
2026/02/05 00:39 1/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Dernière mise-à-jour : 2020/01/30 03:27

105.3 - Gérer des données avec SQL (4/60)

SQL

Chaînes de caractères

Les chaînes de caractères doivent être entourées de ' ou de “.

Exemples

'Linux est incroyable'

“Windows est …….”

“Je lui dit : ”“Je t'aime””“

Nombres

Il existe 3 types de nombres :

Nombres Entiers

Une séquence de chiffres sans espaces

Exemple

999256

2026/02/05 00:39 2/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

0

Nombres Décimaux

Utilisent le point comme séparateur.

Exemple

120.54

5566.8956e+12

Nombres Négatifs

Sont précédés par le signe -.

Exemple

-458

-147.36

Valeurs NULL

Une chaîne sans données.

<note warning> N'est pas la même chose qu'une chaîne vide ou un 0 dans le cas d'un nombre. </note>

2026/02/05 00:39 3/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Noms de Fichiers

Les noms de bases, tables et colonnes :

peuvent contenir jusqu'à 64 caractères
peuvent commencer par un chiffre
ne peuvent pas contenir que de chiffres
ne peuvent pas contenir un /, une \ ou un point

Les alias :

peuvent contenir jusqu'à 255 caractères
peuvent contenir un /, une \ ou un point

Variables Utilisateurs

Les variables n'ont pas besoin d'être initialisées. Elles sont automatiquement crées avec la valeur NULL.

Commentaires

Les commentaires d'une ligne sont précédés par le caractère # ou - -.

Les commentaires sous plusieurs lignes sont entourés comme suit :

/*
Ceci est
un commentaire
sur
plusieurs lignes
*/

2026/02/05 00:39 4/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Commandes

SELECT

Obtenir un ensemble de données à partir d'une ou de plusieurs tables.

Syntaxe

SELECT [table.][colonne]|expression [AS nom][,[table.[colonne]
FROM nom-table [, nom_table ...]
[WHERE condition [AND|OR condition ...]
[GROUP BY [table.][colonne],[table].[colonne] ...]
[ORDER BY [table.][colonne][Description],[table].[colonne] ...]

Exemples

SELECT nom, prenom FROM familles ORDER BY nom

SELECT nom, prenom FROM familles GROUP BY ville

UPDATE

Mettre à jour des données dans une table.

Syntaxe

UPDATE [LOW_PRIORITY][IGNORE] nom_table
SET colonne = expression
WHERE expression
ORDER BY expression
LIMIT valeur

2026/02/05 00:39 5/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Directive Description
LOW_PRIORITY L'opération se fera quand la table n'est pas utilisée par un client
IGNORE La mise à jour continue malgré des problèmes éventuels rencontrés. Les enregistrements posant problème ne seront PAS mis à jour

Exemples

UPDATE familles SET Adresse2='*******', nb_enfants=2;

UPDATE familles SET nb_enfants=8 ORDER BY Nom LIMIT 3;

DELETE FROM

Supprimer des enregistrements d'une table.

Syntaxe

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM nom_table
 [WHERE where_definition]
 [ORDER BY ...]
 [LIMIT row_count]

Exemple

DELETE FROM familles WHERE Nom = Durant;

DROP TABLE

Syntaxe

DROP DATABASE [IF EXISTS] db_name

2026/02/05 00:39 6/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Supprimer une table d'une base de données.

Exemple

DROP TABLE Test;

INSERT

Syntaxe

INSERT [LOW_PRIORITY] | [DELAYED] [IGNORE]
[INTO] nom_table [(nom_colonne ...)]
VALUES ((expression | DEFAULT) ...) , (...)

ou

INSERT [LOW_PRIORITY] | [DELAYED] [IGNORE]
[INTO] nom_table [(nom_colonne ...)]
SELECT ...

Directive Description
LOW_PRIORITY L'opération se fera quand la table n'est pas utilisée par un client
DELAYED Permet à un client d'utiliser la table sans attendre la fin de l'opération
IGNORE La mise à jour continue malgré des problèmes éventuels rencontrés. Les enregistrements posant problème ne seront PAS mis à jour

INSERT VALUES

Insérer des valeurs dans une table.

Exemple

INSERT INTO familles (Nom, Prenom) VALUES ('Smith', 'John');

2026/02/05 00:39 7/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

INSERT SELECT

Insérer des valeurs en provenance d'une autre table dans la table cible.

Exemple

INSERT INTO familles (Prenom) SELECT enfants.prenom FROM enfants;

ALTER

Ajouter, supprimer ou modifier une colonne, index ou nom de table.

ALTER ADD

Commande Description
ADD [COLUMN] Ajouter un champ
ADD INDEX Ajouter un index
ADD PRIMARY KEY Ajouter une clef primaire
ADD UNIQUE Ajouter un index unique
ADD FULLTEXT Ajouter une recherche texte entier

Exemples

ALTER TABLE familles ADD Sports VARCHAR(50) NOT NULL;

ALTER TABLE familles ADD INDEX (Sports);

ALTER CHANGE

Permet de modifier le nom ou le type d'une colonne.

