
2026/02/04 08:15 1/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Version - 2024.01

Dernière mise-à-jour : 2022/09/16 16:39

DOF305 - Gestion du Réseau, des Services et d'une Architecture de
Microservices

Contenu du Module

DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices
Contenu du Module
LAB #1 - Gestion du Réseau et des Services

1.1 - Présentation des Extensions Réseau
1.2 - DNS K8s

Présentation
Mise en Application

1.3 - Network Policies
Présentation
Mise en Application

1.4 - Services
Le Service NodePort

Présentation
Mise en Application

Le Service ClusterIP
Présentation
Mise en Application

1.5 - Services et le DNS k8s
Présentation
Mise en Application

1.6 - Gestion de K8s Ingress

2026/02/04 08:15 2/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Présentation
Mise en Application

LAB #2 - Gestion de l'Architecture des Microservices
2.1 - Présentation
2.2 - Création des Deployments
2.3 - Création des Services
2.4 - Déployer l'Application
2.5 - Scaling Up

Ressources

LAB #1

https://www.dropbox.com/scl/fi/rqxq22c6fxgr2zivf02au/clusterip-example.yaml?rlkey=q79w12mcfj5jaj48j7kl4gv3p&dl=0
https://www.dropbox.com/scl/fi/d105k0mjg4guwn1gg2sr6/clusterip-service.yaml?rlkey=bvvdhihx85p5n6bct0cdy5jlg&dl=0
https://www.dropbox.com/scl/fi/9zgm5sgh8l8f5jhde9e3z/clusterippod.yaml?rlkey=crh5jpt5om0ekcibjrd8ec64y&dl=0
https://www.dropbox.com/scl/fi/pt62nfxzi9tsa0fj8hfza/dnstest.yaml?rlkey=qob9301qplpplt6v2tm3x1l7j&dl=0
https://www.dropbox.com/scl/fi/wtx04mm4um741dlj9wmj7/myingress.yaml?rlkey=mqeggcq8ccms9nv1zunk43kuh&dl=0
https://www.dropbox.com/scl/fi/nvud4cx3jcya5e5ji188u/mynetworkpolicy.yaml?rlkey=osrpfjrxietbrrcoalflhmbl5&dl=0
https://www.dropbox.com/scl/fi/k84yyq96t7hnigo8q66qs/npbusybox.yaml?rlkey=ehq8qowb04r26s6jfk3qkl4cz&dl=0
https://www.dropbox.com/scl/fi/ivq5emll325nwj9yzjuam/npnginx.yaml?rlkey=sk1rso41e3wrou5y4iy024xdq&dl=0
https://www.dropbox.com/scl/fi/3cp23paw353zplllsily8/service-definition.yaml?rlkey=oe5sfo9soa6q25a8mjqw7ax59&dl=0

LAB #2

https://www.dropbox.com/scl/fi/c87nyp8f2o9vh64pifcmy/postgres-deployment.yaml?rlkey=bu3n6i0372131q9qzonry6kal&dl=0
https://www.dropbox.com/scl/fi/qionkk9d5lj5cqbkqpg9x/postgres-service.yaml?rlkey=h4smnpd1afkyscx8eg9sanh7h&dl=0
https://www.dropbox.com/scl/fi/o00mmelwwhx0ytkjq7kvl/redis-deployment.yaml?rlkey=2ne90svzrmzne619mtxswwi3e&dl=0
https://www.dropbox.com/scl/fi/l0j16x1ais5686u8qaesf/redis-service.yaml?rlkey=t3sezo8is3pu34vmjoq1zw4ug&dl=0
https://www.dropbox.com/scl/fi/ap63boqbt0mot16sx3fva/result-app-deployment.yaml?rlkey=5epq45fioqdkecueo5fcwn2h8&dl=0
https://www.dropbox.com/scl/fi/qxo4g3bim0bc1v537tnse/result-app-service.yaml?rlkey=u7ryslr2lf25m9ibl4t7yujux&dl=0

https://www.dropbox.com/scl/fi/rqxq22c6fxgr2zivf02au/clusterip-example.yaml?rlkey=q79w12mcfj5jaj48j7kl4gv3p&dl=0
https://www.dropbox.com/scl/fi/d105k0mjg4guwn1gg2sr6/clusterip-service.yaml?rlkey=bvvdhihx85p5n6bct0cdy5jlg&dl=0
https://www.dropbox.com/scl/fi/9zgm5sgh8l8f5jhde9e3z/clusterippod.yaml?rlkey=crh5jpt5om0ekcibjrd8ec64y&dl=0
https://www.dropbox.com/scl/fi/pt62nfxzi9tsa0fj8hfza/dnstest.yaml?rlkey=qob9301qplpplt6v2tm3x1l7j&dl=0
https://www.dropbox.com/scl/fi/wtx04mm4um741dlj9wmj7/myingress.yaml?rlkey=mqeggcq8ccms9nv1zunk43kuh&dl=0
https://www.dropbox.com/scl/fi/nvud4cx3jcya5e5ji188u/mynetworkpolicy.yaml?rlkey=osrpfjrxietbrrcoalflhmbl5&dl=0
https://www.dropbox.com/scl/fi/k84yyq96t7hnigo8q66qs/npbusybox.yaml?rlkey=ehq8qowb04r26s6jfk3qkl4cz&dl=0
https://www.dropbox.com/scl/fi/ivq5emll325nwj9yzjuam/npnginx.yaml?rlkey=sk1rso41e3wrou5y4iy024xdq&dl=0
https://www.dropbox.com/scl/fi/3cp23paw353zplllsily8/service-definition.yaml?rlkey=oe5sfo9soa6q25a8mjqw7ax59&dl=0
https://www.dropbox.com/scl/fi/c87nyp8f2o9vh64pifcmy/postgres-deployment.yaml?rlkey=bu3n6i0372131q9qzonry6kal&dl=0
https://www.dropbox.com/scl/fi/qionkk9d5lj5cqbkqpg9x/postgres-service.yaml?rlkey=h4smnpd1afkyscx8eg9sanh7h&dl=0
https://www.dropbox.com/scl/fi/o00mmelwwhx0ytkjq7kvl/redis-deployment.yaml?rlkey=2ne90svzrmzne619mtxswwi3e&dl=0
https://www.dropbox.com/scl/fi/l0j16x1ais5686u8qaesf/redis-service.yaml?rlkey=t3sezo8is3pu34vmjoq1zw4ug&dl=0
https://www.dropbox.com/scl/fi/ap63boqbt0mot16sx3fva/result-app-deployment.yaml?rlkey=5epq45fioqdkecueo5fcwn2h8&dl=0
https://www.dropbox.com/scl/fi/qxo4g3bim0bc1v537tnse/result-app-service.yaml?rlkey=u7ryslr2lf25m9ibl4t7yujux&dl=0

