
2026/02/05 00:39 1/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Dernière mise-à-jour : 2020/01/30 03:27

105.2 - Personnaliser ou écrire des scripts simples (4/60)

Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point où vous êtes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrôle des services.

Écrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut être adressée que lors
d'une formation dédiée à l'écriture des scripts.

Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une manière séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse être lu au quel cas le script est exécuté par un shell fils soit en l'appelant en argument à l'appel du
shell :

/bin/bash myscript

soit en redirigeant son entrée standard :

/bin/bash < myscript

Dans le cas où le droit d'exécution est positionné sur le fichier script et à condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
l'utilisateur qui le lance, le script peut être lancé en l'appelant simplement par son nom :

myscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

2026/02/05 00:39 2/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

. myscript et ./myscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent à d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractère #.

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit être utilisé pour
l'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de l'utilisateur qui le lance. Le pseudo commentaire commence avec les
caractères #!. Chaque script commence donc par une ligne similaire à celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent être saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer l'utilisation de cette commande, saisissez la suite de commandes suivante :

[trainee@centos7 ~]$ script
Script started, file is typescript
[trainee@centos7 ~]$ pwd
/home/trainee
[trainee@centos7 ~]$ ls
aac bca Desktop Downloads fichier1 file Music Public training Videos xyz
abc codes Documents errorlog fichier2 file1 Pictures Templates typescript vitext
[trainee@centos7 ~]$ exit
exit
Script done, file is typescript
[trainee@centos7 ~]$ cat typescript
Script started on Tue 29 Nov 2016 03:58:33 CET
[trainee@centos7 ~]$ pwd
/home/trainee
[trainee@centos7 ~]$ ls
aac bca Desktop Downloads fichier1 file Music Public training Videos xyz
abc codes Documents errorlog fichier2 file1 Pictures Templates typescript vitext
[trainee@centos7 ~]$ exit
exit

2026/02/05 00:39 3/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Script done on Tue 29 Nov 2016 03:58:40 CET

Cette procédure peut être utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer l'écriture et l'exécution d'un script, éditez le fichier myscript avec vi :

$ vi myscript [Entrée]

Éditez votre fichier ainsi :

pwd
ls

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument à /bin/bash :

[trainee@centos7 ~]$ vi myscript
[trainee@centos7 ~]$ /bin/bash myscript
/home/trainee
aac codes Downloads fichier2 myscript Public typescript xyz
abc Desktop errorlog file Music Templates Videos
bca Documents fichier1 file1 Pictures training vitext

Lancez ensuite le script en redirigeant son entrée standard :

[trainee@centos7 ~]$ /bin/bash < myscript
/home/trainee
aac codes Downloads fichier2 myscript Public typescript xyz
abc Desktop errorlog file Music Templates Videos
bca Documents fichier1 file1 Pictures training vitext

Pour lancer le script en l'appelant simplement par son nom, son chemin doit être inclus dans votre PATH:

[trainee@centos7 ~]$ echo $PATH

2026/02/05 00:39 4/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/trainee/.local/bin:/home/trainee/bin

Dans le cas de RHEL/CentOS, même si PATH contient $HOME/bin, le répertoire n'existe pas :

[trainee@centos7 ~]$ ls
aac codes Downloads fichier2 myscript Public typescript xyz
abc Desktop errorlog file Music Templates Videos
bca Documents fichier1 file1 Pictures training vitext

Créez donc ce répertoire :

[trainee@centos7 ~]$ mkdir bin

Ensuite déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

[trainee@centos7 ~]$ mv myscript ~/bin
[trainee@centos7 ~]$ chmod u+x ~/bin/myscript

Exécutez maintenant votre script en l'appelant par son nom à partir du répertoire /tmp :

[trainee@centos7 tmp]$ myscript
/tmp
hsperfdata_root systemd-private-e526abcf335b40949dfc725f28456502-cups.service-u0xGiL

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :

./myscript

. myscript

[trainee@centos7 tmp]$ cd ~/bin
[trainee@centos7 bin]$./myscript
/home/trainee/bin
myscript
[trainee@centos7 bin]$. myscript

2026/02/05 00:39 5/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

/home/trainee/bin
myscript

A faire : Notez bien la différence entre les sorties de cette dernière commande et la précédente. Expliquez pourquoi.

La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est l'espace. Par conséquent il est intéressant de noter les exemples suivants :

[trainee@centos7 bin]$ read var1 var2 var3 var4
fenestros edu is great!
[trainee@centos7 bin]$ echo $var1
fenestros
[trainee@centos7 bin]$ echo $var2
edu
[trainee@centos7 bin]$ echo $var3
is
[trainee@centos7 bin]$ echo $var4
great!

Important: Notez que chaque champs a été placé dans une variable différente. Notez aussi que par convention les variables déclarées
par des utilisateurs sont en miniscules afin de les distinguer des variables système qui sont en majuscules.

[trainee@centos7 bin]$ read var1 var2
fenestros edu is great!
[trainee@centos7 bin]$ echo $var1

2026/02/05 00:39 6/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

fenestros
[trainee@centos7 bin]$ echo $var2
edu is great!

