
2026/02/04 08:21 1/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Version - 2024.01

Dernière mise-à-jour : 2024/12/15 06:51

DOF304 - Travailler avec des Pods et des Conteneurs

Contenu du Module

DOF304 - Travailler avec des Pods et des Conteneurs
Contenu du Module
LAB #1 - Application Configuration

1.1 - Présentation
1.2 - Création d'une ConfigMap
1.3 - Création d'un Secret
1.4 - Utilisation de ConfigMaps et de Secrets

Utilisation de Variables d'environnement
Utilisation de Volumes de Configuration

LAB #2 - Gestion des Ressources des Conteneurs
2.1 - Présentation
2.2 - Resource Requests
2.3 - Resource Limits

LAB #3 - Supervision des Conteneurs
3.1 - Présentation
3.2 - Liveness Probes

Le Probe exec
Le Probe httpGet

3.3 - Startup Probes
3.4 - Readiness Probes

LAB #4 - Gestion des Politiques de Redémarrage
4.1 - Présentation
4.2 - Always

2026/02/04 08:21 2/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

4.3 - OnFailure
4.4 - Never

LAB #5 - Création de Pods Multi-conteneurs
5.1 - Présentation
5.2 - Mise en Place

LAB #6 - Conteneurs Init
6.1 - Présentation
6.2 - Mise en Place

LAB #7 - Scheduling
7.1 - Présentation
7.2 - Mise en Place

LAB #8 - DaemonSets
8.1 - Présentation
8.2 - Mise en Place

LAB #9 - Pods Statiques
9.1 - Présentation
9.2 - Mise en Place

Ressources

Lab #1

https://www.dropbox.com/scl/fi/7hkyea9v3lc949b9ar5hl/myconfigmap.yaml?rlkey=kv5x17lirugxppbyzgk0yhbhh&dl=0
https://www.dropbox.com/scl/fi/o752fqb1gc5shocih9zc7/mysecret.yaml?rlkey=mfof15llfnanksi0ztmzdy7tp&dl=0
https://www.dropbox.com/scl/fi/70g1jb7p4ighdbkk33mre/envpod.yaml?rlkey=31muxz3g7a7k91nd98bjxhkjz&dl=0
https://www.dropbox.com/scl/fi/td43bvv8aphqqbwc59j4l/volumepod.yaml?rlkey=sti941svagvli2qbi6jkljaoy&dl=0

Lab #2

https://www.dropbox.com/scl/fi/n1147jb572h0dnadwjamm/bigrequestpod.yaml?rlkey=08fpyndzpg720or0h6zkm9vxz&dl=0
https://www.dropbox.com/scl/fi/3lo335z508wo4sutr8zwk/resourcepod.yaml?rlkey=ezycaxxvyf74u7xdtawhnssje&dl=0

https://www.dropbox.com/scl/fi/7hkyea9v3lc949b9ar5hl/myconfigmap.yaml?rlkey=kv5x17lirugxppbyzgk0yhbhh&dl=0
https://www.dropbox.com/scl/fi/o752fqb1gc5shocih9zc7/mysecret.yaml?rlkey=mfof15llfnanksi0ztmzdy7tp&dl=0
https://www.dropbox.com/scl/fi/70g1jb7p4ighdbkk33mre/envpod.yaml?rlkey=31muxz3g7a7k91nd98bjxhkjz&dl=0
https://www.dropbox.com/scl/fi/td43bvv8aphqqbwc59j4l/volumepod.yaml?rlkey=sti941svagvli2qbi6jkljaoy&dl=0
https://www.dropbox.com/scl/fi/n1147jb572h0dnadwjamm/bigrequestpod.yaml?rlkey=08fpyndzpg720or0h6zkm9vxz&dl=0
https://www.dropbox.com/scl/fi/3lo335z508wo4sutr8zwk/resourcepod.yaml?rlkey=ezycaxxvyf74u7xdtawhnssje&dl=0

2026/02/04 08:21 3/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Lab #3

https://www.dropbox.com/scl/fi/9igcin5jo18z1bpjjx9vx/livenesspod.yaml?rlkey=23f17olf3jo8l12h972noijve&dl=0
https://www.dropbox.com/scl/fi/tqno3tjsif093kpxo0jrg/livenesspodhttp.yaml?rlkey=lsn5q2d9goe619jnkpz3p6ok2&dl=0
https://www.dropbox.com/scl/fi/s4pst2ezp0qpylu6m8frx/startuppod.yaml?rlkey=xbaenkztscopqzuq8u4dxxcx8&dl=0
https://www.dropbox.com/scl/fi/a0hdk8shspxsi23hkf7vi/readinesspod.yaml?rlkey=w230asyme4ywxitfzgzy4ehsw&dl=0

Lab #4

https://www.dropbox.com/scl/fi/y8bu7cryzv5wfkln2r6wc/alwayspod.yaml?rlkey=n5rmuhmy4o1gojvez1yz3w1ys&dl=0
https://www.dropbox.com/scl/fi/m6wy0x16vdsd87vuriyl9/onfailure.yaml?rlkey=ox8nfznllrjui1mal4idtzx3u&dl=0
https://www.dropbox.com/scl/fi/7oyo26ackzdxjm78ipjvg/never.yaml?rlkey=hqf5f07kvmiuhdehyjc9r6mni&dl=0

Lab #5

https://www.dropbox.com/scl/fi/4j0nnzgt8ammsfzpqm3ul/multicontainerpod.yaml?rlkey=n08saexw65stxvy4twd9x2npr&dl=0
https://www.dropbox.com/scl/fi/x8fy28yiiyq7rrb5x7gse/helper.yaml?rlkey=9hhvly431j39x2vmfeopk9tk1&dl=0

Lab #6

https://www.dropbox.com/scl/fi/llvkk1jija3pk227u6w8v/initpod.yaml?rlkey=krtkq8qhc8dalr84jw0p4jwdh&dl=0