2026/02/04 08:15 3/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/uinl9q5h1uqkkva9txad3/voting-app-deployment.yaml?rlkey=9os74agx9tljxcg44hwas917f&dl=0
https://www.dropbox.com/scl/fi/yo29xrt2h4414tl0z9pk9/voting-app-service.yaml?rlkey=h36b4xocyhjvkjosntmpu3bha&dl=0
https://www.dropbox.com/scl/fi/3cwnbhext63brqqit7pzx/worker-deployment.yaml?rlkey=6u8elahie7ah3hqgj2cksnx75&dl=0

LAB #1 - Gestion du Réseau et des Services

1.1 - Présentation des Extensions Réseau

Kubernetes impose des conditions pour l’implémentation d'un réseau :

Les PODs sur un nœud peuvent communiquer avec tous les PODs sur tous le nœuds sans utiliser NAT,
Les agents sur un nœud (par exemple kubelet) peuvent communiquer avec tous les PODs sur le nœud.

Important : La description technique et détaillée de l'approche réseau de Kubernetes
peut être consultée à l'adresse :
https://kubernetes.io/docs/concepts/cluster-administration/networking/.

Lors de l'installation du cluster nous avons spécifié l'utilisation d'une extension réseau appelée Calico, issue de la liste suivante :

Calico,
Cilium,
Flannel,
Kube-router,
Romana,
WeaveNet,
Antrea,
kube-ovn,
Canal (utilise Flannel pour le réseau et Calico pour le pare-feu).

https://www.dropbox.com/scl/fi/uinl9q5h1uqkkva9txad3/voting-app-deployment.yaml?rlkey=9os74agx9tljxcg44hwas917f&dl=0
https://www.dropbox.com/scl/fi/yo29xrt2h4414tl0z9pk9/voting-app-service.yaml?rlkey=h36b4xocyhjvkjosntmpu3bha&dl=0
https://www.dropbox.com/scl/fi/3cwnbhext63brqqit7pzx/worker-deployment.yaml?rlkey=6u8elahie7ah3hqgj2cksnx75&dl=0
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://www.projectcalico.org/
https://cilium.io/
https://coreos.com/flannel/docs/latest/
https://www.kube-router.io/
https://romana.io/
https://www.weave.works/oss/net/
https://antrea.io/docs/master/getting-started/
https://github.com/alauda/kube-ovn

2026/02/04 08:15 4/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Important : Une étude comparative des extensions réseau pour Kubernetes peut être
trouvée à la page :
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10g
bit-s-network-updated-august-2020-6e1b757b9e49.

1.2 - DNS K8s

Présentation

Les services DNS du cluster utilisant le plugin Calico sont fournis par CoreDNS :

root@kubemaster:~# kubectl get deployments -n kube-system
NAME READY UP-TO-DATE AVAILABLE AGE
calico-kube-controllers 1/1 1 1 12d
coredns 2/2 2 2 12d
metrics-server 1/1 1 1 11d

root@kubemaster:~# kubectl get service -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 12d
metrics-server ClusterIP 10.98.89.81 <none> 443/TCP 11d

Tous les pods sont attribués un nom d'hôte au format suivant :

adresse_ip_du_pod_sous_le_format_xxx-xxx-xxx-xxx.nom_namespace.pod.cluster.local

https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49

2026/02/04 08:15 5/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Mise en Application

Pour tester le DNS, créez le fichier dnstest.yaml :

root@kubemaster:~# vi dnstest.yaml
root@kubemaster:~# cat dnstest.yaml
apiVersion: v1
kind: Pod
metadata:
 name: busybox-dnstest
spec:
 containers:
 - name: busybox
 image: radial/busyboxplus:curl
 command: ['sh', '-c', 'while true; do sleep 3600; done']

apiVersion: v1
kind: Pod
metadata:
 name: nginx-dnstest
spec:
 containers:
 - name: nginx
 image: nginx:1.19.2
 ports:
 - containerPort: 80

Important : Notez que ce fichier va créer deux pods - busybox-dnstest et nginx-
dnstest.

Créez les deux pods à l'aide de ce fichier :

2026/02/04 08:15 6/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# kubectl create -f dnstest.yaml
pod/busybox-dnstest created
pod/nginx-dnstest created

Copiez l'adresse IP du pod nginx-test :

root@kubemaster:~# kubectl get pods nginx-dnstest -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
nginx-dnstest 1/1 Running 0 48s 192.168.150.33 kubenode2.ittraining.loc <none>
<none>

Exécutez la commande curl <adresse IP copiée> dans le conteneur du pod busybox-dnstest :

root@kubemaster:~# kubectl exec busybox-dnstest -- curl 192.168.150.33
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>

2026/02/04 08:15 7/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

</body>
</html>
100 612 100 612 0 0 533k 0 --:--:-- --:--:-- --:--:-- 597k

Important : Notez que busybox-dnstest a pu contacter nginx-dnstest en utilisant son
adresse IP.

Utilisez maintenant le DNS K8s pour résoudre le nom d'hôte du pod nginx-dnstest :

root@kubemaster:~# kubectl exec busybox-dnstest -- nslookup 192-168-150-33.default.pod.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: 192-168-150-33.default.pod.cluster.local
Address 1: 192.168.150.33

Important : Notez que le nom d'hôte a été résolu grâce au DNS K8s.

Exécutez maintenant la commande curl <nom_d_hote_du_pod_nginx_dnstest> dans le conteneur du pod busybox-dnstest :

root@kubemaster:~# kubectl exec busybox-dnstest -- curl 192-168-150-33.default.pod.cluster.local
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
...
<title>Welcome to nginx!</title>
...
100 612 100 612 0 0 355k 0 --:--:-- --:--:-- --:--:-- 597k

2026/02/04 08:15 8/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Important : Notez que busybox-dnstest a pu contacter nginx-dnstest en utilisant son
nom d'hôte.

