
ce:
ae.
6b:
c9:

c8:
02:
a8:
8c:
ba:
fe:
1b:
64:
61:
Oa:
f3:
99:
ab:
bl:

2d

37:
b5
d2:
29
c2:
11
19:
06:
48
69

2a

c2:

:08:

3c:

:9a:
:0d:

b7
c8:

:d4:
169

Exponent:

0d:
:dd:
al:
6e:
5b:

09

23:
fO:
dd:
:abd
73:
:d3
31:
:80:
3e:
c3:

fl

47

71:

71

37:
fb:
0d:
24:
147

cd

1d

02

80:

2C

34:
6d:
de:
ad:
6a:
64:
96:
ce:
24:
70:
d5:
cl:
8d:
do6:

:d6:
141

8a:
f9:
86:
1d:
ff:

28:
ae:

655

87
ae

51
42

5c:
fl:
da:
ds8:
57:
ab:
ad:

cc:
7b:
of:
le:
38:
5d:
ad:
c/:
fd:

37

7f

82

af

7

08:
:bb:
e9:
10:

6b:
:3b:
:1a:
0d:

ac:
c5:
ff
e’:
ccC:
32
68
ad:
65

. ecC

c7:
79:

cb:
fa:

1e4:
:45

78:

:e9:

. ecC

cO:
38:

ab:
fd:
68:

:d9:

f2:
38:

(0x10001)

67

03

41

4f

rel:
dl:

ed

:92

46:
:d3:
03:
1b:
:91:
:36:
do:
al:

c4:
Oc:

70:
:0c:

12

rec:
15:
la:
rad:
09:
25:
:40:
96:
4b:
:d9:

22

b6:
:8a:
6f:
ab:
d7:
c5:
18:
f7:
c8:
55:
dl:
c8:
:13:
bb:

ad:
02:

:fb:

cf:
69:
a8:
87:
31:
fd:

ae
16

of

72
f3
81
68

28

b9:
la:

b7:
a6:

c6:

75:
:91:

97:
28:
Oa:
56:
17
of:
06:
b2:
8f:

:80:
:86:
19:
146:

5f

:a’

:08:

:0f

143
47

28:
bl:

75:

71
b0O
41
5e

1de:
14c:
:0f

cc
74
6C:
30

sha256WithRSAEncryption
:98:

:95
:88:
:d7
:a9:
:7e:

26:
d6:
46:
cl:
163:
45:
5e:
144
32:
:al:
fb:
166:
rad:
6e:

c3

c/

56
ca

e8:
d6:
2d:

62:
8c:
9d:
f5:
95:
63:
3cC:
69:
da:

:9e:

84:

:7d:

ba:

bf:

1e4:
:9e:
141

e9:

36
bl

ef
d5

73:
be:
ds:
14c:
(de:
31:
88:
141:
:9d:
39:53:
fO:
:92:
:48:

4c:al:

26
23:
f3:
06:
79:
27:
ad:
90:
32:

ad

6C

03

63

fl:

f4:

of:
ce:

14f:

0b:
90:
ds8:
dd:
bc:
bf
b8:
f5

60:
18:
2T:
83:
34:
2e:
(df:
bf:
:de:

14:

:92:

30:

:81:

fb:
02:

:75:

87:
f5:
b5:

:06:

ba:
11:
14:

MIICujCCAaICCQC291mPdRm8EDANBgkghkiG9wOBAQsFADAVMRMWEQYDVQQDEwWpr
dwWJ1cm51dGVzMB4XDTIyMDcXNDA3NDkXNFoXDTIyMDgxMzA3NDkxNFowKTEQMA4G
A1UEAwwHdHIhaW51ZTEVMBMGA1UECgwMZXhhbXBsZWdyb3VwMIIBI jANBgkghkiG
9wOBAQEFAAOCAQBAMIIBCgKCAQEAmy3ofbrpn7PajxQTIYNkxm57LO5P5nF1p+TK
aiPuz+FDGOCwH+//UyHeOQug40TmrsI149K98gLAawbLLZLRz5qUwM2nxbZpbZi5Y
9sJRFEKVFgxgDh1NCaoGKVF58UVwSLkc4gX8XD0C14JfojETtSNMEL+11ik83KtbM

