2026/02/04 08:21 1/42 DOF304 - Travailler avec des Pods et des Conteneurs

Version - 2024.01

Derniere mise-a-jour : 2024/12/15 06:51

DOF304 - Travailler avec des Pods et des Conteneurs

Contenu du Module

e DOF304 - Travailler avec des Pods et des Conteneurs
o Contenu du Module
o LAB #1 - Application Configuration
= 1.1 - Présentation
» 1.2 - Création d'une ConfigMap
= 1.3 - Création d'un Secret
= 1.4 - Utilisation de ConfigMaps et de Secrets
¢ Utilisation de Variables d'environnement
e Utilisation de Volumes de Configuration
o LAB #2 - Gestion des Ressources des Conteneurs
= 2.1 - Présentation
= 2.2 - Resource Requests
= 2.3 - Resource Limits
o LAB #3 - Supervision des Conteneurs
= 3.1 - Présentation
= 3.2 - Liveness Probes
e Le Probe exec
e Le Probe httpGet
= 3.3 - Startup Probes
» 3.4 - Readiness Probes
o LAB #4 - Gestion des Politiques de Redémarrage
= 4.1 - Présentation
= 4.2 - Always

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 2/42 DOF304 - Travailler avec des Pods et des Conteneurs

= 4.3 - OnFailure
= 4.4 - Never
LAB #5 - Création de Pods Multi-conteneurs
= 5.1 - Présentation
= 5,2 - Mise en Place
LAB #6 - Conteneurs Init
= 6.1 - Présentation
= 6.2 - Mise en Place
LAB #7 - Scheduling
= 7.1 - Présentation
= 7.2 - Mise en Place
LAB #8 - DaemonSets
= 8.1 - Présentation
= 8.2 - Mise en Place
LAB #9 - Pods Statiques
= 9.1 - Présentation
= 9.2 - Mise en Place

[¢]

[¢]

[¢]

[¢]

o

Ressources

Lab #1

https://www.dropbox.com/scl/fi/7hkyea9v31c949b9ar5hl/myconfigmap.yaml?rikey=kv5x17lirugxppbyzgkOyhbhh&dl=0
https://www.dropbox.com/scl/fi/o752fqb1lgc5shocih9zc7/mysecret.yaml?rlkey=mfofl5lIfnanksiOztmzdy7tp&dl=0
https://www.dropbox.com/scl/fi/70g1jb7p4ighdbkk33mre/envpod.yaml?rlkey=31muxz397a7k91nd98bjxhkjz&d|=0
https://www.dropbox.com/scl/fi/td43bvv8aphggbwc59j4l/volumepod.yaml?rikey=sti941svagvli2gbi6jkljaoy&dli=0

Lab #2

e https://www.dropbox.com/scl/fi/n1147jb572h0dnadwjamm/bigrequestpod.yaml?rlkey=08fpyndzpg7200r0h6zkm9vxz&dl=0
e https://www.dropbox.com/scl/fi/310335z2508wo4sutr8zwk/resourcepod.yaml?rikey=ezycaxxvyf74u7xdtawhnssje&dl=0

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/7hkyea9v3lc949b9ar5hl/myconfigmap.yaml?rlkey=kv5x17lirugxppbyzgk0yhbhh&dl=0
https://www.dropbox.com/scl/fi/o752fqb1gc5shocih9zc7/mysecret.yaml?rlkey=mfof15llfnanksi0ztmzdy7tp&dl=0
https://www.dropbox.com/scl/fi/70g1jb7p4ighdbkk33mre/envpod.yaml?rlkey=31muxz3g7a7k91nd98bjxhkjz&dl=0
https://www.dropbox.com/scl/fi/td43bvv8aphqqbwc59j4l/volumepod.yaml?rlkey=sti941svagvli2qbi6jkljaoy&dl=0
https://www.dropbox.com/scl/fi/n1147jb572h0dnadwjamm/bigrequestpod.yaml?rlkey=08fpyndzpg720or0h6zkm9vxz&dl=0
https://www.dropbox.com/scl/fi/3lo335z508wo4sutr8zwk/resourcepod.yaml?rlkey=ezycaxxvyf74u7xdtawhnssje&dl=0

2026/02/04 08:21 3/42 DOF304 - Travailler avec des Pods et des Conteneurs

Lab #3

https://www.dropbox.com/scl/fi/9igcin5jo18z1bpjjx9vx/livenesspod.yaml?rlkey=23f170lf3jo8112h972noijve&d|=0
https://www.dropbox.com/scl/fi/ftgno3tjsif093kpxo0jrg/livenesspodhttp.yamli?rlkey=1Isn592d9goe619jnkpz3p60ok2&dI=0
https://www.dropbox.com/scl/fi/s4pst2ezp0qgpyluema8frx/startuppod.yami?rlkey=xbaenkztscopqzuq8u4dxxcx8&dl=0
https://www.dropbox.com/scl/fi/a0hdk8shspxsi23hkf7vi/readinesspod.yaml?rlkey=w230asymedywxitfzgzydehsw&dl=0

Lab #4

e https://www.dropbox.com/scl/fi/ly8bu7cryzv5wfkin2réwc/alwayspod.yaml?rlkey=n5rmuhmy4olgojvezlyz3wlys&dl=0
e https://www.dropbox.com/scl/fi/méwy0x16vdsd87vuriyl9/onfailure.yaml?rlkey=0x8nfznllrjuilmaldidtzx3u&d|=0
e https://www.dropbox.com/scl/fi/7oyo26ackzdxjm78ipjvg/never.yaml?rlkey=hqf5f07kvmiuhdehyjc9rémni&d|=0

Lab #5

e https://www.dropbox.com/scl/fi/4j0nnzgt8ammsfzpgm3ul/multicontainerpod.yaml?rlkey=n08saexw65stxvy4dtwd9x2npr&dl=0
e https://www.dropbox.com/scl/fi/x8fy28yiiyq7rrb5x7gse/helper.yamli?rlkey=9hhvly431j39x2vmfeopk9tk1&d|=0

Lab #6

e https://www.dropbox.com/scl/fi/llvkk1jija3pk227ubw8v/initpod.yaml?rlkey=krtkq8ghc8dalr84jw0Op4jwdh&dl=0