1.3 - Network Policies

Présentation

Un NetworkPolicy est un objet K8s qui permet de contrôler la communication vers et à partir des pods.

Les composants d'un NetworkPolicy sont :

from et to Selectors,
le from selector s'opère sur le trafic Ingress,

le mot Ingress indique du trafic réseau vers un pod,
le to selector s'opère sur le trafic Egress,

le mot Egress indique du trafic reçu d'un pod.

Les from et to Selectors utilisent des Types :

podSelector,
un podSelector peut sélectionner des pods en utilisant des Labels (étiquettes en français),
par défaut, un pod n'est pas isolé dans le cluster. Par contre dès qu'un podSelector sélectionne un pod, celui-ci est considéré comme isolé
et ne peut que communiquer en suivant les NetworkPolicies,

namespaceSelector,
un namespaceSelector peut sélectionner des nameSpaces en utilisant des Labels (étiquettes en français),

ipBlock,
un IPBlock peut sélectionner des pods en utilisant une plage d’adresses IP au format CIDR.

En complément des Types ci-dessus, il est aussi possible de spécifier :

2026/02/04 08:15 9/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Ports,
les ports spécifient le numéro de port ainsi que le protocole,
le trafic réseau n'est accepté que dans le cas où les règles spécifiées par le Type et le port/protocole sont satisfaits.

Mise en Application

Pour mieux comprendre, créez un NameSpace dénommé nptest :

root@kubemaster:~# kubectl create namespace nptest
namespace/nptest created

Etiquettez ce NameSpace :

root@kubemaster:~# kubectl label namespace nptest lab=nptest
namespace/nptest labeled

Important : Notez l'étiquette lab=nptest.

Créez maintenant le fichier npnginx.yaml :

root@kubemaster:~# vi npnginx.yaml
root@kubemaster:~# cat npnginx.yaml
apiVersion: v1
kind: Pod
metadata:
 name: npnginx
 namespace: nptest
 labels:
 app: nginx
spec:

2026/02/04 08:15 10/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 containers:
 - name: nginx
 image: nginx

Important : Notez l'étiquette app: nginx.

Creéz le pod npnginx :

root@kubemaster:~# kubectl create -f npnginx.yaml
pod/npnginx created

Créez maintenant le fichier npbusybox.yaml :

root@kubemaster:~# vi npbusybox.yaml
root@kubemaster:~# cat npbusybox.yaml
apiVersion: v1
kind: Pod
metadata:
 name: npbusybox
 namespace: nptest
 labels:
 app: client
spec:
 containers:
 - name: busybox
 image: radial/busyboxplus:curl
 command: ['sh', '-c', 'while true; do sleep 5; done']

Important : Notez l'étiquette app: client.

2026/02/04 08:15 11/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Creéz le pod npbusybox :

root@kubemaster:~# kubectl create -f npbusybox.yaml
pod/npbusybox created

Visualisez les informations des deux pods créés :

root@kubemaster:~# kubectl get pods -n nptest -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
npbusybox 1/1 Running 0 48s 192.168.150.35 kubenode2.ittraining.loc <none>
<none>
npnginx 1/1 Running 0 4m13s 192.168.239.33 kubenode1.ittraining.loc <none>
<none>

Copiez l'adresse IP du pode npnginx et créez une variable appelée NGINX_IP :

root@kubemaster:~# NGINX_IP=192.168.239.33

root@kubemaster:~# echo $NGINX_IP
192.168.239.33

Testez la communication entre npbusybox et npnginx :

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX_IP
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 615 100 615 0 0 78977 0 --:--:-- --:--:-- --:--:-- 87857
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</head>

2026/02/04 08:15 12/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important : Rappelez-vous : par défaut, un pod n'est pas isolé dans le cluster. La
communication a donc réussi.

Créez maintenant le fichier mynetworkpolicy.yaml :

root@kubemaster:~# vi mynetworkpolicy.yaml
root@kubemaster:~# cat mynetworkpolicy.yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: mynetworkpolicy
 namespace: nptest
spec:
 podSelector:
 matchLabels:
 app: nginx
 policyTypes:

2026/02/04 08:15 13/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 - Ingress
 - Egress

Important : Notez l'étiquette app: nginx. La policy s'applique donc au pod npnginx.

Créez maintenant la NetworkPolicy :

root@kubemaster:~# kubectl create -f mynetworkpolicy.yaml
networkpolicy.networking.k8s.io/mynetworkpolicy created

Testez de nouveau la communication entre npbusybox et npnginx :

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX_IP
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- 0:00:24 --:--:-- 0^C

Important : Notez que la NetworkPolicy bloque la communication. Notez aussi l'utilisation
de ^C pour terminer le processus.

Editez maintenant la NetworkPolicy :

root@kubemaster:~# kubectl edit networkpolicy -n nptest mynetworkpolicy

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this file will be
reopened with the relevant failures.
#

2026/02/04 08:15 14/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 creationTimestamp: "2022-09-16T13:24:29Z"
 generation: 1
 name: mynetworkpolicy
 namespace: nptest
 resourceVersion: "1490105"
 uid: b130f09f-2ab1-4dc6-9059-95f900234be3
spec:
 podSelector:
 matchLabels:
 app: nginx
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 lab: nptest
 ports:
 - protocol: TCP
 port: 80
status: {}
:wq

root@kubemaster:~# kubectl edit networkpolicy -n nptest mynetworkpolicy
networkpolicy.networking.k8s.io/mynetworkpolicy edited

Important : Notez la création de la règle ingress. Cette règle utilise un
namespaceSelector pour permettre du trafic à partir de pods dans un NameSpace ayant
une étiquette lab: nptest. La règle ports permet le trafic sur le port 80/tcp.

2026/02/04 08:15 15/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Testez de nouveau la communication entre npbusybox et npnginx :

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX_IP
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 615 100 615 0 0 531k 0 --:--:-- --:--:-- --:--:-- 600k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important : Notez que la communication a réussi.

