
2026/02/04 09:42 1/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

Version - 2024.01

Dernière mise-à-jour : 2024/12/15 06:53

DOF306 - Gestion des Volumes sous K8s

DOF306 - Gestion des Volumes sous K8s
Contenu
Présentation

Volumes
Persistent Volumes
Types de Volumes

LAB #1 - Utiliser des Volumes K8s
1.1 - Volumes et volumeMounts
1.2 - Partager des volumes entre conteneurs

LAB #2 - Volumes Persistants
2.1 - Storage Classes
2.2 - Persistent Volumes
2.3 - Persistent Volume Claims
2.4 - Utiliser un PersistentVolumeClaim dans un pod
2.5 - Redimensionnement d'un PersistentVolumeClaim

Ressources

Lab #1

https://www.dropbox.com/scl/fi/jylunrftkra3csboubxvm/volume.yaml?rlkey=wz0ckbw31gbq4j8cm7lc1ny7h&dl=0
https://www.dropbox.com/scl/fi/mv0z7jfqtd13q78m7716l/shared.yaml?rlkey=btadejbwv7i4hb98ap7ufrv1d&dl=0

https://www.dropbox.com/scl/fi/jylunrftkra3csboubxvm/volume.yaml?rlkey=wz0ckbw31gbq4j8cm7lc1ny7h&dl=0
https://www.dropbox.com/scl/fi/mv0z7jfqtd13q78m7716l/shared.yaml?rlkey=btadejbwv7i4hb98ap7ufrv1d&dl=0

2026/02/04 09:42 2/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

Lab #2

https://www.dropbox.com/scl/fi/9c5kn7yw9q5eftw7pi1sd/localdisk.yaml?rlkey=xwtiqso78ow84ww3sssq4hp1e&dl=0
https://www.dropbox.com/scl/fi/fo5tfji3kxn9dtjitvek4/mypv.yaml?rlkey=cdt1g6dpwrzlihndzsrdreqsa&dl=0
https://www.dropbox.com/scl/fi/ja2ddchsgunwdswc4cc92/mypvc.yaml?rlkey=80mmqg90y7ikdz8ifqpvb49pt&dl=0
https://www.dropbox.com/scl/fi/lgwfi8tjbg5sq32zrqkpw/mypvcpod.yaml?rlkey=2v74mq9p8o63hiviwu595waj7&dl=0

Présentation

Volumes

Le système de fichiers d'un conteneur dans un pod est éphémère, à savoir qu'il n'existe que pendant le cycle de vie du conteneur. Si le conteneur est
supprimé ou re-créé, le système de fichiers est perdu.

Les volumes permettent le stockage de données en dehors du système de fichiers du conteneur tout en permettant le conteneur d'y accéder.

Persistent Volumes

Un Persistent Volume (Volume Persistant) est une ressource abstraite qui peut être consommer par des pods. Pour accéder au Persistent Volume, le
pod a besoin d'un Persistent Volume Claim (Réclamation de Volume Persistant) pour monter le Persistent Volume dans le pod.

Types de Volumes

Les Volumes et les Persistent Volumes ont un Volume Type (Type de Volume). Le Volume Type détermine le Storage Method (Méthode de
Stockage) des données. Parmi les Storage Methods on trouve :

NFS,
AWS,
Azure,

https://www.dropbox.com/scl/fi/9c5kn7yw9q5eftw7pi1sd/localdisk.yaml?rlkey=xwtiqso78ow84ww3sssq4hp1e&dl=0
https://www.dropbox.com/scl/fi/fo5tfji3kxn9dtjitvek4/mypv.yaml?rlkey=cdt1g6dpwrzlihndzsrdreqsa&dl=0
https://www.dropbox.com/scl/fi/ja2ddchsgunwdswc4cc92/mypvc.yaml?rlkey=80mmqg90y7ikdz8ifqpvb49pt&dl=0
https://www.dropbox.com/scl/fi/lgwfi8tjbg5sq32zrqkpw/mypvcpod.yaml?rlkey=2v74mq9p8o63hiviwu595waj7&dl=0

2026/02/04 09:42 3/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

GCP,
ConfigMaps,
Secrets,

Important : Pour plus d'information concernant les Storage Methods, consultez cette
page de la documentation K8s.