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 16/36 DOF308 - Introduction a la Sécurisation de K8s

rMfArZdx1Z4mT2C1QYp7xXk4AiiwiIQjCxjSwvmf/+zs+wpB133zkC8pCIYe58ur
z1ZeqboG2IPCPBO4zPr9aRd0w3553TQRmv9dMuRoqA/MTL8NvC4Zt52taEXZhwZ0
n+Stv98GyCjHpH]jyMbJsx56QuL9I1K79Zek4/Y8wQeky9d5paQIDAQABMAOGCSQG
SIb3DQEBCWUAA4IBAQBtyA3NfDRcCGeYtq6AJuhz8RQ7AgndtG3xf7sSihaGlta+
rZKZqC0h197U6QPsb7kZRi3Y9DBxjPBuUQ63YEEYVQ59GwVZMbIGrutlbeGpXgtMa
1xpfY8pOD/v0/vGleGS1AOGtXxbcoRWIXxzgIJG3Md4]akG8QIGKaxXoyIA3WSZETT
DM6HkZw193KnRJ02QYdIYXExmiSuNk9AYyPMIMvWXxnfWKCNGASNDZr+GWVYGToZU5
U7Ub8zc+UNWha9FLOcZ1+2PwYwbOmfvDFcFRO+3ZyGhDZjzvkrqupQOCSI1CGnAi
E3VHrWnVSBFrsSSAftYN95IMuyiRbtRMoRTJLUCS

----- END CERTIFICATE-----

Créez un deuxieme utilisateur dans la méme Organisation :

root@kubemaster:~# openssl genrsa -out stagiaire.key 2048
Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)
root@kubemaster:~# openssl req -new -key stagiaire.key -out stagiaire.csr -subj "/CN=stagiaire/O=examplegroup"

root@kubemaster:~# openssl x509 -req -in stagiaire.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out stagiaire.crt

Signature ok

subject=/CN=stagiaire/0=examplegroup

Getting CA Private Key

Créez maintenant le contexte trainee :
root@kubemaster:~# kubectl config set-credentials trainee --client-certificate=trainee.crt --client-

key=trainee.key
User "trainee" set.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 17/36

DOF308 - Introduction a la Sécurisation de K8s

root@kubemaster:~# kubectl config set-context trainee@kubernetes --cluster=kubernetes --user=trainee

Context "trainee@kubernetes" created.
Vérifiez que le contexte soit présent :

root@kubemaster:~# kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin
trainee@kubernetes kubernetes trainee

Utilisez le contexte de trainee :

root@kubemaster:~# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

root@kubemaster:~# kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE
kubernetes-admin@kubernetes kubernetes kubernetes-admin
& trainee@kubernetes kubernetes trainee

root@kubemaster:~# kubectl get pods

Error from server (Forbidden): pods is forbidden: User "trainee" cannot list resource "pods" in API group "" in

the namespace "default"

Retournez au contexte de I'administrateur :

root@kubemaster:~# kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".

root@kubemaster:~# kubectl config get-contexts

Important : Notez que trainee ne peut pas lister les pods parce que les permissions RBAC n'ont pas été définies.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 18/36

DOF308 - Introduction a la Sécurisation de K8s

CURRENT NAME CLUSTER
& kubernetes-admin@kubernetes kubernetes
trainee@kubernetes kubernetes

AUTHINF

kubernetes-admin

trainee

Créez maintenant un clusterrolebinding au groupe examplegroup :

0

NAMESPACE

root@kubemaster:~# kubectl create clusterrolebinding examplegroup-admin-binding --clusterrole=cluster-admin --

group=examplegroup

clusterrolebinding.rbac.authorization.k8s.1io0/examplegroup-admin-binding created

Utilisez de nouveau le contexte de trainee :

root@kubemaster:~# kubectl config use-context trainee@kubernetes

Switched to context "trainee@kubernetes".