2026/02/04 08:15 16/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

1.4 - Services

Présentation

Les services de K8s sont :

NodePort,
Ce Service rend un POD accessible sur un port du nœud le contenant,

ClusterIP
Ce Service crée une adresse IP virtuelle afin de permettre la communication entre de services différents dans le cluster, par exemple des
serveurs front-end avec des serveurs back-end,

LoadBalancer
Ce service provisionne un équilibrage de charge pour une application dans certains fournisseurs de Cloud publique tels Amazon Web
Services et Google Cloud Platform.

ExternalName
Ne fait pas parti de la certification CKA.

Mise en Application

Commencez par créer le deployment myapp-deployment :

root@kubemaster:~# kubectl create -f deployment-definition.yaml
deployment.apps/myapp-deployment created

Constatez l'état des pods :

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
busybox-dnstest 1/1 Running 0 4h9m 192.168.150.34
kubenode2.ittraining.loc <none> <none>

2026/02/04 08:15 17/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

myapp-deployment-7c4d4f7fc6-2km9n 1/1 Running 0 83s 192.168.239.34
kubenode1.ittraining.loc <none> <none>
myapp-deployment-7c4d4f7fc6-7pts7 1/1 Running 0 83s 192.168.239.35
kubenode1.ittraining.loc <none> <none>
myapp-deployment-7c4d4f7fc6-9pw5x 1/1 Running 0 83s 192.168.150.36
kubenode2.ittraining.loc <none> <none>
mydaemonset-hmdhp 1/1 Running 1 (7h29m ago) 23h 192.168.239.32
kubenode1.ittraining.loc <none> <none>
mydaemonset-kmf4z 1/1 Running 1 23h 192.168.150.31
kubenode2.ittraining.loc <none> <none>
nginx-dnstest 1/1 Running 0 4h9m 192.168.150.33
kubenode2.ittraining.loc <none> <none>

Important : Notez que les adresses 192.168.239.x sont associées aux PODs sur
kubenode1 tandis que les adresses 192.168.150.x sont associées aux PODs sur
kubenode2. Ces adresses sont issues du réseau 192.168.0.0/16 stipulé par l'option –pod-
network-cidr lors de l'initialisation du maître du cluster.

En sachant que dans chaque POD existe un conteneur Nginx, testez si vous pouvez afficher la page d'accueil de Nginx en vous connectant à
kubenode1 et kubenode2 à partir de votre Gateway :

trainee@kubemaster:~$ exit
déconnexion
Connection to 10.0.2.65 closed.
trainee@gateway:~$ curl 192.168.56.3
curl: (7) Failed to connect to 192.168.56.3 port 80: Connection refused
trainee@gateway:~$ curl 192.168.56.4
curl: (7) Failed to connect to 192.168.56.4 port 80: Connection refused

Important : Notez l'échec de la connexion.

2026/02/04 08:15 18/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Testez maintenant si vous pouvez afficher la page d'accueil de Nginx en vous connectant à un des PODs à partir de votre Gateway :

trainee@gateway:~$ curl 192.168.239.34
^C

Connectez-vous à kubemaster :

trainee@gateway:~$ ssh -l trainee 192.168.56.2
trainee@192.168.56.2's password: trainee
Linux kubemaster.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Jul 13 15:45:46 2022 from 10.0.2.40
trainee@kubemaster:~$ su -
Mot de passe : fenestros
root@kubemaster:~#

Bien évidement, il est possible d'afficher la page en vous connectant à un des PODs de l'intérieur du cluster :

root@kubemaster:~# curl 192.168.239.34
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;

2026/02/04 08:15 19/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important : Retenez donc qu'à ce stade il n'est pas possible d'afficher la page d'accueil
de Nginx en vous connectant de l'extérieur du cluster.

Le Service NodePort

Présentation

Le Service NodePort définit trois ports :

TargetPort : le port sur le POD,
Port : le port sur le Service lié à un IP du Cluster,
NodePort : le port sur le Nœud issu de la plage 30000-32767.

2026/02/04 08:15 20/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Si dans le même nœud, plusieurs PODs ont les étiquettes qui correspondent au selector du Service, le Service identifie les PODs et s'étend
automatiquement pour englober tous les PODs. Les PODs sont appelés des End-Points :

2026/02/04 08:15 21/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Important : Notez que dans ce cas l'équilibrage de charge est automatique est utilise
l’algorithme Random avec une affinité de session..

De même, quand les PODs sont distribués sur plusieurs nœuds, le Service s'étend pour tout englober :

Mise en Application

Créez donc le fichier YAML service-definition.yaml :

root@kubemaster:~# vi service-definition.yaml
root@kubemaster:~# cat service-definition.yaml
apiVersion: v1
kind: Service
metadata:
 name: myapp-service

spec:
 type: NodePort
 ports:
 - targetPort: 80

2026/02/04 08:15 22/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 port: 80
 nodePort: 30008
 selector:
 app: myapp
 type: front-end

Important : Notez que si le champ type: est manquant, sa valeur par défaut est
ClusterIP. Notez aussi que dans ports, seul le champ port est obligatoire. Si le champ
targetPort est manquant, sa valeur par défaut est celle du champ port. Si le champ
nodePort est manquant, sa valeur par défaut est le premier port disponible dans la plage
entre 30 000 et 32 767. Dernièrement, il est possible de spécifier de multiples définitions
de ports dans le service.

Le champs selector contient les étiquettes des PODs concernés par la mise en place du Service :

root@kubemaster:~# cat pod-definition.yaml
apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
spec:
 containers:
 - name: nginx-container
 image: nginx

Créez le Service en utilisant le fichier service-definition.yaml :

root@kubemaster:~# kubectl create -f service-definition.yaml

2026/02/04 08:15 23/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

service/myapp-service created

Constatez la création du Service :

root@kubemaster:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 26h
myapp-service NodePort 10.97.228.14 <none> 80:30008/TCP 13s

Important : Notez que le Service a une adresse IP du cluster et qu'il a exposé le port 30
008.

Testez maintenant si vous pouvez afficher la page d'accueil de Nginx en vous connectant à un des PODs à partir de votre Gateway en utilisant le port
exposé :

root@kubemaster:~# exit
déconnexion

trainee@kubemaster:~$ exit
déconnexion
Connection to 192.168.56.2 closed.

trainee@gateway:~$ curl 192.168.56.3:30008
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;

2026/02/04 08:15 24/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

trainee@gateway:~$ curl 192.168.56.4:30008
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and

2026/02/04 08:15 25/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Le Service ClusterIP

Présentation

Le Service ClusterIP permet de regrouper les PODs offrant le même service afin de faciliter la communication entre pods à l'intérieur du cluster.