Lab #7

e https://www.dropbox.com/scl/fi/qdnl21iip9shwjqc93rpy/nodeselector.yaml?rlkey=x5eumxvmgkeh9vctrwd9rmuwi&d|=0
e https://www.dropbox.com/scl/fi/46npmxik2heh8z3wiwb6ah/nodename.yaml?rlkey=blck3kzwgqzm?21ttsjxph965k&d|=0

Lab #8

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/9igcin5jo18z1bpjjx9vx/livenesspod.yaml?rlkey=23f17olf3jo8l12h972noijve&dl=0
https://www.dropbox.com/scl/fi/tqno3tjsif093kpxo0jrg/livenesspodhttp.yaml?rlkey=lsn5q2d9goe619jnkpz3p6ok2&dl=0
https://www.dropbox.com/scl/fi/s4pst2ezp0qpylu6m8frx/startuppod.yaml?rlkey=xbaenkztscopqzuq8u4dxxcx8&dl=0
https://www.dropbox.com/scl/fi/a0hdk8shspxsi23hkf7vi/readinesspod.yaml?rlkey=w230asyme4ywxitfzgzy4ehsw&dl=0
https://www.dropbox.com/scl/fi/y8bu7cryzv5wfkln2r6wc/alwayspod.yaml?rlkey=n5rmuhmy4o1gojvez1yz3w1ys&dl=0
https://www.dropbox.com/scl/fi/m6wy0x16vdsd87vuriyl9/onfailure.yaml?rlkey=ox8nfznllrjui1mal4idtzx3u&dl=0
https://www.dropbox.com/scl/fi/7oyo26ackzdxjm78ipjvg/never.yaml?rlkey=hqf5f07kvmiuhdehyjc9r6mni&dl=0
https://www.dropbox.com/scl/fi/4j0nnzgt8ammsfzpqm3ul/multicontainerpod.yaml?rlkey=n08saexw65stxvy4twd9x2npr&dl=0
https://www.dropbox.com/scl/fi/x8fy28yiiyq7rrb5x7gse/helper.yaml?rlkey=9hhvly431j39x2vmfeopk9tk1&dl=0
https://www.dropbox.com/scl/fi/llvkk1jija3pk227u6w8v/initpod.yaml?rlkey=krtkq8qhc8dalr84jw0p4jwdh&dl=0
https://www.dropbox.com/scl/fi/qdnl21iip9shwjqc93rpy/nodeselector.yaml?rlkey=x5eumxvmgkeh9vctrwd9rmuwi&dl=0
https://www.dropbox.com/scl/fi/46npmxik2heh8z3wiw6ah/nodename.yaml?rlkey=blck3kzwgqzm21ttsjxph965k&dl=0

2026/02/04 08:21 4/42 DOF304 - Travailler avec des Pods et des Conteneurs

e https://www.dropbox.com/scl/fi/ffgxcxm7ia69ne9kerugg2/daemonset.yaml?rlkey=r7hn65en4beq3zvza5jxfysd5&dl=0
Lab #9

e https://www.dropbox.com/scl/fi/jpwvwbsant7onwOhwikmp4/mystaticpod.yaml?rikey=16jzgtgcss3atx9emqk3h7qz6&dI=0
LAB #1 - Application Configuration

1.1 - Présentation

La gestion de la configuration d'application ou Application Configuration est le processus de passage de valeurs dynamiques aux applications au
moment du runtime.

Il'y a deux fagons de stocker des informations dans K8s :

e ConfigMaps,
e Secrets.

Les données stockées dans des ConfigMaps et des Secrets peuvent étre passées aux conteneurs en utilisant des :

¢ Variables d'environnement,
» Volumes de configuration.

1.2 - Création d'une ConfigMap

Pour commencer, créez le fichier myconfigmap.yaml :

root@kubemaster:~# vi myconfigmap.yaml
root@kubemaster:~# cat myconfigmap.yaml
apiVersion: vl

www.ittraining.team - https://www.ittraining.team/

https://www.dropbox.com/scl/fi/fqxcxm7ia69ne9keruqg2/daemonset.yaml?rlkey=r7hn65en4beq3zvza5jxfysd5&dl=0
https://www.dropbox.com/scl/fi/pwvwbsant7onw0hwikmp4/mystaticpod.yaml?rlkey=l6jzgtgcss3atx9emqk3h7qz6&dl=0

2026/02/04 08:21

5/42

DOF304 - Travailler avec des Pods et des Conteneurs

kind: ConfigMap
metadata:
name: my-configmap
data:
keyl: Hello, world!
key2: |
Test
multiple lines
more lines

Créez maintenant la ConfigMap :

root@kubemaster:~# kubectl create -f myconfigmap.yaml

configmap/my-configmap created

Pour consulter le contenu de la ConfigMap, utilisez la commande kubectl describe :

root@kubemaster:~# kubectl describe configmap my-configmap

Name: my-configmap
Namespace: default
Labels: <none>

Annotations: <none>

Data

keyl:

Important : Notez que les données sont stockées dans des Key-values. La premiere
donnée dans la section data est keyl: Hello, world! tandis que la deuxieme, key2, est
en plusieurs lignes.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 6/42

DOF304 - Travailler avec des Pods et des Conteneurs

Hello, world!
key2:

Test
multiple lines
more lines

BinaryData

Events: <none>

1.3 - Création d'un Secret

Créez maintenant le fichier mysecret.yaml :

root@kubemaster:~# vi mysecret.yaml
root@kubemaster:~# cat mysecret.yaml

apiVersion: vl
kind: Secret
metadata:

name: my-secret
type: Opaque
data:

secretkeyl:

secretkey2:

F u
—]

Important : Notez que les clefs secrets n'ont pas encore été définies.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 7/42

DOF304 - Travailler avec des Pods et des Conteneurs

Cryptez maintenant les deux clefs en utilisant base64 :

root@kubemaster:~# echo -n 'secret' | base64
c2VjcmVo

root@kubemaster:~# echo -n 'anothersecret' | base64
YW5vdGhlcnN1Y3J1ldA==

Copiez et collez les chaines base64 dans le fichier mysecret.yaml :

root@kubemaster:~# vi mysecret.yaml
root@kubemaster:~# cat mysecret.yaml
apiVersion: vl
kind: Secret
metadata:
name: my-secret
type: Opaque
data:
secretkeyl: c2VjcmVo
secretkey2: YW5vdGhlcnN1Y3J1ldA==

F []
-

Créez maintenant le Secret :

root@kubemaster:~# kubectl create -f mysecret.yaml
secret/my-secret created

Important : Remplacez les chaines par celles que VOUS avez créé.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 8/42 DOF304 - Travailler avec des Pods et des Conteneurs