Lab #7

https://www.dropbox.com/scl/fi/qdnl21iip9shwjqc93rpy/nodeselector.yaml?rlkey=x5eumxvmgkeh9vctrwd9rmuwi&dl=0
https://www.dropbox.com/scl/fi/46npmxik2heh8z3wiw6ah/nodename.yaml?rlkey=blck3kzwgqzm21ttsjxph965k&dl=0

Lab #8

https://www.dropbox.com/scl/fi/9igcin5jo18z1bpjjx9vx/livenesspod.yaml?rlkey=23f17olf3jo8l12h972noijve&dl=0
https://www.dropbox.com/scl/fi/tqno3tjsif093kpxo0jrg/livenesspodhttp.yaml?rlkey=lsn5q2d9goe619jnkpz3p6ok2&dl=0
https://www.dropbox.com/scl/fi/s4pst2ezp0qpylu6m8frx/startuppod.yaml?rlkey=xbaenkztscopqzuq8u4dxxcx8&dl=0
https://www.dropbox.com/scl/fi/a0hdk8shspxsi23hkf7vi/readinesspod.yaml?rlkey=w230asyme4ywxitfzgzy4ehsw&dl=0
https://www.dropbox.com/scl/fi/y8bu7cryzv5wfkln2r6wc/alwayspod.yaml?rlkey=n5rmuhmy4o1gojvez1yz3w1ys&dl=0
https://www.dropbox.com/scl/fi/m6wy0x16vdsd87vuriyl9/onfailure.yaml?rlkey=ox8nfznllrjui1mal4idtzx3u&dl=0
https://www.dropbox.com/scl/fi/7oyo26ackzdxjm78ipjvg/never.yaml?rlkey=hqf5f07kvmiuhdehyjc9r6mni&dl=0
https://www.dropbox.com/scl/fi/4j0nnzgt8ammsfzpqm3ul/multicontainerpod.yaml?rlkey=n08saexw65stxvy4twd9x2npr&dl=0
https://www.dropbox.com/scl/fi/x8fy28yiiyq7rrb5x7gse/helper.yaml?rlkey=9hhvly431j39x2vmfeopk9tk1&dl=0
https://www.dropbox.com/scl/fi/llvkk1jija3pk227u6w8v/initpod.yaml?rlkey=krtkq8qhc8dalr84jw0p4jwdh&dl=0
https://www.dropbox.com/scl/fi/qdnl21iip9shwjqc93rpy/nodeselector.yaml?rlkey=x5eumxvmgkeh9vctrwd9rmuwi&dl=0
https://www.dropbox.com/scl/fi/46npmxik2heh8z3wiw6ah/nodename.yaml?rlkey=blck3kzwgqzm21ttsjxph965k&dl=0

2026/02/04 08:21 4/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/fqxcxm7ia69ne9keruqg2/daemonset.yaml?rlkey=r7hn65en4beq3zvza5jxfysd5&dl=0

Lab #9

https://www.dropbox.com/scl/fi/pwvwbsant7onw0hwikmp4/mystaticpod.yaml?rlkey=l6jzgtgcss3atx9emqk3h7qz6&dl=0

LAB #1 - Application Configuration

1.1 - Présentation

La gestion de la configuration d'application ou Application Configuration est le processus de passage de valeurs dynamiques aux applications au
moment du runtime.

Il y a deux façons de stocker des informations dans K8s :

ConfigMaps,
Secrets.

Les données stockées dans des ConfigMaps et des Secrets peuvent être passées aux conteneurs en utilisant des :

Variables d'environnement,
Volumes de configuration.

1.2 - Création d'une ConfigMap

Pour commencer, créez le fichier myconfigmap.yaml :

root@kubemaster:~# vi myconfigmap.yaml
root@kubemaster:~# cat myconfigmap.yaml
apiVersion: v1

https://www.dropbox.com/scl/fi/fqxcxm7ia69ne9keruqg2/daemonset.yaml?rlkey=r7hn65en4beq3zvza5jxfysd5&dl=0
https://www.dropbox.com/scl/fi/pwvwbsant7onw0hwikmp4/mystaticpod.yaml?rlkey=l6jzgtgcss3atx9emqk3h7qz6&dl=0

2026/02/04 08:21 5/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

kind: ConfigMap
metadata:
 name: my-configmap
data:
 key1: Hello, world!
 key2: |
 Test
 multiple lines
 more lines

Important : Notez que les données sont stockées dans des Key-values. La première
donnée dans la section data est key1: Hello, world! tandis que la deuxième, key2, est
en plusieurs lignes.

Créez maintenant la ConfigMap :

root@kubemaster:~# kubectl create -f myconfigmap.yaml
configmap/my-configmap created

Pour consulter le contenu de la ConfigMap, utilisez la commande kubectl describe :

root@kubemaster:~# kubectl describe configmap my-configmap
Name: my-configmap
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
key1:

2026/02/04 08:21 6/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Hello, world!
key2:

Test
multiple lines
more lines

BinaryData
====

Events: <none>

1.3 - Création d'un Secret

Créez maintenant le fichier mysecret.yaml :

root@kubemaster:~# vi mysecret.yaml
root@kubemaster:~# cat mysecret.yaml
apiVersion: v1
kind: Secret
metadata:
 name: my-secret
type: Opaque
data:
 secretkey1:
 secretkey2:

Important : Notez que les clefs secrets n'ont pas encore été définies.

2026/02/04 08:21 7/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Cryptez maintenant les deux clefs en utilisant base64 :

root@kubemaster:~# echo -n 'secret' | base64
c2VjcmV0

root@kubemaster:~# echo -n 'anothersecret' | base64
YW5vdGhlcnNlY3JldA==

Copiez et collez les chaînes base64 dans le fichier mysecret.yaml :

root@kubemaster:~# vi mysecret.yaml
root@kubemaster:~# cat mysecret.yaml
apiVersion: v1
kind: Secret
metadata:
 name: my-secret
type: Opaque
data:
 secretkey1: c2VjcmV0
 secretkey2: YW5vdGhlcnNlY3JldA==

Important : Remplacez les chaînes par celles que VOUS avez créé.