Mise en Application

Pour créer un Service ClusterIP, créez le fichier clusterip-example.yaml :

root@kubemaster:~# vi clusterip-example.yaml
root@kubemaster:~# cat clusterip-example.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: deploymentclusterip
spec:
 replicas: 3
 selector:
 matchLabels:

2026/02/04 08:15 26/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 app: clusteripexample
 template:
 metadata:
 labels:
 app: clusteripexample
 spec:
 containers:
 - name: nginx
 image: nginx:1.19.1
 ports:
 - containerPort: 80

Créez un deployment en utilisant le fichier clusterip-example.yaml :

root@kubemaster:~# kubectl create -f clusterip-example.yaml
deployment.apps/deploymentclusterip created

Creéz maintenant un service de type ClusterIP pour exposer les pods du deplyment deploymentclusterip :

root@kubemaster:~# vi clusterip-service.yaml
root@kubemaster:~# cat clusterip-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: clusteripservice
spec:
 type: ClusterIP
 selector:
 app: clusteripexample
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

2026/02/04 08:15 27/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Créez un service en utilisant le fichier clusterip-service.yaml :

root@kubemaster:~# kubectl create -f clusterip-service.yaml
service/clusteripservice created

root@kubemaster:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusteripservice ClusterIP 10.109.80.217 <none> 80/TCP 5s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 12d

Consultez les EndPoints du service en utilisant la commande suivante :

root@kubemaster:~# kubectl get endpoints clusteripservice
NAME ENDPOINTS AGE
clusteripservice 192.168.150.39:80,192.168.150.40:80,192.168.239.38:80 114s

Créez maintenant un pod qui utilisera le service clusteripservice :

root@kubemaster:~# vi clusterippod.yaml
root@kubemaster:~# cat clusterippod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: clusterippod
spec:
 containers:
 - name: busybox
 image: radial/busyboxplus:curl
 command: ['sh', '-c', 'while true; do sleep 10; done']

Créez le pod en utilisant le fichier clusterippod.yaml :

root@kubemaster:~# kubectl create -f clusterippod.yaml

2026/02/04 08:15 28/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

pod/clusterippod created

Vérifiez que le pod clusterippod est en cours de fonctionnement :

root@kubemaster:~# kubectl get pod clusterippod
NAME READY STATUS RESTARTS AGE
clusterippod 1/1 Running 0 2m28s

Consultez le service clusteripservice de l''intérieur du pod clusterippod :

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>
100 612 100 612 0 0 6224 0 --:--:-- --:--:-- --:--:-- 6652

2026/02/04 08:15 29/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

1.5 - Services et le DNS k8s

Avant de poursuivre, nettoyez le cluster :

root@kubemaster:~# kubectl delete service myapp-service
service "myapp-service" deleted

root@kubemaster:~# kubectl delete deployment myapp-deployment
deployment.extensions "myapp-deployment" deleted

root@kubemaster:~# kubectl delete daemonset mydaemonset
daemonset.apps "mydaemonset" deleted

root@kubemaster:~# kubectl delete pods busybox-dnstest nginx-dnstest
pod "busybox-dnstest" deleted
pod "nginx-dnstest" deleted

Présentation

Chaque service K8s est attribué un FQDN sous la forme :

nom-service.nom-namespace.svc.nom-cluster-domain.example

Notez que :

Le nom-cluster-domain.example par défaut est cluster.local.
Le FQDN peut être utilisé pour atteindre un service à partir de n'importe quel NameSpace.
Les pods du même NameSpace que le service peuvent l'atteindre en utilisant son nom court, à savoir, nom-service.

Mise en Application

2026/02/04 08:15 30/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Visualisez le service clusteripservice créé précédement :

root@kubemaster:~# kubectl get service clusteripservice
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusteripservice ClusterIP 10.109.80.217 <none> 80/TCP 12m

ainsi que les pods présents dans le cluster :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
clusterippod 1/1 Running 0 11m
deploymentclusterip-7776dc8d55-bmfjl 1/1 Running 0 15m
deploymentclusterip-7776dc8d55-pgmcg 1/1 Running 0 15m
deploymentclusterip-7776dc8d55-qvphh 1/1 Running 0 15m

Visualisez le FQDN du service clusteripservice en utilisant le pod clusterippod :

root@kubemaster:~# kubectl exec clusterippod -- nslookup 10.109.80.217
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: 10.109.80.217
Address 1: 10.109.80.217 clusteripservice.default.svc.cluster.local

Important : Notez que le FQDN du service est
clusteripservice.default.svc.cluster.local.

Vérifiez la communication avec le service en utilisant son adresse IP :

root@kubemaster:~# kubectl exec clusterippod -- curl 10.109.80.217
 % Total % Received % Xferd Average Speed Time Time Time Current

2026/02/04 08:15 31/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 Dload Upload Total Spent Left Speed
100 612 100 612 0 0 35322 0 --:--:--<!DOCTYPE html>:-- 0
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>
 --:--:-- --:--:-- 36000

Vérifiez la communication avec le service en utilisant son nom court :

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 612 100 612 0 0 81404 0 --:--:-- --:--:-- --:--:-- 597k

2026/02/04 08:15 32/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important : Notez que la communication a réussi parce que le pod clusterippod et le
service clusteripservice sont dans le même namespace.

Vérifiez la communication avec le service en utilisant son FQDN :

2026/02/04 08:15 33/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice.default.svc.cluster.local
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 612 100 612 0 0 269k 0 --:--:-- --:--:-- --:--:-- 597k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Vérifiez maintenant la communication avec le service en utilisant son nom court à partir du pod npbusybox dans le namespace nptest :

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl clusteripservice
curl: (6) Couldn't resolve host 'clusteripservice'

2026/02/04 08:15 34/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

command terminated with exit code 6

Important : Notez que la communication n'a pas réussi parce que le pod npbusybox et
le service clusteripservice ne sont pas dans le même namespace.

