
2026/02/04 08:15 1/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

Version - 2024.01

Dernière mise-à-jour : 2024/12/15 06:55

DOF308 - Introduction à la Sécurisation de K8s

Contenu du Module

DOF308 - Introduction à la Sécurisation de K8s
Contenu du Module
LAB #1 - Role Based Acces Control et Certificats TLS

1.1 - Présentation
1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml
1.3 - Création d'un serviceAccount
1.4 - Création d'un Utilisateur
1.5 - Certificats TLS

LAB #2 - Implémentation de la Sécurité au niveau des Pods
2.1 - Présentation
2.2 - Kubernetes Security Context

ReadOnlyRootFilesystem
drop

2.3 - Kubernetes Network Policies
2.4 - Kubernetes Resource Allocation Management

Ressources

Lab #1

https://www.dropbox.com/scl/fi/ttklc9ejfhpuyq3eh7wbo/flask.yaml?rlkey=gt1fxvfd8a1vxh75e8y8bz6yw&dl=0

https://www.dropbox.com/scl/fi/ttklc9ejfhpuyq3eh7wbo/flask.yaml?rlkey=gt1fxvfd8a1vxh75e8y8bz6yw&dl=0

2026/02/04 08:15 2/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/ujyzyh5ixqibqtychuyzr/deployment.yaml?rlkey=u4tnbrh2f0b6ewk1mt15y6y63&dl=0

Lab #2

https://www.dropbox.com/scl/fi/sbzoft6ioo6gmo5n56035/readonly.yaml?rlkey=xsqnve5dvkg3l3nbuep06j0tj&dl=0
https://www.dropbox.com/scl/fi/enbctxxwp95s10ssw3l13/drop.yaml?rlkey=pfo8r09cv9zk2xrxohyies9ki&dl=0
https://www.dropbox.com/scl/fi/qptbh81o3gtl8bnii91er/guestbook-all-in-one.yaml?rlkey=5g3cr8a5llggdrme0le254pip&dl=0
https://www.dropbox.com/scl/fi/664obj0d9d0y95kj3czsd/guestbook-network-policy.yaml?rlkey=u3o8yrgpgratq30jgk12rtj90&dl=0
https://www.dropbox.com/scl/fi/f4f3mb8epcy7xr9cgmj1m/flask-resources.yaml?rlkey=l9gptrnet3mh4x5p2v09xvu06&dl=0

LAB #1 - Role Based Acces Control et Certificats TLS

1.1 - Présentation

Un objet Kubernetes est soit lié à un Namespace soit non-lié à un Namespace.

Kubernetes utilise l'API rbac.authorization.k8s.io pour gérer les autorisations. Les acteurs jouant un rôle dans cette API sont :

Namespaces,
peuvent être considérées comme des clusters virtuels,
permettent l'isolation et la segmentation logique,
permettent le regroupement d'utilisateurs, de rôles et de ressources,
sont utilisés avec des applications, des clients, des projets ou des équipes.

Subjects,
Regular Users - permettent la gestion des accès autorisés depuis l'extérieur du cluster que cela soit par un utilisateur physique ou sous une
autre forme. La gestion des utilisateurs est la responsabilité de l'Administrateur du cluster,
ServiceAccounts - permettent la mise en place de permissions au niveau des entités logiciels. Kubernetes crée un certain nombre de
serviceAccounts automatiquement mais l'Administrateur peut en créer d'autres. Chaque pod a un serviceAccount qui gère les privilèges
accordés au processus et aux conteneurs du pod,
User Groups - Kubernetes regroupe des utilisateurs en utilisant des propriétés communes telles le préfixe d'un serviceAccount ou le champ
de l'organisation dans un certificat. Il est ensuite possible d'accorder des privilèges de type RBAC aux groupes ainsi créés.

https://www.dropbox.com/scl/fi/ujyzyh5ixqibqtychuyzr/deployment.yaml?rlkey=u4tnbrh2f0b6ewk1mt15y6y63&dl=0
https://www.dropbox.com/scl/fi/sbzoft6ioo6gmo5n56035/readonly.yaml?rlkey=xsqnve5dvkg3l3nbuep06j0tj&dl=0
https://www.dropbox.com/scl/fi/enbctxxwp95s10ssw3l13/drop.yaml?rlkey=pfo8r09cv9zk2xrxohyies9ki&dl=0
https://www.dropbox.com/scl/fi/qptbh81o3gtl8bnii91er/guestbook-all-in-one.yaml?rlkey=5g3cr8a5llggdrme0le254pip&dl=0
https://www.dropbox.com/scl/fi/664obj0d9d0y95kj3czsd/guestbook-network-policy.yaml?rlkey=u3o8yrgpgratq30jgk12rtj90&dl=0
https://www.dropbox.com/scl/fi/f4f3mb8epcy7xr9cgmj1m/flask-resources.yaml?rlkey=l9gptrnet3mh4x5p2v09xvu06&dl=0

2026/02/04 08:15 3/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

Resources,
ce sont des entités auxquelles auront accès les Subjects,
une ressource est une entité telle un pod, un deployment ou des sous-ressources telles les journaux d'un pod,
le Pod Security Policy (PSP) est aussi considéré comme une ressource.

Roles et ClusterRoles,
Roles - permettent de définir des règles représentant un jeu de permissions, telles GET WATCH LIST CREATE UPDATE PATCH et DELETE, qui
peuvent être utilisées avec des ressources dans un Namespace,

On ajoute des permissions, on ne les retire pas. Il n'y a pas donc des règles de type deny.
ClusterRoles - n'est pas lié à un Namespace. Un ClusterRole est utilisé pour :

définir des permissions pour des ressources à être utilisées dans un Namespace
définir des permissions pour des ressources à être utilisées dans tous les Namespaces
définir des permissions pour des ressources du cluster.