Créez maintenant le Secret :

root@kubemaster:~# kubectl create -f mysecret.yaml
secret/my-secret created

2026/02/04 08:21 8/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

1.4 - Utilisation de ConfigMaps et de Secret

Utilisation des Variables d'environnement

Créez le fichier envpod.yaml :

root@kubemaster:~# vi envpod.yaml
root@kubemaster:~# cat envpod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: envpod
spec:
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'echo "configmap: $CONFIGMAPVAR secret: $SECRETVAR"']
 env:
 - name: CONFIGMAPVAR
 valueFrom:
 configMapKeyRef:
 name: my-configmap
 key: key1
 - name: SECRETVAR
 valueFrom:
 secretKeyRef:
 name: my-secret
 key: secretkey1

Important : Notez que la variable $CONFIGMAPVAR contiendra la valeur de key1 de la
ConfigMap et que la variable $SECRETVAR contindra la valeur de secretkey1 du

2026/02/04 08:21 9/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Secret.

Créez maintenant le pod :

root@kubemaster:~# kubectl create -f envpod.yaml
pod/envpod created

Consultez maintenant les logs du pod :

root@kubemaster:~# kubectl logs envpod
configmap: Hello, world! secret: secret

Important : Notez que le conteneur dans le pod voit bien les valeurs des deux variables.

Utilisation des Volumes de Configuration

Créez le fichier volumepod.yaml :

root@kubemaster:~# vi volumepod.yaml
root@kubemaster:~# cat volumepod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: volumepod
spec:
 containers:
 - name: busybox
 image: busybox

2026/02/04 08:21 10/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

 command: ['sh', '-c', 'while true; do sleep 3600; done']
 volumeMounts:
 - name: configmap-volume
 mountPath: /etc/config/configmap
 - name: secret-volume
 mountPath: /etc/config/secret
 volumes:
 - name: configmap-volume
 configMap:
 name: my-configmap
 - name: secret-volume
 secret:
 secretName: my-secret

Créez maintenant le pod :

root@kubemaster:~# kubectl create -f volumepod.yaml
pod/volumepod created

Utilisez maintenant la commande kubectl exec pour consulter les config data files dans le conteneur :

root@kubemaster:~# kubectl exec volumepod -- ls /etc/config/configmap
key1
key2

root@kubemaster:~# kubectl exec volumepod -- cat /etc/config/configmap/key1
Hello, world!root@kubemaster:~# [Enter]

root@kubemaster:~# kubectl exec volumepod -- cat /etc/config/configmap/key2
Test
multiple lines
more lines

root@kubemaster:~# kubectl exec volumepod -- ls /etc/config/secret

2026/02/04 08:21 11/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

secretkey1
secretkey2

root@kubemaster:~# kubectl exec volumepod -- cat /etc/config/secret/secretkey1
secretroot@kubemaster:~# [Enter]

root@kubemaster:~# kubectl exec volumepod -- cat /etc/config/secret/secretkey2
anothersecretroot@kubemaster:~# [Enter]

root@kubemaster:~#

Dernièrement, supprimez les pods envpod et volumepod :

root@kubemaster:~# kubectl delete pod envpod volumepod
pod "envpod" deleted
pod "volumepod" deleted

LAB #2 - Gestion des Ressources des Conteneurs

2.1 - Présentation

Deux aspects importants de la gestion des ressources des conteneurs sont :

Resource Requests,
Une Resource Request permet de définir des ressources telles le CPU et la mémoire au moment du scheduling. Autrement dit, si la
Resource Request est de 5Go, le scheduleur des pods cherchera une noeud ayant 5 Go de RAM disponible. Une Resource Request n'est pas
une limite car le pod peut utiliser plus ou moins de mémoire.

Resource Limits,
Une Resource Limit permet de définir des limites des ressources telles le CPU et la mémoire. Différents Container Runtimes réagissent de
manières différentes devant une Resource Limit. Par exemple, certains vont arrêter le processus du conteneur en cas de dépassement de
la limite. Dans le cas de Docker, si la limite du CPU est dépassé, Docker va limiter l'utilisation du CPU. Par contre dans le cas d'un
dépassement de la limite de la mémoire, Docker va tuer le processus du conteneur.

2026/02/04 08:21 12/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Pour les deux types, les demandes et les limites de la mémoire sont généralement exprimées en Mi, tandis que les les demandes et les limites du CPU
sont exprimées en 1/1000 d'un processeur. Par exemple le chiffre 250m représente 250/1000 d'un CPU ou 1/4.

2.2 - Resource Requests

Créez le fichier bigrequestpod.yaml :

root@kubemaster:~# vi bigrequestpod.yaml
root@kubemaster:~# cat bigrequestpod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: bigrequestpod
spec:
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'while true; do sleep 3600; done']
 resources:
 requests:
 cpu: "10000m"
 memory: "128Mi"

Créez le pod :

root@kubemaster:~# kubectl create -f bigrequestpod.yaml
pod/bigrequestpod created

Consultez maintenant le statut du pod créé :

root@kubemaster:~# kubectl get pod bigrequestpod
NAME READY STATUS RESTARTS AGE

2026/02/04 08:21 13/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

bigrequestpod 0/1 Pending 0 92s

Important : Notez que le statut du pod est en pending. Le pod restera en pending car ni
kubenode1, ni kubenode2 sont capables de satisfaire la demande de 10000m.