Exemple

2026/02/05 00:39 8/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

ALTER TABLE familles CHANGE PrenomPere Prenom_Pere VARCHAR(45) NOT NULL;

ALTER DROP

Commande Description
DROP [COLUMN] Supprimer un champ
DROP INDEX Supprimer un index
DROP PRIMARY KEY Supprimer une clef primaire

Exemple

ALTER TABLE familles DROP Sports;

ALTER KEYS

Permet de désactiver la clef primaire momentanément.

Exemples

ALTER TABLE familles DISABLE KEYS;

ALTER TABLE familles ENABLE KEYS;

ALTER RENAME

Permet de renommer une table.

Exemple

ALTER TABLE enfants RENAME familles_enfants;

ALTER ORDER BY

Permet de reclasser physiquement une table.

2026/02/05 00:39 9/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Exemple

ALTER TABLE familles ORDER BY Prenom_Pere;

MATCH

Permet la recherche d'un mot, d'une phrase ou d'une expression sur un texte entier

Exemple

SELECT * FROM familles WHERE MATCH (Commentaire) AGAINST ('fleuve');

Opérateurs

Mathémathiques

Nom Description
+ Addition
- Soustraction
* Multiplication
/ Division
() Le calcul entre parenthèses est effectué en priorité

Logiques

Nom Description
! NON
|| OU
&& ET
XOR XOR exclusif

2026/02/05 00:39 10/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Comparaison

Nom Description
= Egal
!= ou <> Non égal
< Inférieur
< = Inférieur ou égal
> Supérieur
> = Supérieur ou égal
< = > Egal gérant la nullité
IS NULL Nullité
IS NOT NULL Non nullité

Fonctions

Mathémathiques

Nom Description
ABS(nbr) Valeur absolue de nbr
SIGN(nbr) -1 0 ou 1 en fonctionne du signe de nbr
MOD(nbr1, nbr2) Indique le reste de la division de nbr1 par nbr2
FLOOR(nbr) Indique le plus grande nombre entier inférieur à nbr
CEILING(nbr) Indique la plus petite valeur entière supérieure à nbr
ROUND(nbr) Indique l'arrondi entier le plus proche de nbr
ROUND(nbr,D) Indique l'arrondi à D décimales plus plus proche de nbr
EXP(nbr) Indique l'exponentielle de nbr
POW(nbr,nbr2) indique nbr à la puissance nbr2
SQRT(nbr) Indique la racine carrée de nbr
PI() Indique la valeur de PI
COS(nbr) Indique le cosinus de nbr
ACOS(nbr) Indique l'arc cosinus de nbr

2026/02/05 00:39 11/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Nom Description
SIN(nbr) Indique le sinus de nbr
ASIN(nbr) Indique l'arc sinus de nbr
TAN(nbr) Indique le tangent de nbr
ATAN(nbr) Indique l'arc tangent de nbr
COT(nbr) Indique la cotangente de nbr
RAND() Indique une valeur en virgule flottante entre 0 et 1.0
RAND(nbr) Indique une valeur en virgule flottante entre 0 et 1.0. La valeur de nbr indique la limite haute
LEAST(nbr1, nbr2 …) Indique le plus petit des nombres nbr1 à nbrX
GREATEST(nbr1, nbr2 …) Indique le plus grand des nombres nbr1 à nbrX
DEGREES(nbr) Convertit nbr de gradiants vers degrés
RADIANS(nbr) Convertit nbr de degrés vers gradiants
TRUNCATE(nbr,D) Indique nbr tronqué à D décimales

Chaînes

Nom Description
LIKE Effectue une comparaison en fonction d'un motif
NOT LIKE L'inverse de LIKE
_ Remplace un caractère dans le motif d'une chaîne
% Remplace un ou plusieurs caractère(s) dans le motif d'une chaîne
\ Caractère d'échappement
BINARY Rend la comparaison avec un motif sensible à la casse

STRCMP(chaîne1, chaîne2) Compare deux chaînes. Retourne -1 si chaîne 1 < chaîne 2. Retourne 0 si chaîne 1 = chaîne 2. Retourne 1 si chaîne 1 >
chaîne 2.

MATCH Utilisé pour des recherches de texte intégral
UPPER('chaîne') Transforme les minuscules en majuscules
LOWER('chaîne') Transforme les majuscules en majuscules

Dates

2026/02/05 00:39 12/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Nom Description
NOW() Retourne la date au format 'AAAA-MM-JJ HH:MM:SS'
DATE_FORMAT(date,format) Retourne la date selon le format spécifié
DAYOFWEEK(date) Retourne un chiffre qui représente le jour de la semaine (1 pour dimanche, 7 pour samedi)
WEEKDAY(date) Retourne un chiffre qui représente le jour de la semaine (7 pour dimanche, 0 pour lundi)
DAYOFMONTH(date) Retourne un chiffre de 1 à 31
DAYOFYEAR(date) Retourne un chiffre de 1 à 366
MONTH(date) Retourne un chiffre de 1 à 12
DAYNAME(date) Retourne le nom du jour (lundi, mardi …)
MONTHNAME(date) Retourne le nom du mois
QUARTER(date) Retourne un chiffre de 1 à 4 (1 = premier trimestre de l'année)

WEEK(date [,depart] Retourne une valeur de 1 à 52. La valeur de depart peut être 0 ou 1. Dans le cas de 0, le dimanche est
considéré comme le premier jour de la semaine. Dans le cas de 1, c'est le lundi.