1.4 - Utilisation de ConfigMaps et de Secret
Utilisation des Variables d'environnement

Créez le fichier envpod.yaml :

root@kubemaster:~# vi envpod.yaml
root@kubemaster:~# cat envpod.yaml
apiVersion: vl
kind: Pod

metadata:

name: envpod

spec:

containers:

- name: busybox
image: busybox
command: ['sh',
env:

- name: CONFIGMAPVAR
valueFrom:
configMapKeyRef:
name: my-configmap
key: keyl
- name: SECRETVAR
valueFrom:
secretKeyRef:
name: my-secret
key: secretkeyl

‘-c', 'echo "configmap: $CONFIGMAPVAR secret: $SECRETVAR"']

! Important : Notez que la variable $CONFIGMAPVAR contiendra la valeur de keyl de la
ConfigMap et que la variable $SECRETVAR contindra la valeur de secretkeyl du

www.ittraining.team - https://www.ittraining.team/

9/42 DOF304 - Travailler avec des Pods et des Conteneurs

2026/02/04 08:21
Secret.

u
.

Créez maintenant le pod :

root@kubemaster:~# kubectl create -f envpod.yaml
pod/envpod created

Consultez maintenant les logs du pod :

root@kubemaster:~# kubectl logs envpod
configmap: Hello, world! secret: secret

! . Important : Notez que le conteneur dans le pod voit bien les valeurs des deux variables.

- -

Utilisation des Volumes de Configuration

Créez le fichier volumepod.yaml :

root@kubemaster:~# vi volumepod.yaml
root@kubemaster:~# cat volumepod.yaml
apiVersion: vl
kind: Pod
metadata:

name: volumepod
spec:

containers:

- name: busybox

image: busybox

www.ittraining.team - https://www.ittraining.team/

DOF304 - Travailler avec des Pods et des Conteneurs

2026/02/04 08:21 10/42
command: ['sh', '-c', 'while true; do sleep 3600; done']
volumeMounts:

- name: configmap-volume
mountPath: /etc/config/configmap
- name: secret-volume
mountPath: /etc/config/secret
volumes:
- name: configmap-volume
configMap:
name: my-configmap
- name: secret-volume
secret:
secretName: my-secret

Créez maintenant le pod :

root@kubemaster:~# kubectl create -f volumepod.yaml
pod/volumepod created

Utilisez maintenant la commande kubectl exec pour consulter les config data files dans le conteneur :

root@kubemaster:~# kubectl exec volumepod -- 1ls /etc/config/configmap

keyl

key2

root@kubemaster:~# kubectl exec volumepod -- cat /etc/config/configmap/keyl

Hello, world!root@kubemaster:~# [Enter]

root@kubemaster:~# kubectl exec volumepod -- cat /etc/config/configmap/key2
Test

multiple lines

more lines

root@kubemaster:~# kubectl exec volumepod -- 1s /etc/config/secret

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 11/42

DOF304 - Travailler avec des Pods et des Conteneurs

secretkeyl
secretkey?2

root@kubemaster:~# kubectl exec volumepod -- cat /etc/config/secret/secretkeyl
secretroot@kubemaster:~# [Enter]

root@kubemaster:~# kubectl exec volumepod -- cat /etc/config/secret/secretkey2
anothersecretroot@kubemaster:~# [Enter]

root@kubemaster:~#
Dernierement, supprimez les pods envpod et volumepod :

root@kubemaster:~# kubectl delete pod envpod volumepod
pod "envpod" deleted
pod "volumepod" deleted

LAB #2 - Gestion des Ressources des Conteneurs
2.1 - Présentation

Deux aspects importants de la gestion des ressources des conteneurs sont :

¢ Resource Requests,

o Une Resource Request permet de définir des ressources telles le CPU et la mémoire au moment du scheduling. Autrement dit, si la
Resource Request est de 5Go, le scheduleur des pods cherchera une noeud ayant 5 Go de RAM disponible. Une Resource Request n'est pas

une limite car le pod peut utiliser plus ou moins de mémoire.
e Resource Limits,

o Une Resource Limit permet de définir des limites des ressources telles le CPU et la mémoire. Différents Container Runtimes réagissent de
manieres différentes devant une Resource Limit. Par exemple, certains vont arréter le processus du conteneur en cas de dépassement de
la limite. Dans le cas de Docker, si la limite du CPU est dépassé, Docker va limiter I'utilisation du CPU. Par contre dans le cas d'un

dépassement de la limite de la mémoire, Docker va tuer le processus du conteneur.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 12/42 DOF304 - Travailler avec des Pods et des Conteneurs

Pour les deux types, les demandes et les limites de la mémoire sont généralement exprimées en Mi, tandis que les les demandes et les limites du CPU
sont exprimées en 1/1000 d'un processeur. Par exemple le chiffre 250m représente 250/1000 d'un CPU ou 1/4.

2.2 - Resource Requests

Créez le fichier bigrequestpod.yaml :

root@kubemaster:~# vi bigrequestpod.yaml
root@kubemaster:~# cat bigrequestpod.yaml
apiVersion: vl
kind: Pod
metadata:
name: bigrequestpod
spec:
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'while true; do sleep 3600; done']
resources:
requests:
cpu: "10000m"
memory: "128Mi"

Créez le pod :

root@kubemaster:~# kubectl create -f bigrequestpod.yaml
pod/bigrequestpod created

Consultez maintenant le statut du pod créé :

root@kubemaster:~# kubectl get pod bigrequestpod
NAME READY STATUS RESTARTS AGE

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 13/42 DOF304 - Travailler avec des Pods et des Conteneurs

bigrequestpod 0/1 Pending 0 92s

) Important : Notez que le statut du pod est en pending. Le pod restera en pending car ni
2 kubenodel, ni kubenode2 sont capables de satisfaire la demande de 10000m.