root@kubemaster:~# kubectl config get-contexts

CURRENT NAME CLUSTER
kubernetes-admin@kubernetes kubernetes
& trainee@kubernetes kubernetes

root@kubemaster:~# kubectl get pods -n kube-system
NAME

calico-kube-controllers-6766647d54-v4hrm
calico-node-5mrjl

calico-node-6881lw

calico-node-j25xd

coredns-6d4b75chb6d-dw4ph

coredns-6d4b75cb6d-ms2jm
etcd-kubemaster.ittraining.loc
kube-apiserver-kubemaster.ittraining.loc
kube-controller-manager-kubemaster.ittraining. loc
kube-proxy-bwctz

kube-proxy-j89vg

kube-proxy-jx76x
kube-scheduler-kubemaster.ittraining.loc

AUTHINFO

kubernetes-admin
trainee

READY STATUS
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running
1/1 Running

NAMESPACE

RESTARTS

(44h ago)

0
0
0
0
0
0
1 (44h ago)
1
10 (75m ago)
0
0
0
1

1 (75m ago)

AGE
44h
41h
44h
41h
44h
44h
44h
44h
44h
41h
41h
44h
44h

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 19/36 DOF308 - Introduction a la Sécurisation de K8s

metrics-server-7cb867d5dc-g55k5 1/1 Running 0 28h

1.5 - Certificats TLS

Par défaut la communication entre kubectl et I'API Kubernetes est cryptée. Les certificats se trouvent dans le répertoire /var/lib/kubelet/pki/ de
chaque noeud :

root@kubemaster:~# 1ls -1 /var/lib/kubelet/pki/

total 12

-rW------- 1 root root 2851 juil. 12 13:23 kubelet-client-2022-07-12-13-23-12.pem

lrwxrwxrwx 1 root root 59 juil. 12 13:23 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-
client-2022-07-12-13-23-12.pem

-rw-r--r-- 1 root root 2367 juil. 12 13:23 kubelet.crt

-rw------- 1 root root 1675 juil. 12 13:23 kubelet.key

Important : Par défaut les certificats de kubelet expirent au bout d'un an.

LAB #2 - Implémentation de la Sécurité au niveau des Pods

2.1 - Présentation

Un Admission Controller est un morceau de code qui intercepte les requétes a destination de I'API de Kubernetes. L'utilisation des Admission
Controllers est définie part la directive -admission-control du fichier /etc/kubernetes/manifests/kube-apiserver.yaml, par exemple :

--admission-control=Initializers, NamespacelLifecycle, LimitRanger, ServiceAccount, PersistentVolumelLabel,
DefaultStorageClass, DefaultTolerationSeconds, NodeRestriction, ResourceQuota

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 20/36 DOF308 - Introduction a la Sécurisation de K8s

Les Admission Controllers les plus importants en termes de sécurité sont :

DenyEscalatingExec,
o interdit I'exécution des commandes avec un escalated container dans un pod priviligié. Les commandes concernées sont exec et attach.

Un escalated container dans un pod priviligié n'est pas isolé et permet donc I'acces a I'hote.

NodeRestriction,
o limite les objets d'un nceud et d'un pod que kubectl est capable de modifier,

PodSecurityPolicy,
o agit lors de la création ou de la modification d'un pod pour décider si celui-ci est admis au cluster en fonction du Contexte de Sécurité et les
policies applicables,

ValidatingAdmissionWebhooks,
o permet d'appeler un service externe qui implémente une politique de sécurité, tel que Grafeas.

2.2 - Kubernetes Security Context

La configuration du Contexte de Sécurité se fait du pod ou du conteneur. Voici quelques exemples.

ReadOnlyRootFilesystem

Créez le fichier readonly.yaml :

root@kubemaster:~# vi readonly.yaml
root@kubemaster:~# cat readonly.yaml
apiVersion: vl
kind: Pod
metadata:

name: flask-ro

namespace: default
spec:

containers:

- image: mateobur/flask

name: flask-ro

www.ittraining.team - https://www.ittraining.team/

https://grafeas.io/

2026/02/04 08:15 21/36

DOF308 - Introduction a la Sécurisation de K8s

securityContext:
readOnlyRootFilesystem: true

Exécutez kubect! :

root@kubemaster:~# kubectl create -f readonly.yaml

pod/flask-ro created
Vérifiez que le pod est en état de READY :

root@kubemaster:~# kubectl get pods
NAME

flask-ro
postgres-deployment-5b8bd66778-j99zz
redis-deployment-67d4c466c4-9wzfn
result-app-deployment-b8f9dc967-nzbgd
result-app-deployment-b8f9dc967-r84k6
result-app-deployment-b8f9dc967-zbsk2
voting-app-deployment-669dccccfb-jpn6h
voting-app-deployment-669dccccfb-ktd7d
voting-app-deployment-669dccccfb-x868p
worker-app-deployment-559f7749b6-jh86r

Connectez-vous au conteneur :

root@kubemaster:~# kubectl exec -it flask-ro bash

root@flask-ro:/#
Notez que le systeme est en lecture seule :

root@flask-ro:/# mount | grep "/ "
overlay on / type overlay

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

P NNNNNNNNO

AGE
13m
4d1h
4d1h
4d1h
3d22h
3d22h
4d1h
3d22h
3d22h
4d1h

(ro,relatime, lowerdir=/var/lib/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/72/fs:/var/lib/contain
erd/io.containerd.snapshotter.vl.overlayfs/snapshots/71/fs:/var/lib/containerd/io.containerd.snapshotter.vl.overl

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 22/36 DOF308 - Introduction a la Sécurisation de K8s

ayfs/snapshots/70/fs:/var/lib/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/69/fs,upperdir=/var/lib
/containerd/io.containerd.snapshotter.vl.overlayfs/snapshots/73/fs,workdir=/var/lib/containerd/io.containerd.snap

shotter.vl.overlayfs/snapshots/73/work)

root@flask-ro:/# touch test
touch: cannot touch 'test': Read-only file system

root@flask-ro:/# exit
exit
command terminated with exit code 1

drop

Créez le fichier drop.yaml :

root@kubemaster:~# vi drop.yaml
root@kubemaster:~# cat drop.yaml
apiVersion: vl
kind: Pod
metadata:
name: flask-cap
namespace: default
spec:
containers:
- image: mateobur/flask
name: flask-cap
securityContext:
capabilities:
drop:
- NET RAW
- CHOWN

Exécutez kubectl :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 23/36

DOF308 - Introduction a la Sécurisation de K8s

root@kubemaster:~# kubectl create -f drop.yaml

pod/flask-cap created
Vérifiez que le pod est en état de READY :

root@kubemaster:~# kubectl get pods

NAME READY STATUS
flask-cap 1/1 Running
flask-ro 1/1 Running
postgres-deployment-5b8bd66778-j99zz 1/1 Running
redis-deployment-67d4c466c4-9wzfn 1/1 Running
result-app-deployment-b8f9dc967-nzbgd 1/1 Running
result-app-deployment-b8f9dc967-r84k6 1/1 Running
result-app-deployment-b8f9dc967-zbsk2 1/1 Running
voting-app-deployment-669dccccfb-jpn6h 1/1 Running
voting-app-deployment-669dccccfb-ktd7d 1/1 Running
voting-app-deployment-669dccccfb-x868p 1/1 Running
worker-app-deployment-559f7749b6-jh86r 1/1 Running
Connectez-vous au conteneur :

root@kubemaster:~# kubectl exec -it flask-cap -- bash

root@flask-cap:/#
Notez la mise en place des restrictions :
root@flask-cap:/# ping 8.8.8.8

ping: Lacking privilege for raw socket.
root@flask-cap:/# chown daemon /tmp

RESTARTS

P NNNNNNNYNO O

chown: changing ownership of '/tmp': Operation not permitted

root@flask-cap:/# exit
exit

AGE
4dm4s
13m
4d1h
4d1h
4d1h
3d22h
3d22h
4d1h
3d22h
3d22h
4d1h

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 24/36

DOF308 - Introduction a la Sécurisation de K8s

command terminated with exit code 1
2.3 - Kubernetes Network Policies

Créez le fichier guestbook-all-in-one.yaml :