YEAR(date) Retourne un chiffre de 1000 à 9999
HOUR(date) Retourne l'heure
MINUTE(date) Retourne les minutes
SECOND(date) Retourne les secondes
TO_DAYS(date) Retourne le nombre de jours écoulés depuis le début de l'an 0
FROM_DAYS(date) Retourne la date à partir d'un nombre de jours écoulés depuis le début de l'an 0
CURDATE() Retourne la date courante au format AAAA-MM-JJ
CURRENT_DATE() Retourne la date courante au format AAAA-MM-JJ
CURTIME() Retourne la date courante au format HH:MM:SS
CURRENT_TIME() Retourne la date courante au format HH:MM:SS
UNIX_TIMESTAMP([date]) Retourne le nombre de secondes depuis la date 1970-01-01 00:00:00
FROM_UNIXTIME(unix_timestamp[,format]) Retourne la date en fonction d'un nombre de secondes depuis la date 1970-01-01 00:00:00

Motifs

Nom Description Exemple
%M Le mois janvier
%W Le jour de la semaine lundi

2026/02/05 00:39 13/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Nom Description Exemple
%D La date du mois 1st
%Y L'année 2009
%y L'année 09
%a L'abréviation du jour lun
%d Le jour du mois 01
%m Le numéro du mois 01
%b L'abréviation du mois lun
%j Le jour de l'année 031
%H L'heure 00
%h L'heure 12
%i Les minutes 05
%r L'heure au format américain 11:01:00 PM
%T L'heure au format 24 heures 23:01:00
%S Les secondes 06
%p AM ou PM PM
%w Le numéro du jour de la semaine 0 (=dimanche)
%U Le numéro de la semaine avec le début de la semaine étant un dimanche 03
%u Le numéro de la semaine avec le début de la semaine étant un lundi 02

Par exemple :

mysql> select DATE_FORMAT(now(), '%W %d %M %Y');
+-----------------------------------+
| DATE_FORMAT(now(), '%W %d %M %Y') |
+-----------------------------------+
| Friday 19 October 2012 |
+-----------------------------------+
1 row in set (0.00 sec)

mysql>

2026/02/05 00:39 14/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Contrôle

Nom Description
IF(exp1, exp2, exp3) Si exp1 est vrai, exp2 est retournée sinon exp3 est retournée
IFNULL(exp1,exp2) Si exp1 est NULL, exp2 est retournée sinon exp1 est retournée
NULLIF(exp1,exp2) Si exp1 = exp2, NULL est retournée sinon exp1 est retournée
CASE value WHEN comp1 THEN res1 [WHEN comp2
THEN res2][ELSE elseres] END

La fonction compare value à comp1 (comp2 …). Si une égalité est trouvée, res1 (res2 …) est
retournée. Si aucune égalité n'est trouvée, elseres est retournée

Agrégation

Nom Description
AVG(colonne) Moyenne de la colonne
COUNT(items) Le nombre de valeurs non nulles de la colonne
MIN(colonne) Valeur minimum de la colonne
MAX(colonne) Valeur maximum de la colonne
STD(colonne) Écart type des valeurs de la colonne
SUM(colonne) Somme des valeurs de la colonne
BIT_OR(colonne) Ou logique effectué sur les valeurs de la colonne
BIT_AND(colonne) ET logique effectué sur les valeurs de la colonne

Autres

Nom Description
CAST(expression) CONVERT(expression) Convertit l'expression vers le type demandé - BINARY, DATE, DATETIME, SIGNED, TIME, UNSIGNED
LAST_INSERT_ID() Retourne la valeur d'une colonne AUTO_INCREMENT lors du dernier insertion
VERSION() La version du serveur MySQL
CONNECTION_ID() L'identifiant du thread de la connexion courante
DATABASE() La base de données courante
USER() L'utilisateur courant
PASSWORD(chaîne) Encrypte un mot de passe
ENCRYPT(chaîne, [,force]) Encrypte un mot de passe avec la fonction crypt d'Unix

2026/02/05 00:39 15/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Nom Description
ENCODE(chaîne,mdp) Encode la chaîne avec le mot de passe mdp
DECODE(chaîne,mdp) Décode la chaîne avec le mot de passe mdp
MD5(chaîne) Retourne une chaîne encodée à la norme MD5
SHA1() Retourne une chaîne encodée à la norme SHA1

Types de Champs

Nombres entiers

Type Intervalle Taille en octets Description
TINYINT[(M)] -127 à 128 1 Entiers très courts
TINYINT[(M)] UNSIGNED 0 à 255 1 Entiers très courts
SMALLINT[(M)] -32 768 à 32 767 2 Entiers courts
SMALLINT[(M)] UNSIGNED 0 à 65 535 2 Entiers courts
MEDIUMINT[(M)] - 8 388 608 à 8 388 607 3 Entiers de taille moyenne
MEDIUMINT[(M)] UNSIGNED 0 16 777 215 3 Entiers de taille moyenne
INT[(M)] -231 à 231 - 1 4 Entiers
INT[(M)] UNSIGNED 0 à 232 - 1 4 Entiers
INTEGER[(M)] - - Synonyme de INT
BIGINT[(M)] -263 à 263 - 1 8 Entiers larges
BIGINT[(M)] UNSIGNED 0 à 264 - 1 8 Entiers larges