2.3 - Resource Limits

Créez le fichier resourcepod.yaml :

root@kubemaster:~# vi resourcepod.yaml
root@kubemaster:~# cat resourcepod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: resourcepod
spec:
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'while true; do sleep 3600; done']
 resources:
 requests:
 cpu: "250m"
 memory: "128Mi"
 limits:
 cpu: "500m"
 memory: "256Mi"

Créez le pod :

2026/02/04 08:21 14/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# kubectl create -f resourcepod.yaml
pod/resourcepod created

Consultez le statut des pods :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
bigrequestpod 0/1 Pending 0 20m
my-deployment-67b5d4bf57-6wcrq 1/1 Running 0 22h
myapp-deployment-689f9d59-c25f9 1/1 Running 0 7d
myapp-deployment-689f9d59-nn9sw 1/1 Running 0 7d
myapp-deployment-689f9d59-rnc4r 1/1 Running 0 7d
resourcepod 1/1 Running 0 5m49s

Important : Notez que le statut du pod bigrequestpod est toujours en pending.

LAB #3 - Supervision des Conteneurs

3.1 - Présentation

La supervision des conteneurs concerne la surveillance de la santé des conteneurs afin d'assurer des applications et des solutions robustes en
redémarrant des conteneurs cassés. Pour accomplir cette tâche, K8s utilise des sondes ou probes en anglais.

Il existe plusieurs types de sondes :

Liveness Probes,
Par défaut K8s considère un conteneur HS uniquement quand le conteneur en question s'arrête,
Liveness probes permettent une configuration plus sophistiquée de ce mécanisme.

Startup Probes,

2026/02/04 08:21 15/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Similaires aux Liveness Probes, les Startup Probes n'interviennent uniquement au démarrage du conteneur et s'arrêtent quand l'application
a démarré.

Readiness Probes,
Similaires aux Startup Probes car ils n'interviennet qu'au démarrage du pod, les Readiness Probes sont responsables du blocage du trafic
vers les pods tant que tous les conteneurs du pod n'ont pas réussi les Readiness Probes.

3.2 - Liveness Probes

Le Probe exec

Créez le fichier livenesspod.yaml :

root@kubemaster:~# vi livenesspod.yaml
root@kubemaster:~# cat livenesspod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: livenesspod
spec:
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'while true; do sleep 3600; done']
 livenessProbe:
 exec:
 command: ["echo", "Hello, world!"]
 initialDelaySeconds: 5
 periodSeconds: 5

Important : Dans le fichier ci-dessus, si la commande echo “Hello, World! retourne un
code de retour de 0, le conteneur sera considéré en bonne santé. Le Liveness Probe

2026/02/04 08:21 16/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

démarrera 5 secondes après le démarrage du conteneur grâce à la directive
initialDelaySeconds. Ensuite le probe s'exécutera tous les 5 secondes grâce à la
directive periodSeconds.

Créez le pod :

root@kubemaster:~# kubectl create -f livenesspod.yaml
pod/livenesspod created

Consultez le statut du pod :

root@kubemaster:~# kubectl get pod livenesspod
NAME READY STATUS RESTARTS AGE
livenesspod 1/1 Running 0 90s

Important : Notez que le pod est en bonne santé et à un statut de running.

Le Probe httpGet

Créez le fichier livenesspodhttp.yaml :

root@kubemaster:~# vi livenesspodhttp.yaml
root@kubemaster:~# cat livenesspodhttp.yaml
apiVersion: v1
kind: Pod
metadata:
 name: livenesspodhttp
spec:

2026/02/04 08:21 17/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

 containers:
 - name: nginx
 image: nginx:1.19.1
 livenessProbe:
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 5
 periodSeconds: 5

Important : Dans le fichier ci-dessus, si la commande GET / s'exécute sans erreur, le
conteneur sera considéré en bonne santé. Le Liveness Probe démarrera 5 secondes après
le démarrage du conteneur grâce à la directive initialDelaySeconds. Ensuite le probe
s'exécutera tous les 5 secondes grâce à la directive periodSeconds.

Créez le pod :

root@kubemaster:~# kubectl create -f livenesspodhttp.yaml
pod/livenesspodhttp created

Consultez le statut du pod :

root@kubemaster:~# kubectl get pod livenesspodhttp
NAME READY STATUS RESTARTS AGE
livenesspodhttp 1/1 Running 0 52s

Important : Notez que le pod est en bonne santé et à un statut de running.

2026/02/04 08:21 18/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

3.3 - Startup Probes

Créez le fichier startuppod.yaml :

root@kubemaster:~# vi startuppod.yaml
root@kubemaster:~# cat startuppod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: startuppod
spec:
 containers:
 - name: nginx
 image: nginx:1.19.1
 startupProbe:
 httpGet:
 path: /
 port: 80
 failureThreshold: 30
 periodSeconds: 10

Important : Dans le fichier ci-dessus, le Startup Probe va attendre un maximum de 30
secondes pour que l'application démarre grâce à la directive failureThreshold. Le probe
s'exécutera tous les 10 secondes grâce à la directive periodSeconds.

Créez le pod :

root@kubemaster:~# kubectl create -f startuppod.yaml
pod/startuppod created

2026/02/04 08:21 19/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Consultez le statut du pod :

root@kubemaster:~# kubectl get pod startuppod
NAME READY STATUS RESTARTS AGE
livenesspod 1/1 Running 0 90s

Important : Notez que le pod est en bonne santé et à un statut de running.

3.4 - Readiness Probes

Créez le fichier readinesspod.yaml :

root@kubemaster:~# vi readinesspod.yaml
root@kubemaster:~# cat readinesspod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: readinesspod
spec:
 containers:
 - name: nginx
 image: nginx:1.19.1
 readinessProbe:
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 5
 periodSeconds: 5

2026/02/04 08:21 20/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Important : Dans le fichier ci-dessus, si la commande GET / s'exécute sans erreur, le
conteneur sera considéré dasn un état de READY. Le Readiness Probe démarrera 5
secondes après le démarrage du conteneur grâce à la directive initialDelaySeconds.
Ensuite le probe s'exécutera tous les 5 secondes grâce à la directive periodSeconds.