2.3 - Resource Limits

Créez le fichier resourcepod.yaml :

root@kubemaster:~# vi resourcepod.yaml
root@kubemaster:~# cat resourcepod.yaml
apiVersion: vl
kind: Pod
metadata:
name: resourcepod
spec:
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'while true; do sleep 3600; done']
resources:
requests:
cpu: "250m"
memory: "128Mi"
limits:
cpu: "500m"
memory: "“256Mi"

Créez le pod :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 14/42

DOF304 - Travailler avec des Pods et des Conteneurs

root@kubemaster:~# kubectl create -f resourcepod.yaml

pod/resourcepod created

Consultez le statut des pods :

root@kubemaster:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
bigrequestpod 0/1 Pending 0 20m
my-deployment-67b5d4bf57-6wcrq 1/1 Running 0 22h
myapp-deployment-689f9d59-c25f9 1/1 Running 0 7d
myapp-deployment-689f9d59-nn9sw 1/1 Running 0 7d
myapp-deployment-689f9d59-rnc4dr 1/1 Running 0 7d
resourcepod 1/1 Running 0 5m49s
J . Important : Notez que le statut du pod bigrequestpod est toujours en pending.

LAB #3 - Supervision des Conteneurs

3.1 - Présentation

La supervision des conteneurs concerne la surveillance de la santé des conteneurs afin d'assurer des applications et des solutions robustes en
redémarrant des conteneurs cassés. Pour accomplir cette tache, K8s utilise des sondes ou probes en anglais.

Il existe plusieurs types de sondes :

¢ Liveness Probes,

o Par défaut K8s considere un conteneur HS uniquement quand le conteneur en question s'arréte,

o Liveness probes permettent une configuration plus sophistiquée de ce mécanisme.

e Startup Probes,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 15/42 DOF304 - Travailler avec des Pods et des Conteneurs

o Similaires aux Liveness Probes, les Startup Probes n'interviennent uniquement au démarrage du conteneur et s'arrétent quand |'application

a démarré.

e Readiness Probes,
o Similaires aux Startup Probes car ils n'interviennet qu'au démarrage du pod, les Readiness Probes sont responsables du blocage du trafic

vers les pods tant que tous les conteneurs du pod n'ont pas réussi les Readiness Probes.
3.2 - Liveness Probes
Le Probe exec

Créez le fichier livenesspod.yaml :

root@kubemaster:~# vi livenesspod.yaml
root@kubemaster:~# cat livenesspod.yaml
apiVersion: vl
kind: Pod
metadata:

name: livenesspod
spec:

containers:

- name: busybox

image: busybox

command: ['sh', '-c', 'while true; do sleep 3600; done']
livenessProbe:
exec:

command: ["echo", "Hello, world!"]
initialDelaySeconds: 5
periodSeconds: 5

Important : Dans le fichier ci-dessus, si la commande echo “Hello, World! retourne un
code de retour de 0, le conteneur sera considéré en bonne santé. Le Liveness Probe

{_

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 16/42 DOF304 - Travailler avec des Pods et des Conteneurs
démarrera 5 secondes apres le démarrage du conteneur grace a la directive
initialDelaySeconds. Ensuite le probe s'exécutera tous les 5 secondes grace a la

/% . directive periodSeconds.

Créez le pod :

root@kubemaster:~# kubectl create -f livenesspod.yaml
pod/livenesspod created

Consultez le statut du pod :

root@kubemaster:~# kubectl get pod livenesspod
NAME READY STATUS RESTARTS AGE

livenesspod 1/1 Running 0 90s

Important : Notez que le pod est en bonne santé et a un statut de running.

. []
-

Le Probe httpGet

Créez le fichier livenesspodhttp.yaml :

root@kubemaster:~# vi livenesspodhttp.yaml
root@kubemaster:~# cat livenesspodhttp.yaml
apiVersion: vl

kind: Pod

metadata:
name: livenesspodhttp

spec:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 17/42 DOF304 - Travailler avec des Pods et des Conteneurs

containers:
- name: nginx
image: nginx:1.19.1
livenessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 5
periodSeconds: 5

____ Important : Dans le fichier ci-dessus, si la commande GET / s'exécute sans erreur, le
| conteneur sera considéré en bonne santé. Le Liveness Probe démarrera 5 secondes apres
2 le démarrage du conteneur grace a la directive initialDelaySeconds. Ensuite le probe

s'exécutera tous les 5 secondes grace a la directive periodSeconds.

Créez le pod :

root@kubemaster:~# kubectl create -f livenesspodhttp.yaml
pod/livenesspodhttp created

Consultez le statut du pod :
root@kubemaster:~# kubectl get pod livenesspodhttp

NAME READY STATUS RESTARTS AGE
livenesspodhttp 1/1 Running 0 52s

Important : Notez que le pod est en bonne santé et a un statut de running.

2]
_—)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 18/42

DOF304 - Travailler avec des Pods et des Conteneurs

3.3 - Startup Probes

Créez le fichier startuppod.yaml :

root@kubemaster:~# vi startuppod.yaml
root@kubemaster:~# cat startuppod.yaml
apiVersion: vl
kind: Pod
metadata:
name: startuppod
spec:
containers:
- name: nginx
image: nginx:1.19.1
startupProbe:
httpGet:
path: /
port: 80
failureThreshold: 30
periodSeconds: 10

Important : Dans le fichier ci-dessus, le Startup Probe va attendre un maximum de 30

Créez le pod :

root@kubemaster:~# kubectl create -f startuppod.yaml

pod/startuppod created

secondes pour que |'application démarre grace a la directive failureThreshold. Le probe
s'exécutera tous les 10 secondes grace a la directive periodSeconds.

www.ittraining.team - https://www.ittraining.team/

19/42 DOF304 - Travailler avec des Pods et des Conteneurs

2026/02/04 08:21

Consultez le statut du pod :

root@kubemaster:~# kubectl get pod startuppod

NAME READY STATUS RESTARTS AGE
livenesspod 1/1 Running 0 90s
_ ! Important : Notez que le pod est en bonne santé et a un statut de running.

3.4 - Readiness Probes

Créez le fichier readinesspod.yaml :

root@kubemaster:~# vi readinesspod.yaml
root@kubemaster:~# cat readinesspod.yaml
apiVersion: vl
kind: Pod
metadata:
name: readinesspod
spec:
containers:
- name: nginx
image: nginx:1.19.1
readinessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 5
periodSeconds: 5

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 20/42 DOF304 - Travailler avec des Pods et des Conteneurs

- Important : Dans le fichier ci-dessus, si la commande GET / s'exécute sans erreur, le
| conteneur sera considéré dasn un état de READY. Le Readiness Probe démarrera 5
secondes apres le démarrage du conteneur grace a la directive initialDelaySeconds.
Ensuite le probe s'exécutera tous les 5 secondes grace a la directive periodSeconds.