Vérifiez maintenant la communication avec le service en utilisant son FQDN à partir du pod npbusybox dans le namespace nptest :

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl clusteripservice.default.svc.cluster.local
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 612 100 612 0 0 291k 0 --:--:-- --:--:-- --:--:-- 597k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

2026/02/04 08:15 35/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important : Notez que la communication a réussi grâce à l'utilisation du FQDN du service.

1.6 - Gestion de K8s Ingress

Présentation

Un Ingress est un objet k8s qui gère l'accès aux services de l'extérieur du cluster. Un Ingress est capable d'avantage de fonctionnalités qu'un simple
service NodePort, par exemple :

SSL,
équilibrage de charge,
hôtes virtuels par nom.

L'Ingress ne fait rien tout seul. Il a besoin d'un Contrôleur Ingress pour fonctionner. La mise en place et la configuration d'un Contrôleur Ingress ne
fait pas parti de la certification CKA.

Mise en Application

Commencez par créer le fichier myingress.yaml :

root@kubemaster:~# vi myingress.yaml
root@kubemaster:~# cat myingress.yaml

2026/02/04 08:15 36/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: my-ingress
spec:
 rules:
 - http:
 paths:
 - path: /somepath
 pathType: Prefix
 backend:
 service:
 name: clusteripservice
 port:
 number: 80

Important : Notez que dans ce fichier Ingress nous avons une règle qui définie un path.
Des requêtes qui référence le path, par exemple http://<endpoint>/somepath, seront
routées vers le backend. Dans cet exemple, le backend est un service, clusteripservice
qui écoute sur le port 80.

Créez maintenant l'Ingress :

root@kubemaster:~# kubectl create -f myingress.yaml
ingress.networking.k8s.io/my-ingress created

Consultez maintenant l'Ingress :

root@kubemaster:~# kubectl describe ingress my-ingress
Name: my-ingress
Labels: <none>

2026/02/04 08:15 37/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Namespace: default
Address:
Ingress Class: <none>
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 *
 /somepath clusteripservice:80 (192.168.150.39:80,192.168.150.40:80,192.168.239.38:80)
Annotations: <none>
Events: <none>

Important : Notez que les endpoints du service clusteripservice sont affichés dans la
sortie de la commande.

Editez maintenant le fichier clusterip-service.yaml et ajoutez une ligne name dans la section ports :

root@kubemaster:~# vi clusterip-service.yaml
root@kubemaster:~# cat clusterip-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: clusteripservice
spec:
 type: ClusterIP
 selector:
 app: clusteripexample
 ports:
 - name: myingress
 protocol: TCP
 port: 80

2026/02/04 08:15 38/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 targetPort: 80

Important : Notez que le nom peut être n'importe quelle chaîne de caractères.

Appliquez la modification du clusteripservice :

root@kubemaster:~# kubectl apply -f clusterip-service.yaml
Warning: resource services/clusteripservice is missing the kubectl.kubernetes.io/last-applied-configuration
annotation which is required by kubectl apply. kubectl apply should only be used on resources created
declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched
automatically.
service/clusteripservice configured

Important : Notez que l'erreur est sans importance.

Editez maintenant le fichier myingress.yaml et ajoutez une ligne name dans la section ports et en supprimant la ligne number: 80 :

root@kubemaster:~# cat myingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: my-ingress
spec:
 rules:
 - http:
 paths:
 - path: /somepath
 pathType: Prefix

2026/02/04 08:15 39/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 backend:
 service:
 name: clusteripservice
 port:
 name: myingress

Appliquez la modification de l'Ingress :

root@kubemaster:~# kubectl apply -f myingress.yaml
Warning: resource ingresses/my-ingress is missing the kubectl.kubernetes.io/last-applied-configuration annotation
which is required by kubectl apply. kubectl apply should only be used on resources created declaratively by
either kubectl create --save-config or kubectl apply. The missing annotation will be patched automatically.
ingress.networking.k8s.io/my-ingress configured

Important : Notez que l'erreur est sans importance.

Consultez maintenant l'Ingress :

root@kubemaster:~# kubectl describe ingress my-ingress
Name: my-ingress
Labels: <none>
Namespace: default
Address:
Ingress Class: <none>
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 *
 /somepath clusteripservice:myingress (192.168.150.39:80,192.168.150.40:80,192.168.239.38:80)
Annotations: <none>

2026/02/04 08:15 40/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Events: <none>

Important : Notez que l'Ingress peut toujours trouver le backend grâce à l'utilisation du
nom myingress.

LAB #2 - Gestion d'une Architecture de Microservices

Avant de continer, nettoyez le cluster :

root@kubemaster:~# kubectl delete service clusteripservice
service "clusteripservice" deleted

root@kubemaster:~# kubectl delete deployment deploymentclusterip
deployment.apps "deploymentclusterip" deleted

root@kubemaster:~# kubectl delete ingress my-ingress
ingress.networking.k8s.io "my-ingress" deleted

root@kubemaster:~# kubectl delete pod clusterippod
pod "clusterippod" deleted

Vérifiez qu'il ne reste que le service par défaut kubernetes :

root@kubemaster:~# kubectl get all
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 13d

2026/02/04 08:15 41/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

2.1 - Présentation

Vous allez mettre en place une application simple, appelé demo-voting-app et développé par Docker, sous forme de microservices :

Dans cette application le conteneur voting-app permet de voter pour des chats ou des chiens. Cette application tourne sous Python et fournit une
interace HTML :

2026/02/04 08:15 42/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Lors de la vote, le résultat de celle-ci est stocké dans Redis dans une base de données en mémoire. Le résultat est ensuite passé au conteneur
Worker qui tourne sous .NET et qui met à jour la base de données persistante dans le conteneur db qui tourne sous PostgreSQL.

L'application result-app qui tourne sous NodeJS lit ensuite la table dans la base de données PostgreSQL et affiche le résultat sous forme HTML :

2026/02/04 08:15 43/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

2.2 - Création des Deployments

Créez le répertoire myapp. Placez-vous dans ce répertoire et créez le fichier voting-app-deployment.yaml :

root@kubemaster:~# mkdir myapp
root@kubemaster:~# cd myapp
root@kubemaster:~/app# vi voting-app-deployment.yaml
root@kubemaster:~/app# cat voting-app-deployment.yaml

apiVersion: apps/v1

2026/02/04 08:15 44/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

kind: Deployment
metadata:
 name: voting-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: voting-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: voting-app-pod
 labels:
 name: voting-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: voting-app
 image: dockersamples/examplevotingapp_vote
 ports:
 - containerPort: 80

Important : Ce fichier décrit un Deployment. Notez que le Deployment crée un replica du
POD spécifié par template contenant un conteneur dénommé voting-app qui utilise le
port 80 et qui est créé à partir de l'image dockersamples/examplevotingapp_vote.