Créez le pod et consultez son statut :

root@kubemaster:~# kubectl create -f readinesspod.yaml;kubectl get pod readinesspod;sleep 1;kubectl get pod
readinesspod;sleep 3;kubectl get pod readinesspod;sleep 3;kubectl get pod readinesspod;sleep 3;kubectl get pod
readinesspod;sleep 3;kubectl get pod readinesspod
pod/readinesspod created
NAME READY STATUS RESTARTS AGE
readinesspod 0/1 Pending 0 0s
NAME READY STATUS RESTARTS AGE
readinesspod 0/1 ContainerCreating 0 1s
NAME READY STATUS RESTARTS AGE
readinesspod 0/1 Running 0 4s
NAME READY STATUS RESTARTS AGE
readinesspod 0/1 Running 0 7s
NAME READY STATUS RESTARTS AGE
readinesspod 0/1 Running 0 10s
NAME READY STATUS RESTARTS AGE
readinesspod 1/1 Running 0 13s

Important : Notez que le pod est a un statut de Running 4 secondes après son
démarrage. Par contre, le pod ne passe qu'en READY au bout de 13 secondes quand le
Readiness Probe a réussi.

2026/02/04 08:21 21/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

LAB #4 - Gestion des Politiques de Redémarrage

4.1 - Présentation

K8s peut redémarrer des conteneurs en cas de problèmes. Il y a trois politiques de redémarrage :

Always,
Always est la politique par défaut,
Always redémarre toujours un conteneur quelque soit le code retour quand le conteneur est arrêté.

OnFailure,
OnFailure ne redémarre un conteneur que dans ls cas où celui-ci sort avec un code retour autre que 0 ou dans le cas où un Liveness Probe
a rapporté la mauvaise santé du conteneur. Dans le cas contraire, où le conteneur a terminé sa tâche et sort avec un code retour de 0, la
politique ne le redémarre pas.

Never,
Never est l'opposé de Always. Le conteneur n'est jamais redémarré en cas d'arrêt, quelque soit la cause de cette dernière.

4.2 - Always

Créez le fichier alwayspod.yaml :

root@kubemaster:~# vi alwayspod.yaml
root@kubemaster:~# cat alwayspod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: alwayspod
spec:
 restartPolicy: Always
 containers:
 - name: busybox
 image: busybox

2026/02/04 08:21 22/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

 command: ['sh', '-c', 'sleep 10']

Créez le pod et consultez son statut :

root@kubemaster:~# kubectl create -f alwayspod.yaml;kubectl get pod alwayspod;sleep 9;kubectl get pod
alwayspod;sleep 9;kubectl get pod alwayspod;sleep 9;kubectl get pod alwayspod
pod/alwayspod created
NAME READY STATUS RESTARTS AGE
alwayspod 0/1 ContainerCreating 0 0s
NAME READY STATUS RESTARTS AGE
alwayspod 1/1 Running 0 9s
NAME READY STATUS RESTARTS AGE
alwayspod 1/1 Running 1 (6s ago) 19s
NAME READY STATUS RESTARTS AGE
alwayspod 0/1 Completed 1 (15s ago) 28s

Important : Notez que le pod a été redémarré.

4.3 - OnFailure

Créez le fichier onfailure.yaml :

root@kubemaster:~# vi onfailure.yaml
root@kubemaster:~# cat onfailure.yaml
apiVersion: v1
kind: Pod
metadata:
 name: onfailure
spec:
 restartPolicy: OnFailure

2026/02/04 08:21 23/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'sleep 10']

Créez le pod et consultez son statut :

root@kubemaster:~# kubectl create -f onfailure.yaml;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure
pod/onfailure created
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Pending 0 0s
NAME READY STATUS RESTARTS AGE
onfailure 1/1 Running 0 9s
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Completed 0 19s
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Completed 0 28s
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Completed 0 37s
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Completed 0 46s

Important : Notez que le pod n'a pas été redémarré.

Supprimez maintenant le pod onfailure :

root@kubemaster:~# kubectl delete pod onfailure
pod "onfailure" deleted

2026/02/04 08:21 24/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Modifiez ensuite le fichier onfailure.yaml en ajoutant la chaîne this is a bad command :

root@kubemaster:~# vi onfailure.yaml
root@kubemaster:~# cat onfailure.yaml
apiVersion: v1
kind: Pod
metadata:
 name: onfailure
spec:
 restartPolicy: OnFailure
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'sleep 10;this is a bad command']

Créez le pod et consultez son statut :

root@kubemaster:~# kubectl create -f onfailure.yaml;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure
pod/onfailure created
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Pending 0 0s
NAME READY STATUS RESTARTS AGE
onfailure 1/1 Running 0 9s
NAME READY STATUS RESTARTS AGE
onfailure 1/1 Running 1 (5s ago) 18s
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Error 1 (14s ago) 27s
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Error 1 (23s ago) 36s
NAME READY STATUS RESTARTS AGE
onfailure 1/1 Running 2 (21s ago) 46s

2026/02/04 08:21 25/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Important : Notez que le pod a été redémarré à cause de l'erreur.

4.4 - Never

Créez le fichier never.yaml :

root@kubemaster:~# vi never.yaml
root@kubemaster:~# cat never.yaml
apiVersion: v1
kind: Pod
metadata:
 name: never
spec:
 restartPolicy: Never
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'sleep 10;this is a bad command']

Créez le pod et consultez son statut :

root@kubemaster:~# kubectl create -f never.yaml;kubectl get pod never;sleep 9;kubectl get pod never;sleep
9;kubectl get pod never;sleep 9;kubectl get pod never;sleep 9;kubectl get pod never;sleep 9;kubectl get pod never
pod/never created
NAME READY STATUS RESTARTS AGE
never 0/1 ContainerCreating 0 0s
NAME READY STATUS RESTARTS AGE
never 1/1 Running 0 9s
NAME READY STATUS RESTARTS AGE

2026/02/04 08:21 26/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

never 0/1 Error 0 18s
NAME READY STATUS RESTARTS AGE
never 0/1 Error 0 27s
NAME READY STATUS RESTARTS AGE
never 0/1 Error 0 36s
NAME READY STATUS RESTARTS AGE
never 0/1 Error 0 45s

Important : Notez que le pod n'a pas été redémarré.