Nombres à virgule flottante

Type Intervalle Taille en
octets Description

FLOAT(precision) Varie selon precision Varie < =24 pour un nombre en simple précision ou >24 et
< =53 pour un nombre ne double précision

FLOAT[(M,D)] + ou - 1.175494351E-38 à + ou - 3.402823466E+38 4 Simple précision

2026/02/05 00:39 16/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Type Intervalle Taille en
octets Description

DOUBLE[(M,D)] + ou - 1.7976931348623157E+308 à + ou -
2.2250738585072014E-308 8 Double précision

DOUBLEPRECISION[(M,D)] - - Synonyme de DOUBLE[(M,D)]
REAL[(M,D)] - - Synonyme de DOUBLE[(M,D)]
DECIMAL[(M[,D])] Varie M +2 Nombre à virgule flottante
NUMERIC - - Synonyme de DECIMAL

Dates et Heures

Type Intervalle
DATE 1000-01-01 à 9999-12-31
TIME -838:59:59 à 838:59:59
DATETIME 1000-01-01 00:00:00 à 9999-12-31 23:59:59
TIMESTAMP[(M)] Voir tableau ci-dessous
YEAR[(2)] 70 à 69 (1970 à 2069)
YEAR[(4)] 1901 à 2155

Types de données TIMESTAMP

Type Affichage
TIMESTAMP YYYYMMDDHHMMSS
TIMESTAMP(14) YYYYMMDDHHMMSS
TIMESTAMP(12) YYMMDDHHMMSS
TIMESTAMP(10) YYMMDDHHMM
TIMESTAMP(8) YYYYMMDD
TIMESTAMP(6) YYMMDD
TIMESTAMP(4) YYMM
TIMESTAMP(2) YY

2026/02/05 00:39 17/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Chaînes

Type Longeur Description
CHAR(M) 1 à 255 Chaîne de longueur fixe où M varie entre 1 et 255
VARCHAR(M) 1 à 255 Chaîne de longueur variable où M varie entre 1 et 255

TEXT et BLOB

TEXT,
TEXT respecte la casse des données,

BLOB (Binary Large OBject),
BLOB permet de stocker toute information binaire telle une image ou un son.

Type Longueur Maximale en caractères Description
TINYBLOB 255 Objet binaire court
TINYTEXT 255 Texte court
BLOB 65 535 Objet binaire de taille normale
TEXT 65 535 Texte de taille normale
MEDIUM BLOB 16 777 215 Objet binaire de taille moyenne
MEDIUM TEXT 16 777 215 Texte de taille moyenne
LONG BLOB 4 294 967 295 Objet binaire de grande taille
LONG TEXT 4 294 967 295 Texte de grande taille

ENUM et SET

ENUM,
permet de prendre une valeur ou NULL parmi une liste de valeurs prédéfinies à la création de la colonne,

SET
permet de prendre un maximum de 64 valeurs ou NULL parmi une liste de valeurs prédéfinies à la création de la colonne,

Type Maximum des valeurs dans
l'ensemble Description

ENUM('valeur1','valeur2',…) 65 535 Les valeurs de ce type ne peuvent contenir qu'une seule des valeurs de la liste ou NULL

2026/02/05 00:39 18/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Type Maximum des valeurs dans
l'ensemble Description

SET('valeur1','valeur2',…) 64 Les valeurs de ce type ne peuvent contenir un ensemble des valeurs de la liste ou NULL

Types de Moteurs de Stockage

Le type de moteur est spécifié lors de la création de la table. Le moteur d'une table existant peut être modifié avec la commande ALTER TABLE. Les
différents types principaux sont résumés ci-après :

Type de Moteur Description

InnoDB Le format par défaut. Supportent les transactions sécurisées avec COMMIT et ROLLBACK. Permet de verrouiller des
enregistrements un-à-un au lieu de la table entière.

MyISAM Données stockées dans un fichier .MYD. Index stockés dans un fichier .MYI. Structure da la table stockée dans un fichier .frm

MEMORY
Anciennement connues sous le nom HEAP. Les données sont stockées en mémoire tandis que la structure de la table est stockée sur
disque dans un fichier .frm. Ne supportent pas les champs TEXT, BLOB. Ne supportent pas l'attribut AUTO_INCREMENT. Utilisé pour
augmenter la vitesse de traitement d'une requête.

ARCHIVE Ne supportent que des requêtes de lecture et d'insertion. Utilisé pour stocker des données des journaux d'application. Structure
stockée dans un fichier .frm. Données stockées dans un fichier .ARZ. Métadonnées sont stockées dans un fichier .ARM

CSV Données sont stockées dans un fichier texte au format CSV. Utilisé pour échanger des données avec d'autres applications. Structure
stockée dans un fichier .frm. Données stockées dans un fichier .CSV.

FEDERATED Ne stocke pas de données. Extrait des données de tables en provenance de bases sur des serveurs distants.