LAB #1 - Utiliser des Volumes K8s

1.1 - Volumes et volumeMounts

Les Volumes sont configurés dans la spécification du pod et non le conteneur. Les deux Volume Types les plus important sont hostPath et emptyDir :

hostPath,
Les données sont stockés localement dans un répertoire statique du noeud K8s,

emptyDir,
Les données sont stockés localement dans un répertoire dynamique,
Le répertoire n'existe que pendant que le pod existe sur le noeud,
K8s supprime le répertoire et les données lors de la suppression ou le déplacement du pod,
Ce Volume Type est principalement utilisé pour partager des données entre deux conteneurs dans un pod.

Un volumeMount est configuré dans la spécification du conteneur et non le pod

Commencez par créer le fichier volume.yaml :

root@kubemaster:~# vi volume.yaml
root@kubemaster:~# cat volume.yaml
apiVersion: v1
kind: Pod

https://kubernetes.io/fr/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/fr/docs/concepts/storage/volumes/#persistentvolumeclaim

2026/02/04 09:42 4/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

metadata:
 name: volumepod
spec:
 restartPolicy: Never
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'echo Success! > /output/success.txt']
 volumeMounts:
 - name: myvolume
 mountPath: /output
 volumes:
 - name: myvolume
 hostPath:
 path: /var/data

Important : Ce pod va écrire la chaîne Success! dans le fichier /output/success.txt à
l'intérieur du conteneur puis s'arrêter car la valeur de restartPolicy est Never. Le volume
myvolume sera monté sur /output dans le conteneur grâce à la configuration du
volumeMount et sur /var/data/ dans le noeud qui héberge le pod.

Créez le pod volumepod :

root@kubemaster:~# kubectl create -f volume.yaml
pod/volumepod created

Identifiez le noeud sur lequel s'exécute le pod :

root@kubemaster:~# kubectl get pod volumepod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

2026/02/04 09:42 5/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

volumepod 0/1 Completed 0 3m10s 192.168.150.41 kubenode2.ittraining.loc <none>
<none>

Connectez-vous au nœud identifié :

root@kubemaster:~# ssh -l trainee kubenode2
trainee@kubenode2's password: trainee
Linux kubenode2.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sun Sep 4 13:24:39 2022 from 192.168.56.2

Vérifiez la présence et le contenu du fichier /var/data/success.txt :

trainee@kubenode2:~$ cat /var/data/success.txt
Success!

1.2 - Partager des volumes entre conteneurs

Retournez au kubemaster :

trainee@kubenode2:~$ exit
déconnexion
Connection to kubenode2 closed.
root@kubemaster:~#

Créez maintenant le fichier shared.yaml :

2026/02/04 09:42 6/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# vi shared.yaml
root@kubemaster:~# cat shared.yaml
apiVersion: v1
kind: Pod
metadata:
 name: sharedvolume
spec:
 containers:
 - name: busybox1
 image: busybox
 command: ['sh', '-c', 'while true; do echo Success! > /output/output.txt; sleep 5; done']
 volumeMounts:
 - name: myvolume
 mountPath: /output
 - name: busybox2
 image: busybox
 command: ['sh', '-c', 'while true; do cat /input/output.txt; sleep 5; done']
 volumeMounts:
 - name: myvolume
 mountPath: /input
 volumes:
 - name: myvolume
 emptyDir: {}

Important : Ce fichier va créer deux pods. Le premier, busybox1, va écrire la chaîne
Success! dans le fichier /output/output.txt du conteneur tous les 5 secondes. Le
répertoire /output est connu en tant que myvolume. Ce même volume sera disponible au
conteneur du deuxième pod, busybox2 où il sera monté à /input. Le conteneur busybox2
va imprimer le contenu du fichier /input/output.txt sur la sortie standard tous les 5
secondes.