Un exemple d'un Role pour accorder les permissions dans le Namespace default est :

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: default
 name: pod-reader
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Important : apiGroups: [“”] - “” indique le groupe api core ou legacy. Ce groupe se trouve au chemin REST /api/v1. Ce groupe n'est jamais
spécifié dans un champs apiVersion, d'où la raison pour laquelle on écrit apiVersion: v1 et non apiVersion api/v1.

Un example d'un ClusterRole pour accorder des permissions de lecture des secrets dans un Namespace spécifique ou dans tous les Namespaces est :

apiVersion: rbac.authorization.k8s.io/v1

2026/02/04 08:15 4/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

kind: ClusterRole
metadata:
 name: secret-reader
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get", "watch", "list"]

RoleBindings et ClusterRoleBindings,
permettent d'accorder des permissions définies dans des Roles ou ClusterRoles à des Subjects,
RoleBindings sont spécifiques à un NameSpace,
ClusterRoleBindings s'appliquent au niveau du Cluster.

1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml

L'utilisation de RBAC est définie par la valeur de la directive –authorization-mode dans le fichier /etc/kubernetes/manifests/kube-apiserver.yaml
:

root@kubemaster:~# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 kubeadm.kubernetes.io/kube-apiserver.advertise-address.endpoint: 192.168.56.2:6443
 creationTimestamp: null
 labels:
 component: kube-apiserver
 tier: control-plane
 name: kube-apiserver
 namespace: kube-system
spec:
 containers:
 - command:

2026/02/04 08:15 5/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 - kube-apiserver
 - --advertise-address=192.168.56.2
 - --allow-privileged=true
 - --authorization-mode=Node,RBAC
 - --client-ca-file=/etc/kubernetes/pki/ca.crt
 - --enable-admission-plugins=NodeRestriction
 - --enable-bootstrap-token-auth=true
 - --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
 - --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
 - --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
 - --etcd-servers=https://127.0.0.1:2379
 - --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-client.crt
 - --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key
 - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
 - --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt
 - --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.key
 - --requestheader-allowed-names=front-proxy-client
 - --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
 - --requestheader-extra-headers-prefix=X-Remote-Extra-
 - --requestheader-group-headers=X-Remote-Group
 - --requestheader-username-headers=X-Remote-User
 - --secure-port=6443
 - --service-account-issuer=https://kubernetes.default.svc.cluster.local
 - --service-account-key-file=/etc/kubernetes/pki/sa.pub
 - --service-account-signing-key-file=/etc/kubernetes/pki/sa.key
 - --service-cluster-ip-range=10.96.0.0/12
 - --tls-cert-file=/etc/kubernetes/pki/apiserver.crt
 - --tls-private-key-file=/etc/kubernetes/pki/apiserver.key
 image: k8s.gcr.io/kube-apiserver:v1.24.2
 imagePullPolicy: IfNotPresent
 livenessProbe:
 failureThreshold: 8
 httpGet:
 host: 192.168.56.2

2026/02/04 08:15 6/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 path: /livez
 port: 6443
 scheme: HTTPS
 initialDelaySeconds: 10
 periodSeconds: 10
 timeoutSeconds: 15
 name: kube-apiserver
 readinessProbe:
 failureThreshold: 3
 httpGet:
 host: 192.168.56.2
 path: /readyz
 port: 6443
 scheme: HTTPS
 periodSeconds: 1
 timeoutSeconds: 15
 resources:
 requests:
 cpu: 250m
 startupProbe:
 failureThreshold: 24
 httpGet:
 host: 192.168.56.2
 path: /livez
 port: 6443
 scheme: HTTPS
 initialDelaySeconds: 10
 periodSeconds: 10
 timeoutSeconds: 15
 volumeMounts:
 - mountPath: /etc/ssl/certs
 name: ca-certs
 readOnly: true
 - mountPath: /etc/ca-certificates

2026/02/04 08:15 7/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 name: etc-ca-certificates
 readOnly: true
 - mountPath: /etc/kubernetes/pki
 name: k8s-certs
 readOnly: true
 - mountPath: /usr/local/share/ca-certificates
 name: usr-local-share-ca-certificates
 readOnly: true
 - mountPath: /usr/share/ca-certificates
 name: usr-share-ca-certificates
 readOnly: true
 hostNetwork: true
 priorityClassName: system-node-critical
 securityContext:
 seccompProfile:
 type: RuntimeDefault
 volumes:
 - hostPath:
 path: /etc/ssl/certs
 type: DirectoryOrCreate
 name: ca-certs
 - hostPath:
 path: /etc/ca-certificates
 type: DirectoryOrCreate
 name: etc-ca-certificates
 - hostPath:
 path: /etc/kubernetes/pki
 type: DirectoryOrCreate
 name: k8s-certs
 - hostPath:
 path: /usr/local/share/ca-certificates
 type: DirectoryOrCreate
 name: usr-local-share-ca-certificates
 - hostPath:

2026/02/04 08:15 8/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 path: /usr/share/ca-certificates
 type: DirectoryOrCreate
 name: usr-share-ca-certificates
status: {}

1.3 - Création d'un serviceAccount

Il est préférable de créer un serviceAccount par service. Ceci permet une configuration plus fine de la sécurité concernant le service. Si un
serviceAccount n'est pas spécifié lors de la création des pods, ces pods se verront attribués le serviceAccount par défaut du Namespace.