Bien que possible techniquement, il n'est pas préférable d'utiliser des types de moteurs différents dans la même base de données car ceci complique la
tâche d'optimisation, augmente le nombre de buffers et de caches et complexifie le travail de l'administrateur.

Le choix d'un moteur de stockage se fait en fonction de l'adéquation entre les besoins et les caractéristiques suivants :

Moteur Verrous Transactionnel de
type ACID MVCC Clef Etrangère Données sur

Disque
Sauvegarde à
Chaud COMMIT ROLLBACK Crash

Recovery
InnoDB Enregistrement Oui Oui Oui Oui Oui Oui Oui Oui
MyISAM Table Non Non Non Oui Non Non Non Non
Memory Table Non Non Non Non Non Non Non Non
Archive Enregistrement Non Non Non Oui Non Non Non Non

http://www.manuelphp.com/mysql/commit.php
http://www.manuelphp.com/mysql/commit.php
http://fr.wikipedia.org/wiki/Propri%C3%A9t%C3%A9s_ACID
http://fr.wikipedia.org/wiki/Multiversion_Concurrency_Control
http://www.manuelphp.com/mysql/commit.php
http://www.manuelphp.com/mysql/commit.php

2026/02/05 00:39 19/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

Moteur Verrous Transactionnel de
type ACID MVCC Clef Etrangère Données sur

Disque
Sauvegarde à
Chaud COMMIT ROLLBACK Crash

Recovery
CSV Table Non Non Non Oui Non Non Non Non
Federated Table Non Non Non Oui Non Non Non Non
NDB Cluster Enregistrement Oui Non Oui Oui Oui Oui Oui Oui

Jointures

Les jointures permettent de créer un lien entre deux tables. Le champ utilisé pour la jointure dans la première table est souvent la clef primaire. Le
champs utilisé dans la deuxième table est appelé le clef étrangère. La clef primaire et la clef étrangère doivent être du même type.

Dans le cas où on utilise un champs autre que la clef primaire pour assurer la jointure, cet autre champs doit être indexé.

FULL JOIN

Ce type de jointure permet de renvoyer uniquement les enregistrements des deux tables 1 et 2 ayant une correspondance :

mysql> SELECT table1.champ1, table2.champ1 FROM table1, table2 WHERE table1.clefprimaire = table2.clefetrangere;

ou

mysql> SELECT table1.champ1, table2.champ1 FROM table1 JOIN table2 WHERE table1.clefprimaire =
table2.clefetrangere;

LEFT JOIN

Ce type de jointure permet de renvoyer les enregistrements de la première table qui ont une correspondance dans la deuxième table. La syntaxe est la
suivante :

mysql> SELECT table1.champ1, table2.champ1 FROM table1 LEFT JOIN table2 ON table1.clefprimaire =

http://fr.wikipedia.org/wiki/Propri%C3%A9t%C3%A9s_ACID
http://fr.wikipedia.org/wiki/Multiversion_Concurrency_Control
http://www.manuelphp.com/mysql/commit.php
http://www.manuelphp.com/mysql/commit.php

2026/02/05 00:39 20/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

table2.clefetrangere;

Le résultat de cette requête est l'affichage de tous les enregistrements de la table 1 avec ou sans les enregistrements correspondants de la table 2.
Dans le cas où la table 2 ne contient pas d'enregistrement correspondant un un enregistrement de la table 1, la valeur retournée est NULL. Cette
information nous permet de rechercher uniquement les enregistrements dans la table1 n'ayant pas d'enregistrements dans la table 2 :

mysql> SELECT table1.champ1, table2.champ1 FROM table1 LEFT JOIN table2 ON table1.clefprimaire =
table2.clefetrangere WHERE table2.clefetrangere IS NULL;

RIGHT JOIN

Ce type de jointure est l'inverse d'un LEFT JOIN.

LAB #1 - Le Langage SQL

Créez maintenant la base de données CarnetAdresses :

mysql> CREATE DATABASE `CarnetAdresses` ;
Query OK, 1 row affected (0.00 sec)

mysql>

Créez ensuite deux tables familles et enfants dans la base CarnetAdresses :

mysql> USE CarnetAdresses ;
Database changed
mysql>

mysql> CREATE TABLE familles (CodeFamille BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY, Nom VARCHAR(40),
 -> PrenomPere VARCHAR(40) , PrenomMere VARCHAR(40) , Adresse1 VARCHAR(40) , Adresse2 VARCHAR(40),

2026/02/05 00:39 21/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

 -> CodePostal VARCHAR(5), Ville VARCHAR(40), ProfPere VARCHAR(40), ProfMere VARCHAR(40));
Query OK, 0 rows affected (0.03 sec)

mysql>

Pour plus de facilité, copiez simplement la requête et collez-la dans votre terminal :

familles

CREATE TABLE familles (CodeFamille BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY, Nom VARCHAR(40),\\
PrenomPere VARCHAR(40) , PrenomMere VARCHAR(40) , Adresse1 VARCHAR(40) , Adresse2 VARCHAR(40),\\
CodePostal VARCHAR(5), Ville VARCHAR(40), ProfPere VARCHAR(40), ProfMere VARCHAR(40));

mysql> CREATE TABLE Enfants (CodeFamille BIGINT NOT NULL, Prenom VARCHAR(40) NOT NULL,
 -> Sexe VARCHAR(1) NOT NULL, DateNaissance DATE NOT NULL, PRIMARY KEY (CodeFamille));
Query OK, 0 rows affected (0.01 sec)

mysql>

Pour plus de facilité, copiez simplement la requête et collez-la dans votre terminal :

enfants

CREATE TABLE Enfants (CodeFamille BIGINT NOT NULL, Prenom VARCHAR(40) NOT NULL,\\
Sexe VARCHAR(1) NOT NULL, DateNaissance DATE NOT NULL, PRIMARY KEY (CodeFamille));