Créez le pod et consultez son statut :

root@kubemaster:~# kubectl create -f readinesspod.yaml;kubectl get pod readinesspod;sleep 1;kubectl get pod
readinesspod;sleep 3;kubectl get pod readinesspod;sleep 3;kubectl get pod readinesspod;sleep 3;kubectl get pod
readinesspod;sleep 3;kubectl get pod readinesspod

pod/readinesspod created

NAME READY STATUS RESTARTS AGE
readinesspod 0/1 Pending 0O 0s

NAME READY STATUS RESTARTS AGE
readinesspod 0/1 ContainerCreating 0 1s
NAME READY STATUS RESTARTS AGE
readinesspod 0/1 Running 0 4s

NAME READY STATUS RESTARTS AGE
readinesspod 0/1 Running 0 7s

NAME READY STATUS RESTARTS AGE
readinesspod 0/1 Running 0 10s

NAME READY STATUS RESTARTS AGE
readinesspod 1/1 Running 0O 13s

paN Important : Notez que le pod est a un statut de Running 4 secondes apres son
-~ démarrage. Par contre, le pod ne passe qu'en READY au bout de 13 secondes quand le
~ Readiness Probe a réussi.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 21/42 DOF304 - Travailler avec des Pods et des Conteneurs

LAB #4 - Gestion des Politiques de Redémarrage

4.1 - Présentation

K8s peut redémarrer des conteneurs en cas de problemes. Il y a trois politiques de redémarrage :

e Always,
o Always est la politique par défaut,
o Always redémarre toujours un conteneur quelque soit le code retour quand le conteneur est arrété.

e OnFailure,
o OnFailure ne redémarre un conteneur que dans Is cas ou celui-ci sort avec un code retour autre que 0 ou dans le cas ou un Liveness Probe

a rapporté la mauvaise santé du conteneur. Dans le cas contraire, ou le conteneur a terminé sa tache et sort avec un code retour de 0, la

politique ne le redémarre pas.

e Never,
o Never est I'opposé de Always. Le conteneur n'est jamais redémarré en cas d'arrét, quelque soit la cause de cette derniere.

4.2 - Always

Créez le fichier alwayspod.yaml :

root@kubemaster:~# vi alwayspod.yaml
root@kubemaster:~# cat alwayspod.yaml
apiVersion: vl
kind: Pod
metadata:

name: alwayspod
spec:

restartPolicy: Always

containers:

- name: busybox

image: busybox

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 22/42

DOF304 - Travailler avec des Pods et des Conteneurs

command: ['sh', '-c', 'sleep 10']

Créez le pod et consultez son statut :

root@kubemaster:~# kubectl create -f alwayspod.yaml;kubectl get pod alwayspod;sleep 9;kubectl get pod

alwayspod;sleep 9;kubectl get pod alwayspod;sleep 9;kubectl get pod alwayspod

pod/alwayspod created

NAME READY STATUS RESTARTS
alwayspod 0/1 ContainerCreating 0

NAME READY STATUS RESTARTS

alwayspod 1/1 Running 0

NAME READY STATUS RESTARTS

alwayspod 1/1 Running 1 (6s ago)

NAME READY STATUS RESTARTS
alwayspod 0/1 Completed 1 (15s ago)

r u
-

4.3 - OnFailure

Créez le fichier onfailure.yaml :

root@kubemaster:~# vi onfailure.yaml
root@kubemaster:~# cat onfailure.yaml
apiVersion: vl
kind: Pod
metadata:

name: onfailure
spec:

restartPolicy: OnFailure

Important : Notez que le pod a été redémarré.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21

23/42

DOF304 - Travailler avec des Pods et des Conteneurs

containers:
- name: busybox
image: busybox

command:

['sh',

Créez le pod et consultez son statut :

-c', 'sleep 10']

root@kubemaster:~# kubectl create -f onfailure.yaml;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure
pod/onfailure created

NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure
NAME
onfailure

READY
0/1
READY
1/1
READY
0/1
READY
0/1
READY
0/1
READY
0/1

STATUS
Pending
STATUS
Running
STATUS
Completed
STATUS
Completed
STATUS
Completed
STATUS
Completed

2 []
-

RESTARTS

0

RESTARTS

0

Supprimez maintenant le pod onfailure :

root@kubemaster:~# kubectl delete pod onfailure

pod "onfailure" deleted

RESTARTS
0
RESTARTS
0
RESTARTS
0
RESTARTS
0

AGE

Os

AGE

9s

AGE
19s
AGE
28s
AGE
37s
AGE
46s

Important : Notez que le pod n'a pas été redémarré.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 24/42 DOF304 - Travailler avec des Pods et des Conteneurs

Modifiez ensuite le fichier onfailure.yaml en ajoutant la chaine this is a bad command :

root@kubemaster:~# vi onfailure.yaml
root@kubemaster:~# cat onfailure.yaml
apiVersion: vl
kind: Pod
metadata:
name: onfailure
spec:
restartPolicy: OnFailure
containers:
- name: busybox
image: busybox
command: ['sh', '-c', 'sleep 10;this is a bad command']

Créez le pod et consultez son statut :

root@kubemaster:~# kubectl create -f onfailure.yaml;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod onfailure;sleep 9;kubectl get pod
onfailure;sleep 9;kubectl get pod onfailure

pod/onfailure created

NAME READY STATUS RESTARTS AGE
onfailure 0/1 Pending 0 0s
NAME READY STATUS RESTARTS AGE
onfailure 1/1 Running 0 9s
NAME READY STATUS RESTARTS AGE
onfailure 1/1 Running 1 (5s ago) 18s
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Error 1 (14s ago) 27s
NAME READY STATUS RESTARTS AGE
onfailure 0/1 Error 1 (23s ago) 36s
NAME READY STATUS RESTARTS AGE
onfailure 1/1 Running 2 (21s ago) 465

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 25/42

DOF304 - Travailler avec des Pods et des Conteneurs

2 []
-

4.4 - Never

Créez le fichier never.yaml :

root@kubemaster:~# vi never.yaml
root@kubemaster:~# cat never.yaml
apiVersion: vl
kind: Pod
metadata:

name: never
spec:

restartPolicy: Never

containers:

- name: busybox

image: busybox

command: ['sh', '-c', 'sleep 10;this is a bad command']

Créez le pod et consultez son statut :

Important : Notez que le pod a été redémarré a cause de I'erreur.

root@kubemaster:~# kubectl create -f never.yaml;kubectl get pod never;sleep 9;kubectl get pod never;sleep
9;kubectl get pod never;sleep 9;kubectl get pod never;sleep 9;kubectl get pod never;sleep 9;kubectl get pod never

pod/never created
NAME READY STATUS

never 0/1 ContainerCreating
NAME READY STATUS RESTARTS
never 1/1 Running 0

NAME READY STATUS RESTARTS

RESTARTS

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 26/42 DOF304 - Travailler avec des Pods et des Conteneurs
never 0/1 Error 0 18s
NAME READY STATUS RESTARTS AGE
never 0/1 Error 0 27s
NAME READY STATUS RESTARTS AGE
never 0/1 Error 0 36s
NAME READY STATUS RESTARTS AGE
never 0/1 Error 0 45s

LAB #5 - Création de Pods Multi-conteneurs

F]
-

5.1 - Présentation

Important : Notez que le pod n'a pas été redémarré.