Créez maintenant le fichier redis-deployment.yaml :

2026/02/04 08:15 45/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~/app# vi redis-deployment.yaml
root@kubemaster:~/app# cat redis-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: redis-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: redis-pod
 app: demo-voting-app
 template:
 metadata:
 name: redis pod
 labels:
 name: redis-pod
 app: demo-voting-app

 spec:
 containers:
 - name: redis
 image: redis
 ports:
 - containerPort: 6379

Important : Ce fichier décrit un Deployment. Notez que le Deployment crée un replica du
POD spécifié par template contenant un conteneur dénommé redis qui utilise le port
6379 et qui est créé à partir de l'image redis.

2026/02/04 08:15 46/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Créez le fichier worker-deployment.yaml :

root@kubemaster:~/app# vi worker-deployment.yaml
root@kubemaster:~/app# cat worker-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: worker-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: worker-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: worker-app-pod
 labels:
 name: worker-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: worker-app
 image: dockersamples/examplevotingapp_worker

Important : Ce fichier décrit un Deployment. Notez que le Deployment crée un replica du
POD spécifié par template contenant un conteneur dénommé worker-app qui est créé à
partir de l'image dockersamples/examplevotingapp_worker.

2026/02/04 08:15 47/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Créez ensuite le fichier postgres-deployment.yaml :

root@kubemaster:~/app# vi postgres-deployment.yaml
root@kubemaster:~/app# cat postgres-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: postgres-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: postgres-pod
 app: demo-voting-app
 template:
 metadata:
 name: postgres pod
 labels:
 name: postgres-pod
 app: demo-voting-app

 spec:
 containers:
 - name: postgres
 image: postgres:9.4
 env:
 - name: POSTGRES_USER
 value: postgres
 - name: POSTGRES_PASSWORD
 value: postgres
 ports:

2026/02/04 08:15 48/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 - containerPort: 5432

Important : Ce fichier décrit un Deployment. Notez que le Deployment crée un replica du
POD spécifié par template contenant un conteneur dénommé postgres qui utilise le port
5432 et qui est créé à partir de l'image postgres:9.4.

Dernièrement, créez le fichier result-app-deployment.yaml :

root@kubemaster:~/app# vi result-app-deployment.yaml
root@kubemaster:~/app# cat result-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: result-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: result-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: result-app-pod
 labels:
 name: result-app-pod
 app: demo-voting-app

 spec:

2026/02/04 08:15 49/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 containers:
 - name: result-app
 image: dockersamples/examplevotingapp_result
 ports:
 - containerPort: 80

Important : Ce fichier décrit un Deployment. Notez que le Deployment crée un replica du
POD spécifié par template contenant un conteneur dénommé result-app qui utilise le
port 80 et qui est créé à partir de l'image dockersamples/examplevotingapp_result.

2.3 - Création des Services

Créez maintenant le fichier redis-service.yaml :

root@kubemaster:~/app# vi redis-service.yaml
root@kubemaster:~/app# cat redis-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: redis
 labels:
 name: redis-service
 app: demo-voting-app

spec:
 ports:
 - port: 6379
 targetPort: 6379
 selector:

2026/02/04 08:15 50/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 name: redis-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service ClusterIP. Notez que le Service expose le port
6379 sur tout POD ayant le nom redis-pod.

Créez ensuite le fichier postgres-service.yaml :

root@kubemaster:~/app# vi postgres-service.yaml
root@kubemaster:~/app# cat postgres-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: db
 labels:
 name: db-service
 app: demo-voting-app

spec:
 ports:
 - port: 5432
 targetPort: 5432
 selector:
 name: postgres-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service ClusterIP. Notez que le Service expose le port
5432 sur tout POD ayant le nom postgres-pod.

2026/02/04 08:15 51/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Créez le fichier voting-app-service.yaml :

root@kubemaster:~/app# vi voting-app-service.yaml
root@kubemaster:~/app# cat voting-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: voting-service
 labels:
 name: voting-service
 app: demo-voting-app

spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: voting-app-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service NodePort. Notez que le Service expose le port
80 sur tout POD ayant le nom voting-app-pod.

Dernièrement, créez le fichier result-app-service.yaml :

root@kubemaster:~/app# vi result-app-service.yaml
root@kubemaster:~/app# cat result-app-service.yaml

apiVersion: v1

2026/02/04 08:15 52/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

kind: Service
metadata:
 name: result-service
 labels:
 name: result-service
 app: demo-voting-app

spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: result-app-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service NodePort. Notez que le Service expose le port
80 sur tout POD ayant le nom result-app-pod.

2.4 - Déployer l'Application

Vérifiez que vous avez créé tous les fichiers YAML necéssaires :

root@kubemaster:~/myapp# ls
postgres-deployment.yaml redis-deployment.yaml result-app-deployment.yaml voting-app-deployment.yaml worker-
deployment.yaml
postgres-service.yaml redis-service.yaml result-app-service.yaml voting-app-service.yaml

Utilisez ensuite la commande kubectl create :

2026/02/04 08:15 53/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~/myapp# kubectl create -f .
deployment.apps/postgres-deployment created
service/db created
deployment.apps/redis-deployment created
service/redis created
deployment.apps/result-app-deployment created
service/result-service created
deployment.apps/voting-app-deployment created
service/voting-service created
deployment.apps/worker-app-deployment created

Important : Notez l'utilisation du caractère . qui indique tout fichier dans le répertoire
courant.