Imaginons que vous souhaitez que votre application interagisse avec l'API de Kubernetes afin d'obtenir des informations sur les pods dans un
Namespace. le serviceAccount par défaut dasn le Namespace default ne peut pas accomplir cette tâche :

root@kubemaster:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:default:default
no

Important : le format de la valeur de l'option –as est system:serviceaccount:namespace:Nom_du_serviceaccount.

Créez maintenant le fichier flask.yaml :

root@kubemaster:~# vi flask.yaml
root@kubemaster:~# cat flask.yaml
apiVersion: v1
kind: Namespace
metadata:
 name: flask

apiVersion: v1
kind: ServiceAccount
metadata:

2026/02/04 08:15 9/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 name: flask-backend
 namespace: flask

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: flask-backend-role
 namespace: flask
rules:
 - apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "list", "watch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: flask-backend-role-binding
 namespace: flask
subjects:
 - kind: ServiceAccount
 name: flask-backend
 namespace: flask
roleRef:
 kind: Role
 name: flask-backend-role
 apiGroup: rbac.authorization.k8s.io

Ce fichier crée :

un Namespace appelé flask,
un serviceAccount appelé flask-backend pour le Namespace flask,
un Role appelé flask-backend-role qui accorde les permissions get, watch et list sur les pods dans le Namespace flask,
un RoleBinding appelé flask-backend-role-binding qui accorde les permissions définies dans le Role flask-backend-role au Subject de type
serviceAccount appelé flask-backend.

2026/02/04 08:15 10/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

Appliquez le fichier :

root@kubemaster:~# kubectl create -f flask.yaml
namespace/flask created
serviceaccount/flask-backend created
role.rbac.authorization.k8s.io/flask-backend-role created
rolebinding.rbac.authorization.k8s.io/flask-backend-role-binding created

Créez maintenant le fichier deployment.yaml qui crée des pods qui utiliseront le serviceAccount appelé flask-backend :

root@kubemaster:~# vi deployment.yaml
root@kubemaster:~# cat deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-deployment
 namespace: flask
 labels:
 app: myapp
 type: front-end
spec:
 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
 spec:
 serviceAccount: flask-backend
 containers:
 - name: nginx-container
 image: nginx

2026/02/04 08:15 11/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 replicas: 3
 selector:
 matchLabels:
 type: front-end

Exécutez kubectl :

root@kubemaster:~# kubectl create -f deployment.yaml
deployment.apps/myapp-deployment created

Vérifiez la présence du deployment :

root@kubemaster:~# kubectl get deployment -n flask
NAME READY UP-TO-DATE AVAILABLE AGE
myapp-deployment 3/3 3 3 32s

Vérifiez maintenant que le serviceAccount flask-backend peut lister les pods dans le Namespace flask :

root@kubemaster:~# kubectl auth can-i list pods -n flask --as=system:serviceaccount:flask:flask-backend
yes

Notez cependant que le serviceAccount flask-backend n'a pas la permission create dans le Namespace flask :

root@kubemaster:~# kubectl auth can-i create pods -n flask --as=system:serviceaccount:flask:flask-backend
no

et que le serviceAccount flask-backend n'a pas la permission list dans le Namespace default :

root@kubemaster:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:flask:flask-backend
no

2026/02/04 08:15 12/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

1.4 - Création d'un Utilisateur

Les utilisateurs font partis du contexte de configuration qui définit le nom du cluster et le nom du Namespace :

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin

Important : Un contexte est un élément qui regroupe les paramètres d'accès sous un nom. Les paramètres d'accès sont au nombre de
trois, à savoir le cluster, le namespace et l'utilisateur. La commande kubectl utilise les paramètres du contexte courant pour communiquer
avec le cluster.

En regardant le contexte courant, on voit que l'utilisateur kubernetes-admin@kubernetes a deux attributs dénommés :

client-certificate-data: REDACTED
client-key-data: REDACTED

root@kubemaster:~# kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://192.168.56.2:6443
 name: kubernetes
contexts:
- context:
 cluster: kubernetes
 user: kubernetes-admin
 name: kubernetes-admin@kubernetes
current-context: kubernetes-admin@kubernetes
kind: Config

2026/02/04 08:15 13/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

preferences: {}
users:
- name: kubernetes-admin
 user:
 client-certificate-data: REDACTED
 client-key-data: REDACTED

Important : Le mot REDACTED indique que les valeurs sont cachées pour des raisons de sécurité.

Pour créer un nouveau utilisateur il faut commencer par créer une clef privée pour l'utilisateur :

root@kubemaster:~# openssl genrsa -out trainee.key 2048
Generating RSA private key, 2048 bit long modulus
....................................+++
..............+++
e is 65537 (0x10001)

Créez maintenant un CSR :

root@kubemaster:~# openssl req -new -key trainee.key -out trainee.csr -subj "/CN=trainee/O=examplegroup"

Important : Notez que Kubernetes utilisera la valeur de la clef de l'organisation pour le regroupement des utilisateurs.