Il est toujours préférable de ne mettre qu'un seul conteneur dans un pod. L'exception a cette regle est quand deux ou plus de pods ont besoin
d’interagir afin de remplir leur réles respectifs. Le autres conteneur s'appellent des sidecars (side-cars en francais) ou des helpers (assistants en

francais). L'interaction s'appelle Cross-Container Interaction.

Cette interaction prend la forme de partager :

e |le méme espace réseau,
o |les conteneurs peuvent se communiquer sur tous les ports, méme si les ports ne sont pas exposés au cluster,
* le méme espace de stockage,

o les conteneurs peuvent partager les mémes volumes.

5.2 - Mise en Place

Commencez par créer le fichier multicontainerpod.yaml :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 27/42 DOF304 - Travailler avec des Pods et des Conteneurs

root@kubemaster:~# vi multicontainerpod.yaml
root@kubemaster:~# cat multicontainerpod.yaml
apiVersion: vl
kind: Pod
metadata:
name: multicontainerpod
spec:
containers:
- name: nginx
image: nginx
- name: redis
image: redis
- name: couchbase
image: couchbase

. ! Important : Notez que le fichier créera trois conteneurs - nginx, redis et couchbase.
Créez ensuite le pod :

root@kubemaster:~# kubectl create -f multicontainerpod.yaml
pod/multicontainerpod created

Consultez I'état du pod :

root@kubemaster:~# kubectl get pod multicontainerpod

NAME READY STATUS RESTARTS AGE
multicontainerpod 0/3 ContainerCreating O 65s
ff!' Important : Notez qu'il y a actuellement 0 de 3 pods dans un état de READY.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 28/42

DOF304 - Travailler avec des Pods et des Conteneurs

Attendez quelques minutes et constatez de nouveau I'état du pod :

root@kubemaster:~# kubectl get pod multicontainerpod
NAME READY STATUS RESTARTS AGE

multicontainerpod 3/3 Running 0 16m

2 []
-

Créez maintenant le fichier helper.yaml :

root@kubemaster:~# vi helper.yaml
root@kubemaster:~# cat helper.yaml
apiVersion: vl
kind: Pod
metadata:
name: helperpod
spec:
containers:
- name: busyboxl
image: busybox
command:
volumeMounts:
- name: sharedvol
mountPath: /output
- name: helper
image: busybox

’

command: ['sh', '-c', 'tail -f /input/output.log']

volumeMounts:
- name: sharedvol
mountPath: /input
volumes:

Important : Notez qu'il y a actuellement 3 de 3 pods dans un état de READY.

['sh', '"-c', 'while true; do echo logs data > /output/output.log; sleep 5; done']

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 29/42 DOF304 - Travailler avec des Pods et des Conteneurs

- name: sharedvol
emptyDir: {}

Important : Notez que ce fichier créera un pod contenant deux conteneurs - busybox1 et
| helper. Chaque conteneur partage un volume identique qui s'appelle sharedvol. Dans le

&% conteneur *busybox1 ce volume est monté sur /output tandis que dans le conteneur
helper, le méme volume est monté sur /input.

Créez le pod helper :

root@kubemaster:~# kubectl create -f helper.yaml
pod/helperpod created

Consultez les logs du conteneur helper dans le pod helperpod :

root@kubemaster:~# kubectl logs helperpod -c helper
logs data

Important : Notez que le conteneur busybox1 a écrit la chaine logs data dans le fichier
/output/output.log tous les 5 secondes grace a I'exécution de la commande while true;
do echo logs data > /output/output.log; sleep 5; done. Le conteneur helper exécute

& . la commande tail -f /input/output.log. Le log du conteneur helper contient donc la
chaine logs data issu du fichier output.log car ce fichier est partagé entre les deux
conteneurs.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 30/42 DOF304 - Travailler avec des Pods et des Conteneurs

LAB #6 - Conteneurs Init

6.1 - Présentation

Un Conteneur Init est un conteneur qui ne s'exécute qu'une seule fois au démarrage du pod. S'il existe plusieurs conteneurs Init, ceux-ci s'exécutent
dans l'ordre. Un conteneur Init doit terminer son exécution avant que le conteneur Init suivant, ou I'application si le conteneur Init concerné est le
dernier, peut s'exécuter. Le but d'un conteneur Init est d'exécuter du code qui n'a pas besoin de se trouver dans les conteneurs de I'application afin

rendre plus Iégers ces derniers, par exemple :

« isoler, d'une maniere sécurisée, des données sensibles tels des mots de passe afin d'éviter a ce que celles-ci soient compromises si un conteneur
de 'application est compromis,

* injecter des données dans un volume partagé,
« faire patienter un pod en attendant que d'autres ressources de K8s soient créées.

6.2 - Mise en Place

Commencez par créer le fichier initpod.yaml :

root@kubemaster:~# vi initpod.yaml
root@kubemaster:~# cat initpod.yaml
apiVersion: vl
kind: Pod
metadata:
name: initpod
spec:
containers:
- name: nginx
image: nginx:1.19.1
initContainers:
- name: delay
image: busybox

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 31/42 DOF304 - Travailler avec des Pods et des Conteneurs

command: ['sleep', '30']

| Important : Notez que le conteneur delay va faire patienter la création du conteneur
nginx pendant 30 secondes.

Créez le pod initpod :

root@kubemaster:~# kubectl create -f initpod.yaml
pod/initpod created

Consultez I'état du pod :
root@kubemaster:~# kubectl get pod initpod

NAME READY STATUS RESTARTS AGE
initpod 0/1 Init:0/1 O 6s

Important : Notez que le STATUS du pod est Init:0/1.