LAB #5 - Création de Pods Multi-conteneurs

5.1 - Présentation

Il est toujours préférable de ne mettre qu'un seul conteneur dans un pod. L'exception à cette règle est quand deux ou plus de pods ont besoin
d’interagir afin de remplir leur rôles respectifs. Le autres conteneur s'appellent des sidecars (side-cars en français) ou des helpers (assistants en
français). L’interaction s'appelle Cross-Container Interaction.

Cette interaction prend la forme de partager :

le même espace réseau,
les conteneurs peuvent se communiquer sur tous les ports, même si les ports ne sont pas exposés au cluster,

le même espace de stockage,
les conteneurs peuvent partager les mêmes volumes.

5.2 - Mise en Place

Commencez par créer le fichier multicontainerpod.yaml :

2026/02/04 08:21 27/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# vi multicontainerpod.yaml
root@kubemaster:~# cat multicontainerpod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: multicontainerpod
spec:
 containers:
 - name: nginx
 image: nginx
 - name: redis
 image: redis
 - name: couchbase
 image: couchbase

Important : Notez que le fichier créera trois conteneurs - nginx, redis et couchbase.

Créez ensuite le pod :

root@kubemaster:~# kubectl create -f multicontainerpod.yaml
pod/multicontainerpod created

Consultez l'état du pod :

root@kubemaster:~# kubectl get pod multicontainerpod
NAME READY STATUS RESTARTS AGE
multicontainerpod 0/3 ContainerCreating 0 65s

Important : Notez qu'il y a actuellement 0 de 3 pods dans un état de READY.

2026/02/04 08:21 28/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

Attendez quelques minutes et constatez de nouveau l'état du pod :

root@kubemaster:~# kubectl get pod multicontainerpod
NAME READY STATUS RESTARTS AGE
multicontainerpod 3/3 Running 0 16m

Important : Notez qu'il y a actuellement 3 de 3 pods dans un état de READY.

Créez maintenant le fichier helper.yaml :

root@kubemaster:~# vi helper.yaml
root@kubemaster:~# cat helper.yaml
apiVersion: v1
kind: Pod
metadata:
 name: helperpod
spec:
 containers:
 - name: busybox1
 image: busybox
 command: ['sh', '-c', 'while true; do echo logs data > /output/output.log; sleep 5; done']
 volumeMounts:
 - name: sharedvol
 mountPath: /output
 - name: helper
 image: busybox
 command: ['sh', '-c', 'tail -f /input/output.log']
 volumeMounts:
 - name: sharedvol
 mountPath: /input
 volumes:

2026/02/04 08:21 29/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

 - name: sharedvol
 emptyDir: {}

Important : Notez que ce fichier créera un pod contenant deux conteneurs - busybox1 et
helper. Chaque conteneur partage un volume identique qui s'appelle sharedvol. Dans le
conteneur *busybox1 ce volume est monté sur /output tandis que dans le conteneur
helper, le même volume est monté sur /input.

Créez le pod helper :

root@kubemaster:~# kubectl create -f helper.yaml
pod/helperpod created

Consultez les logs du conteneur helper dans le pod helperpod :

root@kubemaster:~# kubectl logs helperpod -c helper
logs data

Important : Notez que le conteneur busybox1 a écrit la chaîne logs data dans le fichier
/output/output.log tous les 5 secondes grâce à l'exécution de la commande while true;
do echo logs data > /output/output.log; sleep 5; done. Le conteneur helper exécute
la commande tail -f /input/output.log. Le log du conteneur helper contient donc la
chaîne logs data issu du fichier output.log car ce fichier est partagé entre les deux
conteneurs.

2026/02/04 08:21 30/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

LAB #6 - Conteneurs Init

6.1 - Présentation

Un Conteneur Init est un conteneur qui ne s'exécute qu'une seule fois au démarrage du pod. S'il existe plusieurs conteneurs Init, ceux-ci s'exécutent
dans l'ordre. Un conteneur Init doit terminer son exécution avant que le conteneur Init suivant, ou l'application si le conteneur Init concerné est le
dernier, peut s'exécuter. Le but d'un conteneur Init est d'exécuter du code qui n'a pas besoin de se trouver dans les conteneurs de l'application afin
rendre plus légers ces derniers, par exemple :

isoler, d'une manière sécurisée, des données sensibles tels des mots de passe afin d'éviter à ce que celles-ci soient compromises si un conteneur
de l'application est compromis,
injecter des données dans un volume partagé,
faire patienter un pod en attendant que d'autres ressources de K8s soient créées.

6.2 - Mise en Place

Commencez par créer le fichier initpod.yaml :

root@kubemaster:~# vi initpod.yaml
root@kubemaster:~# cat initpod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: initpod
spec:
 containers:
 - name: nginx
 image: nginx:1.19.1
 initContainers:
 - name: delay
 image: busybox

2026/02/04 08:21 31/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

 command: ['sleep', '30']

Important : Notez que le conteneur delay va faire patienter la création du conteneur
nginx pendant 30 secondes.

Créez le pod initpod :

root@kubemaster:~# kubectl create -f initpod.yaml
pod/initpod created

Consultez l'état du pod :

root@kubemaster:~# kubectl get pod initpod
NAME READY STATUS RESTARTS AGE
initpod 0/1 Init:0/1 0 6s

Important : Notez que le STATUS du pod est Init:0/1.