Utilisez ensuite la commande SHOW pour visualiser le résultat de chaque instruction, par exemple :

mysql> SHOW DATABASES;
+--------------------+
| Database |

https://www.ittraining.team/doku.php?do=export_code&id=elearning:workbooks:french:14:102:l102&codeblock=11
https://www.ittraining.team/doku.php?do=export_code&id=elearning:workbooks:french:14:102:l102&codeblock=13

2026/02/05 00:39 22/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

+--------------------+
| information_schema |
| CarnetAdresses |
| mysql |
| test |
+--------------------+
4 rows in set (0.00 sec)

mysql>

mysql> SHOW TABLES FROM CarnetAdresses;
+--------------------------+
| Tables_in_CarnetAdresses |
+--------------------------+
| Enfants |
| familles |
+--------------------------+
2 rows in set (0.00 sec)

mysql>

mysql> SHOW COLUMNS FROM familles FROM CarnetAdresses;
+-------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+----------------+
CodeFamille	bigint(20)	NO	PRI	NULL	auto_increment
Nom	varchar(40)	YES		NULL	
PrenomPere	varchar(40)	YES		NULL	
PrenomMere	varchar(40)	YES		NULL	
Adresse1	varchar(40)	YES		NULL	
Adresse2	varchar(40)	YES		NULL	
CodePostal	varchar(5)	YES		NULL	
Ville	varchar(40)	YES		NULL	
ProfPere	varchar(40)	YES		NULL	

2026/02/05 00:39 23/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

| ProfMere | varchar(40) | YES | | NULL | |
+-------------+-------------+------+-----+---------+----------------+
10 rows in set (0.00 sec)

mysql>

mysql> SHOW INDEX FROM familles;
+----------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+--
----+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed |
Null | Index_type | Comment |
+----------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+--
----+------------+---------+
| familles | 0 | PRIMARY | 1 | CodeFamille | A | 0 | NULL | NULL |
| BTREE | |
+----------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+--
----+------------+---------+
1 row in set (0.00 sec)

mysql>

mysql> SHOW TABLE STATUS FROM CarnetAdresses;
+----------+--------+---------+------------+------+----------------+-------------+-----------------+-------------
-+-----------+----------------+---------------------+-------------+------------+-------------------+----------+--
--------------+---------+
| Name | Engine | Version | Row_format | Rows | Avg_row_length | Data_length | Max_data_length | Index_length
| Data_free | Auto_increment | Create_time | Update_time | Check_time | Collation | Checksum |
Create_options | Comment |
+----------+--------+---------+------------+------+----------------+-------------+-----------------+-------------
-+-----------+----------------+---------------------+-------------+------------+-------------------+----------+--
--------------+---------+
| Enfants | InnoDB | 10 | Compact | 0 | 0 | 16384 | 0 | 0
| 9437184 | NULL | 2014-01-27 10:46:10 | NULL | NULL | latin1_swedish_ci | NULL |
| |

2026/02/05 00:39 24/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

| familles | InnoDB | 10 | Compact | 0 | 0 | 16384 | 0 | 0
| 9437184 | 1 | 2014-01-27 10:45:39 | NULL | NULL | latin1_swedish_ci | NULL |
| |
+----------+--------+---------+------------+------+----------------+-------------+-----------------+-------------
-+-----------+----------------+---------------------+-------------+------------+-------------------+----------+--
--------------+---------+
2 rows in set (0.00 sec)

mysql>

Créez les enregistrements dans la table familles :

data

INSERT INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere ,
ProfMere) VALUES ('Durant', 'Jacques', 'Jane', '23 rue Dutor','','92200', 'Neuilly', 'Plombier',''); INSERT
INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere ,
ProfMere) VALUES ('Tortua', 'Benoît', 'Carole', '7 rue Verget','', '75005', 'Paris', 'Cadre', 'Cadre');
INSERT INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere ,
ProfMere) VALUES ('Portier', 'Pierre', 'Elisabeth', '5 rue Toulet','', '92200', 'Neuilly', 'Dentiste','');
INSERT INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere ,
ProfMere) VALUES ('Renault', 'Damien', 'Anne', '2 rue Ragon','', '75007', 'Paris', 'Comptable',
'Enseignante'); INSERT INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal ,
Ville , ProfPere , ProfMere) VALUES ('Darduet', 'Jean','','','','','','',''); INSERT INTO familles (Nom ,
PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere , ProfMere) VALUES ('Rodier',
'Gérard', 'Aurélie', '6 rue Agien', '77000', 'Fontainebleau', 'Professeur',''); INSERT INTO familles (Nom ,
PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere , ProfMere) VALUES ('Tarte',
'Alla', 'Crème', '1 allée Durond','', '92200', 'Neuilly', 'Cuisinier', 'Cuisinière'); INSERT INTO familles
(Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere , ProfMere) VALUES
('Cohen', 'David', 'Sarah', '7 Av d\'Eylau','', '75016', 'Paris', 'PDG', 'Assistante Direction'); INSERT
INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere ,
ProfMere) VALUES ('Dupont2', 'Bruno', 'Odile', '12 rue Sébastien','', '75008', 'PARIS', 'Electricien',
'Comptable'); INSERT INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville
, ProfPere , ProfMere) VALUES ('Durand2', 'Jacques', 'Jane', '23 rue Dutor','', '92200', 'Neuilly',