2026/02/04 09:42 7/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

Créez les deux pods :

root@kubemaster:~# kubectl create -f shared.yaml
pod/sharedvolume created

Vérifiez que les deux pods sont en cours d'exécution :

root@kubemaster:~# kubectl get pods sharedvolume
NAME READY STATUS RESTARTS AGE
sharedvolume 2/2 Running 0 5m55s

Consultez maintenant les logs du deuxième conteneur :

root@kubemaster:~# kubectl logs sharedvolume -c busybox2
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!

Important : Notez que busybox2 a imprimé le contenu du fichier /input/output.txt sur
sa sortie standard

2026/02/04 09:42 8/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

LAB #2 - Persistent Volumes

2.1 - Storage Classes

StorageClassName,
Un StorageClassName est utilisé pour spécifier le StorageClass.

StorageClass,
Un StorageClass est utilisé pour spécifier le type de service de stockage utilisé, par exemple, un disque local, le cloud etc,
Si la valeur du allowVolumeExpansion est true et le type de service de stockage le permet, un PersistentVolumeClaim peut être
redimensionner à chaud.

Créez le fichier localdisk.yaml pour définir le StorageClass appelé localdisk :

root@kubemaster:~# vi localdisk.yaml
root@kubemaster:~# cat localdisk.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: localdisk
provisioner: kubernetes.io/no-provisioner
allowVolumeExpansion: true

Important : Notez que la valeur du allowVolumeExpansion est true.

Créez le StorageClass localdisk :

root@kubemaster:~# kubectl create -f localdisk.yaml

2026/02/04 09:42 9/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

2.2 - Persistent Volumes

Créez le fichier mypv.yaml pour définir le PersistentVolume appelé mypv :

root@kubemaster:~# vi mypv.yaml
root@kubemaster:~# cat mypv.yaml
kind: PersistentVolume
apiVersion: v1
metadata:
 name: mypv
spec:
 storageClassName: localdisk
 persistentVolumeReclaimPolicy: Recycle
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: /var/output

Important : Notez que la valeur de l'accessMode.

Il existe quatre types d'accessModes :

ReadWriteOnce ou RWO,
le volume ne peut être monté que par un seul noeud,

ReadOnlyMany ou ROX,
le volume peut être monté en lecture seule par plusieurs noeuds,

ReadWriteMany ou RWX,
le volume peut être monté en lecture-écriture par plusieurs noeuds,

ReadWriteOncePod ou RWOP,

2026/02/04 09:42 10/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

le volume ne peut être monté que par un seul pod.

La disponibilité de l'accessMode dépend du type de service de stockage. Le mode ReadWriteOnce étant toujours disponible. Pour plus d'information
concernant les accessMode, consultez cette page.

Important : Notez que la valeur du persistentVolumeReclaimPolicy est Recycle.

Il existe trois types de PersistentVolumeReclaimPolicy :

Retain,
Les données ne sont pas supprimées lors de la suppression d'un PersistentVolumeClaim,

Delete,
Supprime automatiquement la ressource de stockage lors de la suppression d'un PersistentVolumeClaim,
A noter que Delete ne fonctionne qu'avec des services de clouds publiques tels AWS, GCP etc,

Recycle,
Supprime automatiquement les données,
A noter que Recycle permet la réutilisation immédiate des ressources de stockage libérées lors de la suppression d'un
PersistentVolumeClaim.

Créez le PersistentVolume mypv :

root@kubemaster:~# kubectl create -f mypv.yaml
persistentvolume/mypv created

Vérifiez le statut du PersistentVolume :

root@kubemaster:~# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv 1Gi RWO Recycle Available localdisk 5m28s

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

2026/02/04 09:42 11/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

Important : Notez que la valeur du STATUS est Available.

2.3 - Persistent Volume Claims

Un PersistentVolumeClaim représente la demande d'un utilisateur d'une ressource de stockage,
Le PersistentVolumeClaim spécifie un StorageClassName, un AccessMode et une taille,

Lors sa création, le PersistentVolumeClaim recherche un PersistentVolume capable de satisfaire la demande formulée,
Si le résultat de la recherche est positive, le PersistentVolumeClaim est automatiquement lié au PersistentVolume,
Dans le cas contraire, le PersistentVolumeClaim reste en attente jusqu'à la création d'un PersistentVolume capable de satisfaire la
demande formulée,
Pour redimensionner, sans interruption de service, un PersistentVolumeClaim il convient de modifier la valeur du
spec.resources.requests.storage du fichier yaml.