root@kubemaster:~# vi guestbook-all-in-one.yaml
root@kubemaster:~# cat gquestbook-all-in-one.yaml
apiVersion: vl
kind: Service
metadata:
name: redis-master
labels:
app: redis
tier: backend
role: master
spec:
ports:
the port that this service should serve on
- port: 6379
targetPort: 6379
selector:
app: redis
tier: backend
role: master
apiVersion: vl
kind: ReplicationController
metadata:
name: redis-master
these labels can be applied automatically
from the labels in the pod template if not set

labels:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 25/36

DOF308 - Introduction a la Sécurisation de K8s

app: redis
role: master
tier: backend
spec:
this replicas value is default
modify it according to your case
replicas: 1
selector can be applied automatically
from the labels in the pod template if not set
selector:
app: guestbook
role: master
tier: backend
template:
metadata:
labels:
app: redis
role: master
tier: backend
spec:
containers:
- name: master
image: gcr.io/google containers/redis:e2e

resources:
requests:
Cpu: 100m
memory: 100Mi
ports:

- containerPort: 6379
apiVersion: vl
kind: Service
metadata:
name: redis-slave

or just image:

redis

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 26/36 DOF308 - Introduction a la Sécurisation de K8s

labels:
app: redis
tier: backend
role: slave
spec:
ports:
the port that this service should serve on
- port: 6379
selector:
app: redis
tier: backend
role: slave

apiVersion: vl
kind: ReplicationController
metadata:
name: redis-slave
these labels can be applied automatically
from the labels in the pod template if not set
labels:
app: redis
role: slave
tier: backend
spec:
this replicas value is default
modify it according to your case
replicas: 2
selector can be applied automatically
from the labels in the pod template if not set
selector:
app: guestbook
role: slave
tier: backend
template:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 27/36 DOF308 - Introduction a la Sécurisation de K8s

metadata:
labels:
app: redis
role: slave
tier: backend
spec:
containers:
- name: slave
image: gcr.io/google samples/gb-redisslave:vl
resources:
requests:
cpu: 100m
memory: 100Mi
env:
- name: GET HOSTS FROM

value: dns
If your cluster config does not include a dns service, then to

instead access an environment variable to find the master
service's host, comment out the 'value: dns' line above, and
uncomment the line below.
value: env
ports:
- containerPort: 6379
apiVersion: vl
kind: Service
metadata:
name: frontend
labels:
app: guestbook
tier: frontend
spec:
if your cluster supports it, uncomment the following to automatically create
an external load-balanced IP for the frontend service.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 28/36 DOF308 - Introduction a la Sécurisation de K8s

type: LoadBalancer
ports:
the port that this service should serve on
- port: 80
selector:
app: guestbook
tier: frontend
apiVersion: vl
kind: ReplicationController
metadata:
name: frontend
these labels can be applied automatically
from the labels in the pod template if not set
labels:
app: guestbook
tier: frontend
spec:
this replicas value is default
modify it according to your case
replicas: 3
selector can be applied automatically
from the labels in the pod template if not set
selector:
app: guestbook
tier: frontend
template:
metadata:
labels:
app: guestbook
tier: frontend
spec:
containers:
- name: php-redis

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 29/36 DOF308 - Introduction a la Sécurisation de K8s

image: corelab/gb-frontend:v5
resources:
requests:
Ccpu: 100m
memory: 100Mi
env:
- name: GET HOSTS FROM
value: dns
If your cluster config does not include a dns service, then to
instead access environment variables to find service host
info, comment out the 'value: dns' line above, and uncomment the
line below.
value: env
ports:
- containerPort: 80

Installez I'application Guestbook :
root@kubemaster:~# kubectl create -f guestbook-all-in-one.yaml
Attendez que tous les pods soient dans un état de READY :

root@kubemaster:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED
NODE READINESS GATES

flask-cap 1/1 Running 0 53m 192.168.239.26 kubenodel.ittraining.loc <none>
<none>

flask-ro 1/1 Running 0 59m 192.168.150.14 kubenode2.ittraining.loc <none>
<none>

frontend-dhd4w 1/1 Running 0 32m 192.168.150.16 kubenode2.ittraining.loc <none>
<none>

frontend-dmbbf 1/1 Running 0 32m 192.168.150.17 kubenode2.ittraining.loc <none>
<none>

frontend-rqrép 1/1 Running 0 32m 192.168.239.29 kubenodel.ittraining.loc <none>

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15

DOF308 - Introduction a la Sécurisation de K8s

<none>
redis-master-zrrr4 1/1
<none>
redis-slave-jsrt6 1/1
<none>
redis-slave-rrnx9 1/1
<none>