https://www.ittraining.team/doku.php?do=export_code&id=elearning:workbooks:french:14:102:l102&codeblock=19

2026/02/05 00:39 25/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

'Plombier',''); INSERT INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal ,
Ville , ProfPere , ProfMere) VALUES ('Darmon2', 'Bruno', 'Béatrice', '2 rue Nicolo','', '13008',
'Marseille', 'Cadre', 'Peintre'); INSERT INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2
, CodePostal , Ville , ProfPere , ProfMere) VALUES ('Darduet2', 'Jean', '','' ,'' ,'' ,'','',''); INSERT
INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal , Ville , ProfPere ,
ProfMere) VALUES ('Tarte2', 'Alla', 'Crème', '1 allée Durond','', '92200', 'Neuilly', 'Cuisinier',
'Cuisinière'); INSERT INTO familles (Nom , PrenomPere , PrenomMere , Adresse1 , Adresse2 , CodePostal ,
Ville , ProfPere , ProfMere) VALUES ('Cohen2', 'David', 'Sarah', '7 Av d\'Eylau','', '75016', 'Paris',
'PDG', 'Assistante Direction');

Saisissez maintenant chacune des commandes suivantes et expliquez le résultat obtenu. Les instructions sont numérotées pour faciliter vos prises de
notes.

1 ALTER TABLE Enfants ADD INDEX (Prenom);
2 ALTER TABLE Enfants DROP INDEX Prenom;
3 ALTER TABLE Enfants ADD TelPort VARCHAR(50) NOT NULL;
4 ALTER TABLE Enfants CHANGE TelPort TelPort VARCHAR(22) NOT NULL;
5 ALTER TABLE Enfants ADD Test VARCHAR(40) NOT NULL;
6 ALTER TABLE Enfants DROP Test;
7 SELECT * FROM familles;
8 SELECT * FROM familles LIMIT 8,12;

<note tip> LIMIT - Avec un argument, la valeur spécifie le nombre de lignes à retourner depuis le début du jeu de résultat. Si deux arguments sont
donnés, le premier indique le décalage du premier enregistrement à retourner, le second donne le nombre maximum d'enregistrement à retourner. Le
décalage du premier enregistrement est 0 (pas 1). </note>

9 UPDATE familles SET Adresse1 = '120 rue de Vaugirard', CodePostal = '75015', Ville = 'PARIS' WHERE Nom = 'DARDUET' AND PrenomPere = 'Jean'
LIMIT 1;

10 DELETE FROM familles WHERE Nom = 'DURANT' AND PrenomPere = 'Jacques';
11 DELETE FROM familles WHERE Ville = 'Neuilly';
12 SELECT * FROM familles LIMIT 8,12;
13 SELECT nom, PrenomPere FROM familles;

2026/02/05 00:39 26/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

14 SELECT Nom AS 'Nom de famille', PrenomPere AS 'Prenom du Père' FROM familles;
15 INSERT INTO Enfants (Prenom, Sexe, CodeFamille) VALUES ('Georges', 'M', '14');
16 SELECT familles.nom, familles.PrenomPere FROM familles, Enfants;

<note> Créez la colonne familles.nb_enfants. </note>

17 UPDATE familles SET nb_enfants = '2' WHERE CodeFamille = '2';
18 UPDATE familles SET nb_enfants = '1' WHERE CodeFamille = '4';
19 UPDATE familles SET nb_enfants = '3' WHERE CodeFamille = '5';
20 UPDATE familles SET nb_enfants = '2' WHERE CodeFamille = '6';
21 UPDATE familles SET nb_enfants = '4' WHERE CodeFamille = '8';
22 UPDATE familles SET nb_enfants = '5' WHERE CodeFamille = '9';
23 UPDATE familles SET nb_enfants = '3' WHERE CodeFamille = '11';
24 UPDATE familles SET nb_enfants = '1' WHERE CodeFamille = '12';
25 UPDATE familles SET nb_enfants = '5' WHERE CodeFamille = '14';
26 SELECT SUM(nb_enfants) FROM familles;

27 SELECT MIN(nb_enfants) AS 'Nb enfants minimum', MAX(nb_enfants) AS 'Nb enfants maximum', AVG(nb_enfants) AS 'Nb enfants moyen' FROM
familles;