Le CSR doit être signé par le CA racine de Kubernetes :

root@kubemaster:~# ls -l /etc/kubernetes/pki/ca.*
-rw-r--r-- 1 root root 1099 juil. 12 13:23 /etc/kubernetes/pki/ca.crt
-rw------- 1 root root 1679 juil. 12 13:23 /etc/kubernetes/pki/ca.key

2026/02/04 08:15 14/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

Signez donc le CSR :

root@kubemaster:~# openssl x509 -req -in trainee.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out trainee.crt
Signature ok
subject=/CN=trainee/O=examplegroup
Getting CA Private Key

Visualisez le certificat de trainee :

root@kubemaster:~# openssl x509 -in trainee.crt -text
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 b6:f7:59:8f:75:19:bc:10
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN = kubernetes
 Validity
 Not Before: Jul 14 07:49:14 2022 GMT
 Not After : Aug 13 07:49:14 2022 GMT
 Subject: CN = trainee, O = examplegroup
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:9b:2d:e8:7d:ba:e9:9f:b3:da:8f:14:13:21:83:
 64:c6:6e:7b:2c:ee:4f:e6:71:65:a7:e4:ca:6a:23:
 ee:cf:e1:43:18:e0:b0:1f:ef:ff:53:21:de:d2:e8:
 38:d1:39:ab:b0:8d:78:f4:af:7c:80:b0:1a:c3:a2:
 cb:64:b4:73:e6:a5:30:33:69:f1:6d:9a:5b:66:2e:
 58:f6:c2:51:7c:42:95:16:ac:60:0e:1d:4d:09:aa:
 06:29:51:79:f1:45:70:48:b9:1c:e2:05:fc:5c:33:
 82:d7:82:5f:a2:31:13:b5:23:4c:10:bf:a5:8a:4f:

2026/02/04 08:15 15/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 37:2a:d6:cc:ac:c7:c0:ad:97:71:95:9e:26:4f:60:
 b5:41:8a:7b:c5:79:38:02:28:b0:88:84:23:0b:18:
 d2:c2:f9:9f:ff:ec:ec:fb:0a:41:d7:7d:f3:90:2f:
 29:08:86:1e:e7:cb:ab:cf:56:5e:a9:ba:06:d8:83:
 c2:3c:1d:38:cc:fa:fd:69:17:4e:c3:7e:79:dd:34:
 11:9a:ff:5d:32:e4:68:a8:0f:cc:4c:bf:27:bc:2e:
 19:b7:9d:ad:68:45:d9:87:06:74:9f:e4:ad:bf:df:
 06:c8:28:c7:a4:78:f2:31:b2:6c:c7:9e:90:b8:bf:
 48:d4:ae:fd:65:e9:38:fd:8f:30:41:e9:32:f5:de:
 69:69
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha256WithRSAEncryption
 6d:c8:0d:cd:7c:34:5c:08:67:98:b6:ae:80:26:e8:73:f1:14:
 3b:02:09:dd:b4:6d:f1:7f:bb:12:8a:16:86:d6:d6:be:ad:92:
 99:a8:23:a1:d7:de:d4:e9:03:ec:6f:b9:19:46:2d:d8:f4:30:
 71:8c:f0:6e:43:ad:d8:10:46:15:ab:9f:46:c1:56:4c:6c:81:
 ab:ba:dd:5b:78:6a:57:82:d3:1a:d7:1a:5f:63:ca:4e:0f:fb:
 ce:fe:f1:a5:78:64:a5:03:41:ad:c5:b7:28:45:62:31:ce:02:
 09:1b:73:1d:e0:96:a4:1b:c4:09:18:a6:b1:5e:8c:88:03:75:
 92:64:47:d3:0c:ce:87:91:9c:25:f7:72:a7:44:9d:36:41:87:
 48:61:71:31:9a:24:ae:36:4f:40:c8:f3:08:32:f5:b1:9d:f5:
 8a:0a:71:80:e6:70:d9:af:e1:96:55:81:9f:a1:95:39:53:b5:
 1b:f3:37:3e:50:d5:a1:6b:d1:4b:d1:c6:75:fb:63:f0:63:06:
 ce:99:fb:c3:15:c1:51:3b:ed:d9:c8:68:43:66:3c:ef:92:ba:
 ae:a5:0d:02:48:8d:42:1a:70:22:13:75:47:ad:69:d5:48:11:
 6b:b1:24:80:7e:d6:0d:f7:92:0c:bb:28:91:6e:d4:4c:a1:14:
 c9:2d:47:2c
-----BEGIN CERTIFICATE-----
MIICujCCAaICCQC291mPdRm8EDANBgkqhkiG9w0BAQsFADAVMRMwEQYDVQQDEwpr
dWJlcm5ldGVzMB4XDTIyMDcxNDA3NDkxNFoXDTIyMDgxMzA3NDkxNFowKTEQMA4G
A1UEAwwHdHJhaW5lZTEVMBMGA1UECgwMZXhhbXBsZWdyb3VwMIIBIjANBgkqhkiG
9w0BAQEFAAOCAQ8AMIIBCgKCAQEAmy3ofbrpn7PajxQTIYNkxm57LO5P5nFlp+TK
aiPuz+FDGOCwH+//UyHe0ug40TmrsI149K98gLAaw6LLZLRz5qUwM2nxbZpbZi5Y
9sJRfEKVFqxgDh1NCaoGKVF58UVwSLkc4gX8XDOC14JfojETtSNMEL+lik83KtbM