30/36

Running 0 32m
Running 0 32m
Running 0 32m

Cette application crée des pods de type backend et frontend :

192.168.239.27

192.168.150.15

192.168.239.28

root@kubemaster:~# kubectl describe pod redis-master-zrrr4 | grep tier

tier=backend

root@kubemaster:~# kubectl describe pod frontend-dhd4w | grep tier

tier=frontend

kubenodel.ittraining. loc
kubenode2.ittraining. loc

kubenodel.ittraining. loc

Créez le fichier guestbook-network-policy.yaml qui empéchera la communication d'un pod backend vers un pod frontend :

root@kubemaster:~# vi guestbook-network-policy.yaml
root@kubemaster:~# cat guestbook-network-policy.yaml
apiVersion: networking.k8s.io/vl

kind: NetworkPolicy
metadata:
name: deny-backend-egress
namespace: default
spec:
podSelector:
matchLabels:
tier: backend
policyTypes:
- Egress
egress:
- to:

<none>

<none>

<none>

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15

31/36

DOF308 - Introduction a la Sécurisation de K8s

- podSelector:
matchLabels:
tier: backend

Exécutez kubect! :

root@kubemaster:~# kubectl create -f guestbook-network-policy.yaml

networkpolicy.networking.k8s.io/deny-backend-egress created

Connectez-vous au pod redis-master :

root@kubemaster:~# kubectl exec -it redis-master-zrrr4 -- bash

[root@redis-master-zrrr4:/data 1%

Essayez de contacter un pod du méme tier :

[root@redis-master-zrrr4d:/data]1$ ping -c 4 192.168.150.15
PING 192.168.150.15 (192.168.150.15) 56(84) bytes of data.

64 bytes from 192.168.150.15:
64 bytes from 192.168.150.15:
64 bytes from 192.168.150.15:
64 bytes from 192.168.150.15:

icmp seq=1 ttl=62 time=0.324 ms
icmp seq=2 ttl=62 time=0.291 ms
icmp seq=3 ttl=62 time=0.366 ms
icmp seq=4 ttl=62 time=0.379 ms

--- 192.168.150.15 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3070ms

rtt min/avg/max/mdev = 0.291/0.340/0.379/0.034 ms

Essayez maintenant de contacter un pod d'un tier frontend :

[root@redis-master-zrrr4:/data 1$ ping -c 4 192.168.150.16
PING 192.168.150.16 (192.168.150.16) 56(84) bytes of data.

--- 192.168.150.16 ping statistics ---

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 32/36

DOF308 - Introduction a la Sécurisation de K8s

4 packets transmitted, 0 received, 100% packet loss, time 3063ms

Déconnectez-vous du pod redis-master et connectez-vous a un pod frontend :

[root@redis-master-zrrr4:/data 1$ exit
exit
command terminated with exit code 1

root@kubemaster:~# kubectl exec -it frontend-dhd4w -- bash
root@frontend-dhd4w: /var/www/html#

Installez le paquet iputils-ping :

root@frontend-dhd4w:/var/www/html# apt update

root@frontend-dhd4w: /var/www/html# apt install iputils-ping -y

Essayez de contacter un pod du méme tier :

root@frontend-dhd4w: /var/www/html# ping -c 4 192.168.150.17
PING 192.168.150.17 (192.168.150.17): 56 data bytes

64 bytes from 192.168.150.17: icmp seq=0 ttl=63 time=0.185 ms
64 bytes from 192.168.150.17: icmp seq=1 ttl=63 time=0.112 ms
64 bytes from 192.168.150.17: icmp seq=2 ttl=63 time=0.093 ms
64 bytes from 192.168.150.17: icmp seq=3 ttl=63 time=0.121 ms
---192.168.150.17 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.093/0.128/0.185/0.035 ms