28 SELECT nom FROM familles WHERE ville = 'Paris';
29 SELECT nom FROM familles WHERE ville = 'Paris' OR ville = 'Neuilly';
30 ALTER TABLE Enfants DROP PRIMARY KEY;
31 INSERT INTO Enfants (Prenom, Sexe, CodeFamille) VALUES ('Alex', 'F', '12');
32 INSERT INTO Enfants (Prenom, Sexe, CodeFamille) VALUES ('Mila', 'F', '2');
33 INSERT INTO Enfants (Prenom, Sexe, CodeFamille) VALUES ('Amandine', 'F', '5');
34 SELECT familles.Nom , Enfants.Prenom FROM familles, Enfants WHERE (Enfants.CodeFamille = familles.CodeFamille);
35 SELECT familles.nom, familles.PrenomPere FROM familles, Enfants;

36 SELECT ville, min(nb_enfants) as 'Nb enfants minimum', max(nb_enfants) as ' Nb enfants maximum', avg(nb_enfants) as 'Nb enfants moyen' from
familles GROUP BY Ville;

37 SELECT * FROM familles ORDER BY nom;
38 SELECT * FROM familles GROUP BY ville, Nom;
39 UPDATE familles SET Adresse2 = '-';
40 UPDATE familles SET Adresse2 = '___',nb_enfants=2;

2026/02/05 00:39 27/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

41 UPDATE familles SET nb_enfants=4 WHERE Ville = 'Paris';
42 UPDATE familles SET nb_enfants=7 LIMIT 4;
43 UPDATE familles SET nb_enfants=8 ORDER BY Nom LIMIT 3;
44 DELETE FROM familles WHERE Nom = 'Dupont';
45 CREATE TABLE loisirs(Nom VARCHAR(30) NOT NULL);
46 DROP TABLE loisirs;
47 INSERT INTO familles (Nom, PrenomPere) VALUES ('Alouet','Jean'),('Rahtmi','Patrick');
48 INSERT INTO familles (PrenomPere) SELECT Enfants.prenom FROM Enfants;
49 ALTER TABLE familles ADD Sports VARCHAR(50) NOT NULL;
50 ALTER TABLE familles ADD INDEX (Sports);
51 ALTER TABLE familles ADD INDEX (PrenomPere), ADD EmailPere VARCHAR(50) NOT NULL;
52 ALTER TABLE familles CHANGE PrenomPere Prenom_Pere VARCHAR(45) NOT NULL;
53 ALTER TABLE familles DROP Sports;
54 ALTER TABLE familles DROP INDEX PrenomPere;
55 ALTER TABLE familles DISABLE KEYS;
56 ALTER TABLE Enfants RENAME familles_enfants;
57 ALTER TABLE familles ORDER BY Prenom_Pere;
58 ALTER TABLE familles ADD Commentaire LONGTEXT NOT NULL ;
59 ALTER TABLE familles ADD FULLTEXT (Commentaire);
60 UPDATE familles SET Commentaire = 'La vie est un long fleuve tranquille' WHERE CodeFamille = '11';
61 UPDATE familles SET Commentaire = 'Paris, capitale de la France est traversée par un fleuve' WHERE CodeFamille ='4';
62 UPDATE familles SET Commentaire = 'Le ruisseau se jette dans la rivière qui se jette dans le FLEUVE' WHERE CodeFamille = '6';
63 SELECT * FROM familles WHERE MATCH (Commentaire) AGAINST ('fleuve');
64 SELECT Nom, Commentaire FROM familles WHERE MATCH (Commentaire) AGAINST ('-capitale+fleuve'IN BOOLEAN MODE);

<html>

Copyright © 2004-2017 Hugh Norris.

 <img alt=“Licence
Creative Commons” style=“border-width:0” src=“http://i.creativecommons.org/l/by-nc-nd/3.0/fr/88x31.png” />
Ce(tte) oeuvre est mise à
disposition selon les termes de la Licence Creative Commons Attribution

http://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://i.creativecommons.org/l/by-nc-nd/3.0/fr/88x31.png
http://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2026/02/05 00:39 28/28 105.3 - Gérer des données avec SQL (4/60)

www.ittraining.team - https://www.ittraining.team/

- Pas d’Utilisation Commerciale - Pas de Modification 3.0 France.

</html>

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:french:14:102:l102

Last update: 2020/01/30 03:27

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:french:14:102:l102

	105.3 - Gérer des données avec SQL (4/60)
	SQL
	Chaînes de caractères
	Nombres
	Nombres Entiers
	Nombres Décimaux
	Nombres Négatifs

	Valeurs NULL
	Noms de Fichiers
	Variables Utilisateurs
	Commentaires
	Commandes
	SELECT
	UPDATE
	DELETE FROM
	DROP TABLE
	INSERT
	ALTER
	MATCH

	Opérateurs
	Mathémathiques
	Logiques
	Comparaison

	Fonctions
	Mathémathiques
	Chaînes
	Dates
	Motifs

	Contrôle
	Agrégation
	Autres

	Types de Champs
	Nombres entiers
	Nombres à virgule flottante
	Dates et Heures
	Types de données TIMESTAMP

	Chaînes
	TEXT et BLOB
	ENUM et SET

	Types de Moteurs de Stockage
	Jointures
	FULL JOIN
	LEFT JOIN
	RIGHT JOIN

	LAB #1 - Le Langage SQL