Créez le fichier mypvc.yaml pour définir le PersistentVolumeClaim appelé my-pvc :

root@kubemaster:~# vi mypvc.yaml
root@kubemaster:~# cat mypvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: my-pvc
spec:
 storageClassName: localdisk
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

Important : Notez que la valeur du storageClassName est localdisk.

2026/02/04 09:42 12/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

Créez le PersistentVolumeClaim my-pvc :

root@kubemaster:~# kubectl create -f mypvc.yaml
persistentvolumeclaim/my-pvc created

Vérifiez le statut du PersistentVolume :

root@kubemaster:~# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv 1Gi RWO Recycle Bound default/my-pvc localdisk 9m33s

Important : Notez que la valeur du STATUS est Bound. Notez aussi qu'un
PersistentVolume ne peut être associé qu'à un seul PersistentVolumeClaim à la fois.

Vérifiez le statut du PersistentVolumeClaim :

root@kubemaster:~# kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
my-pvc Bound mypv 1Gi RWO localdisk 72s

Important : Notez que la valeur du STATUS est Bound.

2.4 - Utiliser un PersistentVolumeClaim dans un pod

Créez le fichier mypvcpod.yaml pour définir le pod appelé pv-pod :

root@kubemaster:~# vi mypvcpod.yaml

2026/02/04 09:42 13/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# cat mypvcpod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pv-pod
spec:
 restartPolicy: Never
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'echo Success! > /output/success.txt']
 volumeMounts:
 - name: pv-storage
 mountPath: /output
 volumes:
 - name: pv-storage
 persistentVolumeClaim:
 claimName: my-pvc

Créez le pod pv-pod :

root@kubemaster:~# kubectl create -f mypvcpod.yaml
pod/pv-pod created

Important : Notez que le pod utilise le persistentVolumeClaim my-pvc qui est monté sur
/output dans le conteneur busybox.

2.5 - Redimensionnement d'un PersistentVolumeClaim

Modifiez la valeur du storage: du PersistentVolumeClaim :

2026/02/04 09:42 14/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# kubectl edit pvc my-pvc --record
...
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 200Mi
 storageClassName: localdisk
 volumeMode: Filesystem
 volumeName: mypv
...

Sauvegardez la modification :

root@kubemaster:~# kubectl edit pvc my-pvc --record
Flag --record has been deprecated, --record will be removed in the future
persistentvolumeclaim/my-pvc edited

Important : Notez que le message de confirmation de l'édition.

Supprimez le pod pv-pod ainsi que le PersistentVolumeClaim my-pvc :

root@kubemaster:~# kubectl delete pod pv-pod
pod "pv-pod" deleted

root@kubemaster:~# kubectl delete pvc my-pvc
persistentvolumeclaim "my-pvc" deleted

Vérifiez le statut du PersistentVolume :

2026/02/04 09:42 15/15 DOF306 - Gestion des Volumes sous K8s

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv 1Gi RWO Recycle Available localdisk 23m

Important : Notez que la valeur du STATUS est de nouveau Available.

Copyright © 2024 Hugh Norris

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s05

Last update: 2024/12/15 06:53

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s05

	DOF306 - Gestion des Volumes sous K8s
	Ressources
	Lab #1
	Lab #2

	Présentation
	Volumes
	Persistent Volumes
	Types de Volumes

	LAB #1 - Utiliser des Volumes K8s
	1.1 - Volumes et volumeMounts
	1.2 - Partager des volumes entre conteneurs

	LAB #2 - Persistent Volumes
	2.1 - Storage Classes
	2.2 - Persistent Volumes
	2.3 - Persistent Volume Claims
	2.4 - Utiliser un PersistentVolumeClaim dans un pod
	2.5 - Redimensionnement d'un PersistentVolumeClaim