2026/02/04 08:15 16/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

rMfArZdxlZ4mT2C1QYp7xXk4AiiwiIQjCxjSwvmf/+zs+wpB133zkC8pCIYe58ur
z1ZeqboG2IPCPB04zPr9aRdOw3553TQRmv9dMuRoqA/MTL8nvC4Zt52taEXZhwZ0
n+Stv98GyCjHpHjyMbJsx56QuL9I1K79Zek4/Y8wQeky9d5paQIDAQABMA0GCSqG
SIb3DQEBCwUAA4IBAQBtyA3NfDRcCGeYtq6AJuhz8RQ7AgndtG3xf7sSihaG1ta+
rZKZqCOh197U6QPsb7kZRi3Y9DBxjPBuQ63YEEYVq59GwVZMbIGrut1beGpXgtMa
1xpfY8pOD/vO/vGleGSlA0GtxbcoRWIxzgIJG3Md4JakG8QJGKaxXoyIA3WSZEfT
DM6HkZwl93KnRJ02QYdIYXExmiSuNk9AyPMIMvWxnfWKCnGA5nDZr+GWVYGfoZU5
U7Ub8zc+UNWha9FL0cZ1+2PwYwbOmfvDFcFRO+3ZyGhDZjzvkrqupQ0CSI1CGnAi
E3VHrWnVSBFrsSSAftYN95IMuyiRbtRMoRTJLUcs
-----END CERTIFICATE-----

Créez un deuxième utilisateur dans la même Organisation :

root@kubemaster:~# openssl genrsa -out stagiaire.key 2048
Generating RSA private key, 2048 bit long modulus
...
...............+++
.................+++
e is 65537 (0x10001)

root@kubemaster:~# openssl req -new -key stagiaire.key -out stagiaire.csr -subj "/CN=stagiaire/O=examplegroup"

root@kubemaster:~# openssl x509 -req -in stagiaire.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out stagiaire.crt
Signature ok
subject=/CN=stagiaire/O=examplegroup
Getting CA Private Key

Créez maintenant le contexte trainee :

root@kubemaster:~# kubectl config set-credentials trainee --client-certificate=trainee.crt --client-
key=trainee.key
User "trainee" set.

2026/02/04 08:15 17/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# kubectl config set-context trainee@kubernetes --cluster=kubernetes --user=trainee
Context "trainee@kubernetes" created.

Vérifiez que le contexte soit présent :

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin
 trainee@kubernetes kubernetes trainee

Utilisez le contexte de trainee :

root@kubemaster:~# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
 kubernetes-admin@kubernetes kubernetes kubernetes-admin
* trainee@kubernetes kubernetes trainee
root@kubemaster:~# kubectl get pods
Error from server (Forbidden): pods is forbidden: User "trainee" cannot list resource "pods" in API group "" in
the namespace "default"

Important : Notez que trainee ne peut pas lister les pods parce que les permissions RBAC n'ont pas été définies.

Retournez au contexte de l'administrateur :

root@kubemaster:~# kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".

root@kubemaster:~# kubectl config get-contexts

2026/02/04 08:15 18/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin
 trainee@kubernetes kubernetes trainee

Créez maintenant un clusterrolebinding au groupe examplegroup :

root@kubemaster:~# kubectl create clusterrolebinding examplegroup-admin-binding --clusterrole=cluster-admin --
group=examplegroup
clusterrolebinding.rbac.authorization.k8s.io/examplegroup-admin-binding created

Utilisez de nouveau le contexte de trainee :

root@kubemaster:~# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
 kubernetes-admin@kubernetes kubernetes kubernetes-admin
* trainee@kubernetes kubernetes trainee
root@kubemaster:~# kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
calico-kube-controllers-6766647d54-v4hrm 1/1 Running 0 44h
calico-node-5mrjl 1/1 Running 0 41h
calico-node-688lw 1/1 Running 0 44h
calico-node-j25xd 1/1 Running 0 41h
coredns-6d4b75cb6d-dw4ph 1/1 Running 0 44h
coredns-6d4b75cb6d-ms2jm 1/1 Running 0 44h
etcd-kubemaster.ittraining.loc 1/1 Running 1 (44h ago) 44h
kube-apiserver-kubemaster.ittraining.loc 1/1 Running 1 (44h ago) 44h
kube-controller-manager-kubemaster.ittraining.loc 1/1 Running 10 (75m ago) 44h
kube-proxy-bwctz 1/1 Running 0 41h
kube-proxy-j89vg 1/1 Running 0 41h
kube-proxy-jx76x 1/1 Running 0 44h
kube-scheduler-kubemaster.ittraining.loc 1/1 Running 11 (75m ago) 44h

2026/02/04 08:15 19/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

metrics-server-7cb867d5dc-g55k5 1/1 Running 0 28h

1.5 - Certificats TLS

Par défaut la communication entre kubectl et l'API Kubernetes est cryptée. Les certificats se trouvent dans le répertoire /var/lib/kubelet/pki/ de
chaque noeud :

root@kubemaster:~# ls -l /var/lib/kubelet/pki/
total 12
-rw------- 1 root root 2851 juil. 12 13:23 kubelet-client-2022-07-12-13-23-12.pem
lrwxrwxrwx 1 root root 59 juil. 12 13:23 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-
client-2022-07-12-13-23-12.pem
-rw-r--r-- 1 root root 2367 juil. 12 13:23 kubelet.crt
-rw------- 1 root root 1675 juil. 12 13:23 kubelet.key

Important : Par défaut les certificats de kubelet expirent au bout d'un an.

LAB #2 - Implémentation de la Sécurité au niveau des Pods

2.1 - Présentation

Un Admission Controller est un morceau de code qui intercepte les requêtes à destination de l'API de Kubernetes. L'utilisation des Admission
Controllers est définie part la directive –admission-control du fichier /etc/kubernetes/manifests/kube-apiserver.yaml, par exemple :

--admission-control=Initializers, NamespaceLifecycle, LimitRanger, ServiceAccount, PersistentVolumeLabel,
DefaultStorageClass, DefaultTolerationSeconds, NodeRestriction, ResourceQuota

2026/02/04 08:15 20/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

Les Admission Controllers les plus importants en termes de sécurité sont :

DenyEscalatingExec,
interdit l'exécution des commandes avec un escalated container dans un pod priviligié. Les commandes concernées sont exec et attach.
Un escalated container dans un pod priviligié n'est pas isolé et permet donc l'accès à l'hôte.