2 []
-

Patientez au moins 30 secondes puis exécutez la derniere commande de nouveau :

root@kubemaster:~# kubectl get pod initpod
NAME READY STATUS RESTARTS AGE
initpod 1/1 Running 0O 79s

Important : Notez que le STATUS du pod est Running.

F]
_—)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 32/42

DOF304 - Travailler avec des Pods et des Conteneurs

LAB #7 - Scheduling

7.1 - Présentation

Scheduling est |le processus d'attribution de pods aux noeuds. Ce processus est accompli par le Scheduler, un composant du Control Plane.

Le Scheduler prend sa décision en fonction d'un un contrdle :

e des ressources disponibles sur les neouds en fonction des Resource Resquests,

¢ des configurations des nodeSelectors qui utilisent des Node Labels,
e des instructions de type nodeName qui forcent le choix d'un noeud par rapport a un autre.

7.2 - Mise en Place

Commencez par visualiser les noeuds du cluster :

root@kubemaster:~# kubectl get nodes

NAME STATUS ROLES AGE
kubemaster.ittraining.loc Ready control-plane 11d
kubenodel.ittraining. loc Ready <none> 11d
kubenode2.ittraining. loc Ready <none> 11d

nodeSelector

Attribuez I'étiquette mylabel=thisone au noeud kubenodel.ittraining.loc :

root@kubemaster:~# kubectl label nodes kubenodel.ittraining.loc mylabel=thisone

node/kubenodel.ittraining.loc labeled

Créez maintenant le fichier nodeselector.yaml :

VERSION
v1.25.0
v1.25.0
v1.25.0

www.ittraining.team - https://www.ittraining.team/

33/42 DOF304 - Travailler avec des Pods et des Conteneurs

2026/02/04 08:21

root@kubemaster:~# vi nodeselector.yaml
root@kubemaster:~# cat nodeselector.yaml
apiVersion: vl
kind: Pod
metadata:
name: nodeselector
spec:
nodeSelector:
mylabel: "thisone"
containers:
- name: nginx
image: nginx:1.19.1

_ ! Important : Notez |'entrée nodeSelector.
Créez le pod nodeselector :

root@kubemaster:~# kubectl create -f nodeselector.yaml
pod/nodeselector created

Constatez I'emplacement du pod nodeselector :

root@kubemaster:~# kubectl get pod nodeselector -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

nodeselector 1/1 Running 0 66s 192.168.239.21 kubenodel.ittraining.loc <none>

<none>

Important : Notez que le pod nodeselector a été schedulé sur le noeud kubenodel.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 34/42

DOF304 - Travailler avec des Pods et des Conteneurs

nodeName

Créez maintenant le fichier nodename.yaml :

root@kubemaster:~# vi nodename.yaml
root@kubemaster:~# cat nodename.yaml
apiVersion: vl
kind: Pod
metadata:

name: nodename
spec:

nodeName: kubenode2.ittraining.loc

containers:

- name: nginx
image: nginx:1.19.1

Créez le pod nodename :

root@kubemaster:~# kubectl create -f nodename.yaml

pod/nodename created

Constatez I'emplacement du pod nodename :

pod/nodename created

root@kubemaster:~# kubectl get pod nodename -0 wide
NAME READY STATUS RESTARTS

READINESS GATES

NODE

_ Important : Notez que le pod va étre schedulé sur kubenode2.ittraining.loc grace a
= I'utilisation de nodeName.

NOMINATED NODE

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 35/42 DOF304 - Travailler avec des Pods et des Conteneurs

nodename 1/1 Running 0 67s 192.168.150.25 kubenode2.ittraining.loc <none> <none>

| Important : Notez que le pod a été schedulé sur kubenode2.ittraining.loc grace a

£.* . |'utilisation de nodeName.

LAB #8 - DaemonSets

8.1 - Présentation

Un DaemonSet :

e crée une copie d'un pod sur tous les noeuds disponibles,
e crée une copie d'un pod sur tout nouveau noeud ajouté au cluster,
e respecte les contraintes de Node Labels.

8.2 - Mise en Place

Commencez par nettoyer le cluster :

root@kubemaster:~# kubectl delete --all pods --namespace=default
pod "alwayspod" deleted

pod "bigrequestpod" deleted

pod "helperpod" deleted

pod "initpod" deleted

pod "liveness-pod" deleted

pod "livenesspodhttp" deleted

pod "multicontainerpod" deleted

pod "my-deployment-67b5d4bf57-6wcrq" deleted

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 36/42 DOF304 - Travailler avec des Pods et des Conteneurs

pod "myapp-deployment-689f9d59-c25f9" deleted
pod "myapp-deployment-689f9d59-nn9sw" deleted
pod "myapp-deployment-689f9d59-rnc4r" deleted
pod "never" deleted

pod "nodename" deleted

pod "nodeselector" deleted

pod "onfailure" deleted

pod "readinesspod" deleted

pod "resourcepod" deleted

pod "startuppod" deleted

root@kubemaster:~# kubectl delete --all deployments --namespace=default
deployment.apps "my-deployment" deleted
deployment.apps "myapp-deployment" deleted

Créez ensuite le fichier daemonset.yaml :

root@kubemaster:~# vi daemonset.yaml
root@kubemaster:~# cat daemonset.yaml
apiVersion: apps/vl
kind: DaemonSet
metadata:
name: mydaemonset
spec:
selector:
matchLabels:
app: mydaemonset
template:
metadata:
labels:
app: mydaemonset
spec:
containers:
- name: nginx

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 37/42 DOF304 - Travailler avec des Pods et des Conteneurs

image: nginx:1.19.1
Créez le DaemonSet mydaemonset :

root@kubemaster:~# kubectl create -f daemonset.yaml
daemonset.apps/mydaemonset created

Constatez le statut du DaemonSet :

root@kubemaster:~# kubectl get daemonset
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
mydaemonset 2 2 2 2 2 <none> 37s

Constatez maintenant qu'il a un pod sur chaque noeud :

root@kubemaster:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
mydaemonset-hmdhp 1/1 Running 0 38s 192.168.239.26 kubenodel.ittraining.loc <none>
<none>
mydaemonset-kmf4z 1/1 Running 0 38s 192.168.150.30 kubenode2.ittraining.loc <none>
<none>
/1. Important : Notez qu'il n'y ait pas de pod sur kubemaster. En effet, le kubemaster a le
&% drapeau no taint fixé qui empéche la création de pods sur lui.