Essayez maintenant de contacter un pod d'un tier backend :

root@frontend-dhd4w: /var/www/html# ping -c 4 192.168.239.27
PING 192.168.239.27 (192.168.239.27): 56 data bytes

64 bytes from 192.168.239.27: icmp seq=0 ttl=62 time=0.371 ms
64 bytes from 192.168.239.27: icmp seq=1 ttl=62 time=0.469 ms

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 33/36 DOF308 - Introduction a la Sécurisation de K8s

64 bytes from 192.168.239.27: icmp seq=2 ttl=62 time=0.349 ms
64 bytes from 192.168.239.27: icmp seq=3 ttl=62 time=0.358 ms
--- 192.168.239.27 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.349/0.387/0.469/0.048 ms

Sortez du pod frontend :

root@frontend-dhd4w:/var/www/html# exit
exit
root@kubemaster:~#

2.4 - Kubernetes Resource Allocation Management

Les ressources qui peuvent étre limitées au niveau d'un pod sont :

e CPU
e Mémoire
e Stockage local

Créez le fichier flask-resources.yaml :

root@kubemaster:~# vi flask-resources.yaml
root@kubemaster:~# cat flask-resources.yaml
apiVersion: vl
kind: Pod
metadata:

name: flask-resources

namespace: default
spec:

containers:

- image: mateobur/flask

name: flask-resources

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 34/36

DOF308 - Introduction a la Sécurisation de K8s

resources:
requests:
memory: 512Mi
limits:
memory: 700Mi

Dans ce fichier on peut constater deux allocations de ressources :

¢ requests,

o la quantité de mémoire qui doit étre libre au moment du scheduling du pod,

e limits,

o la limite de mémoire pour le pod concerné.

Exécutez kubect! :

root@kubemaster:~# kubectl create -f flask-resources.yaml

pod/flask-resources created
Attendez que le statut du pod soit READY :

root@kubemaster:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
flask-cap 1/1 Running 0 67m
flask-resources 1/1 Running 0 53s
flask-ro 1/1 Running 0 74m
Connectez-vous au pod :

root@kubemaster:~# kubectl exec -it flask-resources -- bash

root@flask-resources: /#

Installez le paquet stress :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 35/36 DOF308 - Introduction a la Sécurisation de K8s

root@flask-resources:/# echo "deb http://archive.debian.org/debian/ jessie main contrib non-free" >
/etc/apt/sources.list

root@flask-resources:/# echo "deb http://archive.debian.org/debian-security jessie/updates main contrib non-free"
>> /etc/apt/sources.list

root@flask-resources:/# cat /etc/apt/sources.list

deb http://archive.debian.org/debian/ jessie main contrib non-free

deb http://archive.debian.org/debian-security jessie/updates main contrib non-free

root@flask-resources:/# apt update

root@flask-resources:/# apt install stress -y

Testez la limite mise en place :

root@flask-resources:/# stress --cpu 1 --io 1 --vm 2 --vm-bytes 800M
stress: info: [41] dispatching hogs: 1 cpu, 1 io, 2 vm, 0 hdd
stress: FAIL: [41] (416) <-- worker 45 got signal 9

stress: WARN: [41] (418) now reaping child worker processes

stress: FAIL: [41] (452) failed run completed in 1s

Sortez du pod flask-resources :
root@flask-resources:/# exit

exit
root@kubemaster:~#

Copyright © 2024 Hugh Norris

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:15 36/36 DOF308 - Introduction a la Sécurisation de K8s

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s07

Last update: 2024/12/15 06:55

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s07

	DOF308 - Introduction à la Sécurisation de K8s
	Contenu du Module
	Ressources
	Lab #1
	Lab #2

	LAB #1 - Role Based Acces Control et Certificats TLS
	1.1 - Présentation
	1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml
	1.3 - Création d'un serviceAccount
	1.4 - Création d'un Utilisateur
	1.5 - Certificats TLS

	LAB #2 - Implémentation de la Sécurité au niveau des Pods
	2.1 - Présentation
	2.2 - Kubernetes Security Context
	ReadOnlyRootFilesystem
	drop

	2.3 - Kubernetes Network Policies
	2.4 - Kubernetes Resource Allocation Management