Patientez au moins 30 secondes puis exécutez la dernière commande de nouveau :

root@kubemaster:~# kubectl get pod initpod
NAME READY STATUS RESTARTS AGE
initpod 1/1 Running 0 79s

Important : Notez que le STATUS du pod est Running.

2026/02/04 08:21 32/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

LAB #7 - Scheduling

7.1 - Présentation

Scheduling est le processus d'attribution de pods aux noeuds. Ce processus est accompli par le Scheduler, un composant du Control Plane.

Le Scheduler prend sa décision en fonction d'un un contrôle :

des ressources disponibles sur les neouds en fonction des Resource Resquests,
des configurations des nodeSelectors qui utilisent des Node Labels,
des instructions de type nodeName qui forcent le choix d'un noeud par rapport à un autre.

7.2 - Mise en Place

Commencez par visualiser les noeuds du cluster :

root@kubemaster:~# kubectl get nodes
NAME STATUS ROLES AGE VERSION
kubemaster.ittraining.loc Ready control-plane 11d v1.25.0
kubenode1.ittraining.loc Ready <none> 11d v1.25.0
kubenode2.ittraining.loc Ready <none> 11d v1.25.0

nodeSelector

Attribuez l'étiquette mylabel=thisone au noeud kubenode1.ittraining.loc :

root@kubemaster:~# kubectl label nodes kubenode1.ittraining.loc mylabel=thisone
node/kubenode1.ittraining.loc labeled

Créez maintenant le fichier nodeselector.yaml :

2026/02/04 08:21 33/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

root@kubemaster:~# vi nodeselector.yaml
root@kubemaster:~# cat nodeselector.yaml
apiVersion: v1
kind: Pod
metadata:
 name: nodeselector
spec:
 nodeSelector:
 mylabel: "thisone"
 containers:
 - name: nginx
 image: nginx:1.19.1

Important : Notez l'entrée nodeSelector.

Créez le pod nodeselector :

root@kubemaster:~# kubectl create -f nodeselector.yaml
pod/nodeselector created

Constatez l'emplacement du pod nodeselector :

root@kubemaster:~# kubectl get pod nodeselector -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
nodeselector 1/1 Running 0 66s 192.168.239.21 kubenode1.ittraining.loc <none>
<none>

Important : Notez que le pod nodeselector a été schedulé sur le noeud kubenode1.

2026/02/04 08:21 34/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

nodeName

Créez maintenant le fichier nodename.yaml :

root@kubemaster:~# vi nodename.yaml
root@kubemaster:~# cat nodename.yaml
apiVersion: v1
kind: Pod
metadata:
 name: nodename
spec:
 nodeName: kubenode2.ittraining.loc
 containers:
 - name: nginx
 image: nginx:1.19.1

Important : Notez que le pod va être schedulé sur kubenode2.ittraining.loc grâce à
l'utilisation de nodeName.

Créez le pod nodename :

root@kubemaster:~# kubectl create -f nodename.yaml
pod/nodename created

Constatez l'emplacement du pod nodename :

pod/nodename created
root@kubemaster:~# kubectl get pod nodename -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

2026/02/04 08:21 35/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

nodename 1/1 Running 0 67s 192.168.150.25 kubenode2.ittraining.loc <none> <none>

Important : Notez que le pod a été schedulé sur kubenode2.ittraining.loc grâce à
l'utilisation de nodeName.

LAB #8 - DaemonSets

8.1 - Présentation

Un DaemonSet :

crée une copie d'un pod sur tous les noeuds disponibles,
crée une copie d'un pod sur tout nouveau noeud ajouté au cluster,
respecte les contraintes de Node Labels.

8.2 - Mise en Place

Commencez par nettoyer le cluster :

root@kubemaster:~# kubectl delete --all pods --namespace=default
pod "alwayspod" deleted
pod "bigrequestpod" deleted
pod "helperpod" deleted
pod "initpod" deleted
pod "liveness-pod" deleted
pod "livenesspodhttp" deleted
pod "multicontainerpod" deleted
pod "my-deployment-67b5d4bf57-6wcrq" deleted

2026/02/04 08:21 36/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

pod "myapp-deployment-689f9d59-c25f9" deleted
pod "myapp-deployment-689f9d59-nn9sw" deleted
pod "myapp-deployment-689f9d59-rnc4r" deleted
pod "never" deleted
pod "nodename" deleted
pod "nodeselector" deleted
pod "onfailure" deleted
pod "readinesspod" deleted
pod "resourcepod" deleted
pod "startuppod" deleted

root@kubemaster:~# kubectl delete --all deployments --namespace=default
deployment.apps "my-deployment" deleted
deployment.apps "myapp-deployment" deleted

Créez ensuite le fichier daemonset.yaml :

root@kubemaster:~# vi daemonset.yaml
root@kubemaster:~# cat daemonset.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: mydaemonset
spec:
 selector:
 matchLabels:
 app: mydaemonset
 template:
 metadata:
 labels:
 app: mydaemonset
 spec:
 containers:
 - name: nginx

2026/02/04 08:21 37/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

 image: nginx:1.19.1

Créez le DaemonSet mydaemonset :

root@kubemaster:~# kubectl create -f daemonset.yaml
daemonset.apps/mydaemonset created

Constatez le statut du DaemonSet :

root@kubemaster:~# kubectl get daemonset
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
mydaemonset 2 2 2 2 2 <none> 37s

Constatez maintenant qu'il a un pod sur chaque noeud :

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
mydaemonset-hmdhp 1/1 Running 0 38s 192.168.239.26 kubenode1.ittraining.loc <none>
<none>
mydaemonset-kmf4z 1/1 Running 0 38s 192.168.150.30 kubenode2.ittraining.loc <none>
<none>

Important : Notez qu'il n'y ait pas de pod sur kubemaster. En effet, le kubemaster a le
drapeau no taint fixé qui empêche la création de pods sur lui.