LAB #9 - Pods Statiques

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 38/42 DOF304 - Travailler avec des Pods et des Conteneurs

9.1 - Présentation

Un Static Pod (Pod Statique) est :

e un pod qui est contrélé par le kubelet sur le noeud concerné au lieu d'étre contréler par I'API de K8s,
o ce type de pod peut étre créé méme s'il n y'ait pas de Control Plane,
o si le Control Plane existe, un Mirror Pod (Pod Miroir) est créé dans le Control Plane pour représenter le pod statique afin de faciliter la
consultation son statut. Par contre, le pod ne peut ni étre changé, ni étre géré a partir du Control Plane,
e un pod créé en utilisant un fichier yaml situé dans un chemin spécifique sur le noeud concerné,
o pour un cluster installé avec kubeadm, le chemin “spécifique” par défaut dans chaque worker est /etc/kubernetes/manifests. Notez
qu'il est possible de modifier ce chemin.

9.2 - Mise en Place

Connectez-vous a kubenodel et devenez I'utilisateur root :

root@kubemaster:~# ssh -1 trainee 192.168.56.3
trainee@192.168.56.3's password: trainee
Linux kubenodel.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86 64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Sep 4 13:01:18 2022 from 192.168.56.2
trainee@kubenodel:~$ su -

Mot de passe : fenestros

root@kubenodel: ~#

Créez le fichier /etc/kubernetes/manifests/mystaticpod.yaml :

www.ittraining.team - https://www.ittraining.team/

39/42 DOF304 - Travailler avec des Pods et des Conteneurs

2026/02/04 08:21

/etc/kubernetes/manifests

Créez le pod mystaticpod :

root@kubenodel:~# vi /etc/kubernetes/manifests/mystaticpod.yaml
root@kubenodel:~# cat /etc/kubernetes/manifests/mystaticpod.yaml
apiVersion: vl

kind: Pod

metadata:
name: mystaticpod
spec:
containers:
- name: nginx
image: nginx:1.19.1

. Important : Notez que kubelet va voir que le fichier a été créé et ensuite pouruivra avec
£.% . lacréation du pod.

Re-démarrez le service kubelet pour démarrer le pod statigue immédiatement sans attendre :

root@kubenodel:~# systemctl restart kubelet

Retournez au kubemaster et constatez la présence d'un pod miroir :

root@kubenodel:~# exit

déconnexion
trainee@kubenodel:~$ exit

déconnexion
Connection to 192.168.56.3 closed.

root@kubemaster:~# kubectl get pods

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 40/42 DOF304 - Travailler avec des Pods et des Conteneurs

NAME READY STATUS RESTARTS AGE
mydaemonset-hmdhp 1/1 Running 0 32m
mydaemonset-kmf4z 1/1 Running 0O 32m
mystaticpod-kubenodel.ittraining. loc 1/1 Running 0 3m40s

Supprimez maintenant le pod statique :

root@kubemaster:~# kubectl delete pod mystaticpod-kubenodel.ittraining.loc
pod "mystaticpod-kubenodel.ittraining.loc" deleted

! . Important : Notez que la suppression semble avoir réussi.

Constatez les pods en cours d'exécution :

root@kubemaster:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
mydaemonset-hmdhp 1/1 Running 0 45m
mydaemonset-kmf4z 1/1 Running 0 45m
mystaticpod-kubenodel.ittraining.loc 1/1 Running 0 19s
| Important : Notez que le pod mystaticpod-kubenodel.ittraining.loc est revenu. En
L5 effet, la suppression précédente n'a supprimé que le miroir qui a ensuite éte regénéré.

Pour supprimer le pod statique, connectez-vous a kubenodel :

root@kubemaster:~# ssh -1 trainee kubenodel
trainee@kubenodel's password: trainee
Linux kubenodel.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86 64

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 41/42 DOF304 - Travailler avec des Pods et des Conteneurs

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Thu Sep 15 17:51:03 2022 from 192.168.56.2

trainee@kubenodel:~$ su -
Mot de passe : fenestros

root@kubenodel:~# rm -f /etc/kubernetes/manifests/mystaticpod.yaml
root@kubenodel:~# systemctl restart kubelet

root@kubenodel:~# exit
déconnexion

trainee@kubenodel:~$ exit
déconnexion

Connection to kubenodel closed.

root@kubemaster:~#

Copyright © 2024 Hugh Norris

www.ittraining.team - https://www.ittraining.team/

2026/02/04 08:21 42/42 DOF304 - Travailler avec des Pods et des Conteneurs

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s03

Last update: 2024/12/15 06:51

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s03

	DOF304 - Travailler avec des Pods et des Conteneurs
	Contenu du Module
	Ressources
	Lab #1
	Lab #2
	Lab #3
	Lab #4
	Lab #5
	Lab #6
	Lab #7
	Lab #8
	Lab #9

	LAB #1 - Application Configuration
	1.1 - Présentation
	1.2 - Création d'une ConfigMap
	1.3 - Création d'un Secret
	1.4 - Utilisation de ConfigMaps et de Secret
	Utilisation des Variables d'environnement
	Utilisation des Volumes de Configuration

	LAB #2 - Gestion des Ressources des Conteneurs
	2.1 - Présentation
	2.2 - Resource Requests
	2.3 - Resource Limits

	LAB #3 - Supervision des Conteneurs
	3.1 - Présentation
	3.2 - Liveness Probes
	Le Probe exec
	Le Probe httpGet

	3.3 - Startup Probes
	3.4 - Readiness Probes

	LAB #4 - Gestion des Politiques de Redémarrage
	4.1 - Présentation
	4.2 - Always
	4.3 - OnFailure
	4.4 - Never

	LAB #5 - Création de Pods Multi-conteneurs
	5.1 - Présentation
	5.2 - Mise en Place

	LAB #6 - Conteneurs Init
	6.1 - Présentation
	6.2 - Mise en Place

	LAB #7 - Scheduling
	7.1 - Présentation
	7.2 - Mise en Place
	nodeSelector
	nodeName

	LAB #8 - DaemonSets
	8.1 - Présentation
	8.2 - Mise en Place

	LAB #9 - Pods Statiques
	9.1 - Présentation
	9.2 - Mise en Place