Attendez que tous les Deployments soient READY (7 à 10 minutes) :

root@kubemaster:~/myapp# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
postgres-deployment 1/1 1 1 51m
redis-deployment 1/1 1 1 51m
result-app-deployment 1/1 1 1 51m
voting-app-deployment 1/1 1 1 51m
worker-app-deployment 1/1 1 1 51m

Contrôlez ensuite l'état des PODs :

root@kubemaster:~/myapp# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-deployment-5b8bd66778-j99zz 1/1 Running 0 51m
redis-deployment-67d4c466c4-9wzfn 1/1 Running 0 51m
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 0 51m

2026/02/04 08:15 54/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

voting-app-deployment-669dccccfb-jpn6h 1/1 Running 0 51m
worker-app-deployment-559f7749b6-jh86r 1/1 Running 0 51m

ainsi que la liste des Services :

root@kubemaster:~/myapp# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
db ClusterIP 10.107.90.45 <none> 5432/TCP 24h
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 4d9h
redis ClusterIP 10.102.154.105 <none> 6379/TCP 24h
result-service NodePort 10.103.192.107 <none> 80:31526/TCP 24h
voting-service NodePort 10.96.42.244 <none> 80:32413/TCP 24h

Dans le cas donc de l'exemple dans ce cours, l'application ressemble maintenant au diagramme suivant :

2026/02/04 08:15 55/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

2.5 - Scaling Up

Éditez le fichier voting-app-deployment.yaml et modifiez la valeur du champ replicas de 1 à 3 :

root@kubemaster:~/app# vi voting-app-deployment.yaml
root@kubemaster:~/app# cat voting-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: voting-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 3
 selector:
 matchLabels:
 name: voting-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: voting-app-pod
 labels:
 name: voting-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: voting-app
 image: dockersamples/examplevotingapp_vote
 ports:
 - containerPort: 80

2026/02/04 08:15 56/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Éditez le fichier result-app-deployment.yaml et modifiez la valeur du champ replicas de 1 à 3 :

root@kubemaster:~/app# vi result-app-deployment.yaml
root@kubemaster:~/app# cat result-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: result-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 3
 selector:
 matchLabels:
 name: result-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: result-app-pod
 labels:
 name: result-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: result-app
 image: dockersamples/examplevotingapp_result
 ports:
 - containerPort: 80

Appliquez les modifications à l'aide de la commande kubectl apply :

root@kubemaster:~/myapp# kubectl apply -f voting-app-deployment.yaml

2026/02/04 08:15 57/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/voting-app-deployment configured

root@kubemaster:~/myapp# kubectl apply -f result-app-deployment.yaml
Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/result-app-deployment configured

Contrôlez ensuite les Deployments :

root@kubemaster:~/myapp# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
postgres-deployment 1/1 1 1 23h
redis-deployment 1/1 1 1 23h
result-app-deployment 3/3 3 3 23h
voting-app-deployment 3/3 3 3 23h
worker-app-deployment 1/1 1 1 23h

ainsi que les PODs :

root@kubemaster:~/myapp# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
postgres-deployment-5b8bd66778-j99zz 1/1 Running 1 169m 192.168.35.83 kubenode2
<none> <none>
redis-deployment-67d4c466c4-9wzfn 1/1 Running 1 169m 192.168.205.217 kubenode1
<none> <none>
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 1 169m 192.168.205.218 kubenode1
<none> <none>
result-app-deployment-b8f9dc967-r84k6 1/1 Running 0 2m36s 192.168.35.86 kubenode2
<none> <none>
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 0 2m36s 192.168.35.85 kubenode2
<none> <none>
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 1 169m 192.168.35.82 kubenode2
<none> <none>

2026/02/04 08:15 58/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

voting-app-deployment-669dccccfb-ktd7d 1/1 Running 0 2m50s 192.168.35.84 kubenode2
<none> <none>
voting-app-deployment-669dccccfb-x868p 1/1 Running 0 2m50s 192.168.205.219 kubenode1
<none> <none>
worker-app-deployment-559f7749b6-jh86r 1/1 Running 2 169m 192.168.205.216 kubenode1
<none> <none>

Dans le cas de l'exemple dans ce cours, l'application ressemble maintenant au diagramme suivant :

Retournez sur le navigateur de votre machine hôte et rafraichissez la page du voting-app :

2026/02/04 08:15 59/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Important : Notez le POD qui a servi la page.

Rafraîchissez la page de nouveau :

2026/02/04 08:15 60/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

Important : Notez que le POD qui a servi la page a changé.

Notez que ce changement de POD n'indique pas un équilibrage de charge. En effet, il faudrait mettre en place une autre machine virtuelle sous, par
exemple, HAProxy pour obtenir l'équilibrage.

Par contre, dans le cas d'une application sur GCP par exemple, il convient de modifier les deux fichiers suivants en changeant la valeur de champ type
de NodePort à LoadBalancer puis de configurer une instance du Load Balancer natif de GCP :

root@kubemaster:~/app# vi voting-app-service.yaml

2026/02/04 08:15 61/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~/app# cat voting-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: voting-service
 labels:
 name: voting-service
 app: demo-voting-app

spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: voting-app-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service LoadBalancer. Notez que le Service expose le
port 80 sur tout POD ayant le nom voting-app-pod.

Dernièrement, créez le fichier result-app-service.yaml :

root@kubemaster:~/app# vi result-app-service.yaml
root@kubemaster:~/app# cat result-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: result-service

2026/02/04 08:15 62/62 DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://www.ittraining.team/

 labels:
 name: result-service
 app: demo-voting-app

spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: result-app-pod
 app: demo-voting-app

Copyright © 2024 Hugh Norris

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s04

Last update: 2024/12/19 13:33

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s04

	DOF305 - Gestion du Réseau, des Services et d'une Architecture de Microservices
	Contenu du Module
	Ressources
	LAB #1
	LAB #2

	LAB #1 - Gestion du Réseau et des Services
	1.1 - Présentation des Extensions Réseau
	1.2 - DNS K8s
	Présentation
	Mise en Application

	1.3 - Network Policies
	Présentation
	Mise en Application

	1.4 - Services
	Présentation
	Mise en Application
	Le Service NodePort
	Présentation
	Mise en Application

	Le Service ClusterIP
	Présentation
	Mise en Application

	1.5 - Services et le DNS k8s
	Présentation
	Mise en Application

	1.6 - Gestion de K8s Ingress
	Présentation
	Mise en Application

	LAB #2 - Gestion d'une Architecture de Microservices
	2.1 - Présentation
	2.2 - Création des Deployments
	2.3 - Création des Services
	2.4 - Déployer l'Application
	2.5 - Scaling Up