NodeRestriction,
limite les objets d'un nœud et d'un pod que kubectl est capable de modifier,

PodSecurityPolicy,
agit lors de la création ou de la modification d'un pod pour décider si celui-ci est admis au cluster en fonction du Contexte de Sécurité et les
policies applicables,

ValidatingAdmissionWebhooks,
permet d'appeler un service externe qui implémente une politique de sécurité, tel que Grafeas.

2.2 - Kubernetes Security Context

La configuration du Contexte de Sécurité se fait du pod ou du conteneur. Voici quelques exemples.

ReadOnlyRootFilesystem

Créez le fichier readonly.yaml :

root@kubemaster:~# vi readonly.yaml
root@kubemaster:~# cat readonly.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-ro
 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-ro

https://grafeas.io/

2026/02/04 08:15 21/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 securityContext:
 readOnlyRootFilesystem: true

Exécutez kubectl :

root@kubemaster:~# kubectl create -f readonly.yaml
pod/flask-ro created

Vérifiez que le pod est en état de READY :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-ro 1/1 Running 0 13m
postgres-deployment-5b8bd66778-j99zz 1/1 Running 7 4d1h
redis-deployment-67d4c466c4-9wzfn 1/1 Running 7 4d1h
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 7 4d1h
result-app-deployment-b8f9dc967-r84k6 1/1 Running 7 3d22h
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 7 3d22h
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 7 4d1h
voting-app-deployment-669dccccfb-ktd7d 1/1 Running 7 3d22h
voting-app-deployment-669dccccfb-x868p 1/1 Running 7 3d22h
worker-app-deployment-559f7749b6-jh86r 1/1 Running 19 4d1h

Connectez-vous au conteneur :

root@kubemaster:~# kubectl exec -it flask-ro bash
root@flask-ro:/#

Notez que le système est en lecture seule :

root@flask-ro:/# mount | grep "/ "
overlay on / type overlay
(ro,relatime,lowerdir=/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/72/fs:/var/lib/contain
erd/io.containerd.snapshotter.v1.overlayfs/snapshots/71/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overl

2026/02/04 08:15 22/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

ayfs/snapshots/70/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/69/fs,upperdir=/var/lib
/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/73/fs,workdir=/var/lib/containerd/io.containerd.snap
shotter.v1.overlayfs/snapshots/73/work)

root@flask-ro:/# touch test
touch: cannot touch 'test': Read-only file system

root@flask-ro:/# exit
exit
command terminated with exit code 1

drop

Créez le fichier drop.yaml :

root@kubemaster:~# vi drop.yaml
root@kubemaster:~# cat drop.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-cap
 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-cap
 securityContext:
 capabilities:
 drop:
 - NET_RAW
 - CHOWN

Exécutez kubectl :

2026/02/04 08:15 23/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# kubectl create -f drop.yaml
pod/flask-cap created

Vérifiez que le pod est en état de READY :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-cap 1/1 Running 0 4m4s
flask-ro 1/1 Running 0 13m
postgres-deployment-5b8bd66778-j99zz 1/1 Running 7 4d1h
redis-deployment-67d4c466c4-9wzfn 1/1 Running 7 4d1h
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 7 4d1h
result-app-deployment-b8f9dc967-r84k6 1/1 Running 7 3d22h
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 7 3d22h
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 7 4d1h
voting-app-deployment-669dccccfb-ktd7d 1/1 Running 7 3d22h
voting-app-deployment-669dccccfb-x868p 1/1 Running 7 3d22h
worker-app-deployment-559f7749b6-jh86r 1/1 Running 19 4d1h

Connectez-vous au conteneur :

root@kubemaster:~# kubectl exec -it flask-cap -- bash
root@flask-cap:/#

Notez la mise en place des restrictions :

root@flask-cap:/# ping 8.8.8.8
ping: Lacking privilege for raw socket.
root@flask-cap:/# chown daemon /tmp
chown: changing ownership of '/tmp': Operation not permitted

root@flask-cap:/# exit
exit

2026/02/04 08:15 24/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

command terminated with exit code 1

2.3 - Kubernetes Network Policies

Créez le fichier guestbook-all-in-one.yaml :

root@kubemaster:~# vi guestbook-all-in-one.yaml
root@kubemaster:~# cat guestbook-all-in-one.yaml
apiVersion: v1
kind: Service
metadata:
 name: redis-master
 labels:
 app: redis
 tier: backend
 role: master
spec:
 ports:
 # the port that this service should serve on
 - port: 6379
 targetPort: 6379
 selector:
 app: redis
 tier: backend
 role: master

apiVersion: v1
kind: ReplicationController
metadata:
 name: redis-master
 # these labels can be applied automatically
 # from the labels in the pod template if not set
 labels:

2026/02/04 08:15 25/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 app: redis
 role: master
 tier: backend
spec:
 # this replicas value is default
 # modify it according to your case
 replicas: 1
 # selector can be applied automatically
 # from the labels in the pod template if not set
 # selector:
 # app: guestbook
 # role: master
 # tier: backend
 template:
 metadata:
 labels:
 app: redis
 role: master
 tier: backend
 spec:
 containers:
 - name: master
 image: gcr.io/google_containers/redis:e2e # or just image: redis
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 6379

apiVersion: v1
kind: Service
metadata:
 name: redis-slave

2026/02/04 08:15 26/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 labels:
 app: redis
 tier: backend
 role: slave
spec:
 ports:
 # the port that this service should serve on
 - port: 6379
 selector:
 app: redis
 tier: backend
 role: slave

apiVersion: v1
kind: ReplicationController
metadata:
 name: redis-slave
 # these labels can be applied automatically
 # from the labels in the pod template if not set
 labels:
 app: redis
 role: slave
 tier: backend
spec:
 # this replicas value is default
 # modify it according to your case
 replicas: 2
 # selector can be applied automatically
 # from the labels in the pod template if not set
 # selector:
 # app: guestbook
 # role: slave
 # tier: backend
 template:

2026/02/04 08:15 27/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 metadata:
 labels:
 app: redis
 role: slave
 tier: backend
 spec:
 containers:
 - name: slave
 image: gcr.io/google_samples/gb-redisslave:v1
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # If your cluster config does not include a dns service, then to
 # instead access an environment variable to find the master
 # service's host, comment out the 'value: dns' line above, and
 # uncomment the line below.
 # value: env
 ports:
 - containerPort: 6379

apiVersion: v1
kind: Service
metadata:
 name: frontend
 labels:
 app: guestbook
 tier: frontend
spec:
 # if your cluster supports it, uncomment the following to automatically create
 # an external load-balanced IP for the frontend service.

2026/02/04 08:15 28/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 # type: LoadBalancer
 ports:
 # the port that this service should serve on
 - port: 80
 selector:
 app: guestbook
 tier: frontend

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend
 # these labels can be applied automatically
 # from the labels in the pod template if not set
 labels:
 app: guestbook
 tier: frontend
spec:
 # this replicas value is default
 # modify it according to your case
 replicas: 3
 # selector can be applied automatically
 # from the labels in the pod template if not set
 # selector:
 # app: guestbook
 # tier: frontend
 template:
 metadata:
 labels:
 app: guestbook
 tier: frontend
 spec:
 containers:
 - name: php-redis

2026/02/04 08:15 29/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 image: corelab/gb-frontend:v5
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # If your cluster config does not include a dns service, then to
 # instead access environment variables to find service host
 # info, comment out the 'value: dns' line above, and uncomment the
 # line below.
 # value: env
 ports:
 - containerPort: 80

Installez l'application Guestbook :

root@kubemaster:~# kubectl create -f guestbook-all-in-one.yaml

Attendez que tous les pods soient dans un état de READY :

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED
NODE READINESS GATES
flask-cap 1/1 Running 0 53m 192.168.239.26 kubenode1.ittraining.loc <none>
<none>
flask-ro 1/1 Running 0 59m 192.168.150.14 kubenode2.ittraining.loc <none>
<none>
frontend-dhd4w 1/1 Running 0 32m 192.168.150.16 kubenode2.ittraining.loc <none>
<none>
frontend-dmbbf 1/1 Running 0 32m 192.168.150.17 kubenode2.ittraining.loc <none>
<none>
frontend-rqr6p 1/1 Running 0 32m 192.168.239.29 kubenode1.ittraining.loc <none>

2026/02/04 08:15 30/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

<none>
redis-master-zrrr4 1/1 Running 0 32m 192.168.239.27 kubenode1.ittraining.loc <none>
<none>
redis-slave-jsrt6 1/1 Running 0 32m 192.168.150.15 kubenode2.ittraining.loc <none>
<none>
redis-slave-rrnx9 1/1 Running 0 32m 192.168.239.28 kubenode1.ittraining.loc <none>
<none>
...

Cette application crée des pods de type backend et frontend :

root@kubemaster:~# kubectl describe pod redis-master-zrrr4 | grep tier
 tier=backend

root@kubemaster:~# kubectl describe pod frontend-dhd4w | grep tier
 tier=frontend

Créez le fichier guestbook-network-policy.yaml qui empêchera la communication d'un pod backend vers un pod frontend :

root@kubemaster:~# vi guestbook-network-policy.yaml
root@kubemaster:~# cat guestbook-network-policy.yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-backend-egress
 namespace: default
spec:
 podSelector:
 matchLabels:
 tier: backend
 policyTypes:
 - Egress
 egress:
 - to:

2026/02/04 08:15 31/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 - podSelector:
 matchLabels:
 tier: backend

Exécutez kubectl :

root@kubemaster:~# kubectl create -f guestbook-network-policy.yaml
networkpolicy.networking.k8s.io/deny-backend-egress created

Connectez-vous au pod redis-master :

root@kubemaster:~# kubectl exec -it redis-master-zrrr4 -- bash
[root@redis-master-zrrr4:/data]$

Essayez de contacter un pod du même tier :

[root@redis-master-zrrr4:/data]$ ping -c 4 192.168.150.15
PING 192.168.150.15 (192.168.150.15) 56(84) bytes of data.
64 bytes from 192.168.150.15: icmp_seq=1 ttl=62 time=0.324 ms
64 bytes from 192.168.150.15: icmp_seq=2 ttl=62 time=0.291 ms
64 bytes from 192.168.150.15: icmp_seq=3 ttl=62 time=0.366 ms
64 bytes from 192.168.150.15: icmp_seq=4 ttl=62 time=0.379 ms

--- 192.168.150.15 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3070ms
rtt min/avg/max/mdev = 0.291/0.340/0.379/0.034 ms

Essayez maintenant de contacter un pod d'un tier frontend :

[root@redis-master-zrrr4:/data]$ ping -c 4 192.168.150.16
PING 192.168.150.16 (192.168.150.16) 56(84) bytes of data.