LAB #9 - Pods Statiques

2026/02/04 08:21 38/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

9.1 - Présentation

Un Static Pod (Pod Statique) est :

un pod qui est contrôlé par le kubelet sur le noeud concerné au lieu d'être contrôler par l'API de K8s,
ce type de pod peut être créé même s'il n y'ait pas de Control Plane,
si le Control Plane existe, un Mirror Pod (Pod Miroir) est créé dans le Control Plane pour représenter le pod statique afin de faciliter la
consultation son statut. Par contre, le pod ne peut ni être changé, ni être géré à partir du Control Plane,

un pod créé en utilisant un fichier yaml situé dans un chemin spécifique sur le noeud concerné,
pour un cluster installé avec kubeadm, le chemin “spécifique” par défaut dans chaque worker est /etc/kubernetes/manifests. Notez
qu'il est possible de modifier ce chemin.

9.2 - Mise en Place

Connectez-vous à kubenode1 et devenez l'utilisateur root :

root@kubemaster:~# ssh -l trainee 192.168.56.3
trainee@192.168.56.3's password: trainee
Linux kubenode1.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sun Sep 4 13:01:18 2022 from 192.168.56.2
trainee@kubenode1:~$ su -
Mot de passe : fenestros
root@kubenode1:~#

Créez le fichier /etc/kubernetes/manifests/mystaticpod.yaml :

2026/02/04 08:21 39/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

/etc/kubernetes/manifests

Créez le pod mystaticpod :

root@kubenode1:~# vi /etc/kubernetes/manifests/mystaticpod.yaml
root@kubenode1:~# cat /etc/kubernetes/manifests/mystaticpod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: mystaticpod
spec:
 containers:
 - name: nginx
 image: nginx:1.19.1

Important : Notez que kubelet va voir que le fichier a été créé et ensuite pouruivra avec
la création du pod.

Re-démarrez le service kubelet pour démarrer le pod statique immédiatement sans attendre :

root@kubenode1:~# systemctl restart kubelet

Retournez au kubemaster et constatez la présence d'un pod miroir :

root@kubenode1:~# exit
déconnexion
trainee@kubenode1:~$ exit
déconnexion
Connection to 192.168.56.3 closed.

root@kubemaster:~# kubectl get pods

2026/02/04 08:21 40/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

NAME READY STATUS RESTARTS AGE
mydaemonset-hmdhp 1/1 Running 0 32m
mydaemonset-kmf4z 1/1 Running 0 32m
mystaticpod-kubenode1.ittraining.loc 1/1 Running 0 3m40s

Supprimez maintenant le pod statique :

root@kubemaster:~# kubectl delete pod mystaticpod-kubenode1.ittraining.loc
pod "mystaticpod-kubenode1.ittraining.loc" deleted

Important : Notez que la suppression semble avoir réussi.

Constatez les pods en cours d'exécution :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
mydaemonset-hmdhp 1/1 Running 0 45m
mydaemonset-kmf4z 1/1 Running 0 45m
mystaticpod-kubenode1.ittraining.loc 1/1 Running 0 19s

Important : Notez que le pod mystaticpod-kubenode1.ittraining.loc est revenu. En
effet, la suppression précédente n'a supprimé que le miroir qui a ensuite ête regénéré.

Pour supprimer le pod statique, connectez-vous à kubenode1 :

root@kubemaster:~# ssh -l trainee kubenode1
trainee@kubenode1's password: trainee
Linux kubenode1.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

2026/02/04 08:21 41/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Sep 15 17:51:03 2022 from 192.168.56.2

trainee@kubenode1:~$ su -
Mot de passe : fenestros

root@kubenode1:~# rm -f /etc/kubernetes/manifests/mystaticpod.yaml

root@kubenode1:~# systemctl restart kubelet

root@kubenode1:~# exit
déconnexion

trainee@kubenode1:~$ exit
déconnexion
Connection to kubenode1 closed.

root@kubemaster:~#

Copyright © 2024 Hugh Norris

2026/02/04 08:21 42/42 DOF304 - Travailler avec des Pods et des Conteneurs

www.ittraining.team - https://www.ittraining.team/

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s03

Last update: 2024/12/15 06:51

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s03

	DOF304 - Travailler avec des Pods et des Conteneurs
	Contenu du Module
	Ressources
	Lab #1
	Lab #2
	Lab #3
	Lab #4
	Lab #5
	Lab #6
	Lab #7
	Lab #8
	Lab #9

	LAB #1 - Application Configuration
	1.1 - Présentation
	1.2 - Création d'une ConfigMap
	1.3 - Création d'un Secret
	1.4 - Utilisation de ConfigMaps et de Secret
	Utilisation des Variables d'environnement
	Utilisation des Volumes de Configuration

	LAB #2 - Gestion des Ressources des Conteneurs
	2.1 - Présentation
	2.2 - Resource Requests
	2.3 - Resource Limits

	LAB #3 - Supervision des Conteneurs
	3.1 - Présentation
	3.2 - Liveness Probes
	Le Probe exec
	Le Probe httpGet

	3.3 - Startup Probes
	3.4 - Readiness Probes

	LAB #4 - Gestion des Politiques de Redémarrage
	4.1 - Présentation
	4.2 - Always
	4.3 - OnFailure
	4.4 - Never

	LAB #5 - Création de Pods Multi-conteneurs
	5.1 - Présentation
	5.2 - Mise en Place

	LAB #6 - Conteneurs Init
	6.1 - Présentation
	6.2 - Mise en Place

	LAB #7 - Scheduling
	7.1 - Présentation
	7.2 - Mise en Place
	nodeSelector
	nodeName

	LAB #8 - DaemonSets
	8.1 - Présentation
	8.2 - Mise en Place

	LAB #9 - Pods Statiques
	9.1 - Présentation
	9.2 - Mise en Place