--- 192.168.150.16 ping statistics ---

2026/02/04 08:15 32/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

4 packets transmitted, 0 received, 100% packet loss, time 3063ms

Déconnectez-vous du pod redis-master et connectez-vous à un pod frontend :

[root@redis-master-zrrr4:/data]$ exit
exit
command terminated with exit code 1

root@kubemaster:~# kubectl exec -it frontend-dhd4w -- bash
root@frontend-dhd4w:/var/www/html#

Installez le paquet iputils-ping :

root@frontend-dhd4w:/var/www/html# apt update
root@frontend-dhd4w:/var/www/html# apt install iputils-ping -y

Essayez de contacter un pod du même tier :

root@frontend-dhd4w:/var/www/html# ping -c 4 192.168.150.17
PING 192.168.150.17 (192.168.150.17): 56 data bytes
64 bytes from 192.168.150.17: icmp_seq=0 ttl=63 time=0.185 ms
64 bytes from 192.168.150.17: icmp_seq=1 ttl=63 time=0.112 ms
64 bytes from 192.168.150.17: icmp_seq=2 ttl=63 time=0.093 ms
64 bytes from 192.168.150.17: icmp_seq=3 ttl=63 time=0.121 ms
--- 192.168.150.17 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.093/0.128/0.185/0.035 ms

Essayez maintenant de contacter un pod d'un tier backend :

root@frontend-dhd4w:/var/www/html# ping -c 4 192.168.239.27
PING 192.168.239.27 (192.168.239.27): 56 data bytes
64 bytes from 192.168.239.27: icmp_seq=0 ttl=62 time=0.371 ms
64 bytes from 192.168.239.27: icmp_seq=1 ttl=62 time=0.469 ms

2026/02/04 08:15 33/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

64 bytes from 192.168.239.27: icmp_seq=2 ttl=62 time=0.349 ms
64 bytes from 192.168.239.27: icmp_seq=3 ttl=62 time=0.358 ms
--- 192.168.239.27 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.349/0.387/0.469/0.048 ms

Sortez du pod frontend :

root@frontend-dhd4w:/var/www/html# exit
exit
root@kubemaster:~#

2.4 - Kubernetes Resource Allocation Management

Les ressources qui peuvent être limitées au niveau d'un pod sont :

CPU
Mémoire
Stockage local

Créez le fichier flask-resources.yaml :

root@kubemaster:~# vi flask-resources.yaml
root@kubemaster:~# cat flask-resources.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-resources
 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-resources

2026/02/04 08:15 34/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

 resources:
 requests:
 memory: 512Mi
 limits:
 memory: 700Mi

Dans ce fichier on peut constater deux allocations de ressources :

requests,
la quantité de mémoire qui doit être libre au moment du scheduling du pod,

limits,
la limite de mémoire pour le pod concerné.

Exécutez kubectl :

root@kubemaster:~# kubectl create -f flask-resources.yaml
pod/flask-resources created

Attendez que le statut du pod soit READY :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-cap 1/1 Running 0 67m
flask-resources 1/1 Running 0 53s
flask-ro 1/1 Running 0 74m
...

Connectez-vous au pod :

root@kubemaster:~# kubectl exec -it flask-resources -- bash
root@flask-resources:/#

Installez le paquet stress :

2026/02/04 08:15 35/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

root@flask-resources:/# echo "deb http://archive.debian.org/debian/ jessie main contrib non-free" >
/etc/apt/sources.list
root@flask-resources:/# echo "deb http://archive.debian.org/debian-security jessie/updates main contrib non-free"
>> /etc/apt/sources.list
root@flask-resources:/# cat /etc/apt/sources.list
deb http://archive.debian.org/debian/ jessie main contrib non-free
deb http://archive.debian.org/debian-security jessie/updates main contrib non-free
root@flask-resources:/# apt update
root@flask-resources:/# apt install stress -y

Testez la limite mise en place :

root@flask-resources:/# stress --cpu 1 --io 1 --vm 2 --vm-bytes 800M
stress: info: [41] dispatching hogs: 1 cpu, 1 io, 2 vm, 0 hdd
stress: FAIL: [41] (416) <-- worker 45 got signal 9
stress: WARN: [41] (418) now reaping child worker processes
stress: FAIL: [41] (452) failed run completed in 1s

Sortez du pod flask-resources :

root@flask-resources:/# exit
exit
root@kubemaster:~#

Copyright © 2024 Hugh Norris

2026/02/04 08:15 36/36 DOF308 - Introduction à la Sécurisation de K8s

www.ittraining.team - https://www.ittraining.team/

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s07

Last update: 2024/12/15 06:55

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s07

	DOF308 - Introduction à la Sécurisation de K8s
	Contenu du Module
	Ressources
	Lab #1
	Lab #2

	LAB #1 - Role Based Acces Control et Certificats TLS
	1.1 - Présentation
	1.2 - Le Fichier /etc/kubernetes/manifests/kube-apiserver.yaml
	1.3 - Création d'un serviceAccount
	1.4 - Création d'un Utilisateur
	1.5 - Certificats TLS

	LAB #2 - Implémentation de la Sécurité au niveau des Pods
	2.1 - Présentation
	2.2 - Kubernetes Security Context
	ReadOnlyRootFilesystem
	drop

	2.3 - Kubernetes Network Policies
	2.4 - Kubernetes Resource Allocation Management