Important : Notez que dans le deuxième cas, le reste de la ligne après le mot fenestros est mis dans $var2.

Code de retour

La commande read renvoie un code de retour de 0 dans le cas où elle ne reçoit pas l'information fin de fichier matérialisée par les touches Ctrl+D .
Le contenu de la variable var peut être vide et la valeur du code de retour 0 grâce à l'utilisation de la touche Entrée :

[trainee@centos7 bin]$ read var

↵ Entrée

[trainee@centos7 bin]$ echo $?
0
[trainee@centos7 bin]$ echo $var

[trainee@centos7 bin]$

Le contenu de la variable var peut être vide et la valeur du code de retour autre que 0 grâce à l'utilisation des touches Ctrl+D :

[trainee@centos7 bin]$ read var

Ctrl+D

[trainee@centos7 bin]$ echo $?
1

2026/02/05 00:39 7/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

[trainee@centos7 bin]$ echo $var

[trainee@centos7 bin]$

La variable IFS

La variable IFS contient par défaut les caractères Espace , Tab et Entrée :

[trainee@centos7 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de l'entrée standard au format octal. Ceci est utile afin de
visualiser les caractères non-imprimables. L'option -c permet de sélectionner des caractères ASCII ou des backslash dans le fichier ou dans
le contenu fourni à l'entrée standard.

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut être modifiée :

[trainee@centos7 bin]$ OLDIFS="$IFS"
[trainee@centos7 bin]$ IFS=":"
[trainee@centos7 bin]$ echo "$IFS" | od -c
0000000 : \n
0000002

De cette façon l'espace redevient un caractère normal :

[trainee@centos7 bin]$ read var1 var2 var3
fenestros:edu is:great!
[trainee@centos7 bin]$ echo $var1

2026/02/05 00:39 8/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

fenestros
[trainee@centos7 bin]$ echo $var2
edu is
[trainee@centos7 bin]$ echo $var3
great!

Restaurez l'ancienne valeur de IFS avec la commande IFS=“$OLDIFS”

[trainee@centos7 bin]$ IFS="$OLDIFS"
[trainee@centos7 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

La commande test

La commande test peut être utilisée avec deux syntaxes :

test expression

ou

[EspaceexpressionEspace]

Tests de Fichiers

Test Description
-f fichier Retourne vrai si fichier est d'un type standard
-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier
-w fichier Retourne vrai si l'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe

2026/02/05 00:39 9/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Test Description
-s fichier Retourne vrai si fichier n'est pas vide
fichier1 -nt fichier2 Retourne vrai si fichier1 est plus récent que fichier2
fichier1 -ot fichier2 Retourne vrai si fichier1 est plus ancien que fichier2
fichier1 -ef fichier2 Retourne vrai si fichier1 est identique à fichier2

LAB #1

Testez si le fichier a100 est un fichier ordinaire :

[trainee@centos7 bin]$ cd ../training/
[trainee@centos7 training]$ test -f a100
[trainee@centos7 training]$ echo $?
0
[trainee@centos7 training]$ [-f a100]
[trainee@centos7 training]$ echo $?
0

Testez si le fichier a101 existe :

[trainee@centos7 training]$ [-f a101]
[trainee@centos7 training]$ echo $?
1

Testez si /home/trainee/training est un répertoire :

[trainee@centos7 training]$ [-d /home/trainee/training]
[trainee@centos7 training]$ echo $?
0

2026/02/05 00:39 10/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Tests de chaînes de caractère

Test Description
-n chaîne Retourne vrai si chaîne n'est pas de longueur 0
-z chaîne Retourne vrai si chaîne est de longueur 0
string1 = string2 Retourne vrai si string1 est égale à string2
string1 != string2 Retourne vrai si string1 est différente de string2
string1 Retourne vrai si string1 n'est pas vide

LAB #2

Testez si les deux chaînes sont égales :

[trainee@centos7 training]$ string1="root"
[trainee@centos7 training]$ string2="fenestros"
[trainee@centos7 training]$ [$string1 = $string2]
[trainee@centos7 training]$ echo $?
1

Testez si la string1 n'a pas de longueur 0 :

[trainee@centos7 training]$ [-n $string1]
[trainee@centos7 training]$ echo $?
0

Testez si la string1 a une longueur de 0 :

[trainee@centos7 training]$ [-z $string1]
[trainee@centos7 training]$ echo $?
1

2026/02/05 00:39 11/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Tests sur des nombres

Test Description
value1 -eq value2 Retourne vrai si value1 est égale à value2
value1 -ne value2 Retourne vrai si value1 n'est pas égale à value2
value1 -lt value2 Retourne vrai si value1 est inférieure à value2
value1 -le value2 Retourne vrai si value1 est inférieur ou égale à value2
value1 -gt value2 Retourne vrai si value1 est supérieure à value2
value1 -ge value2 Retourne vrai si value1 est supérieure ou égale à value2

LAB #3

Comparez les deux nombres value1 et value2 :

[trainee@centos7 training]$ read value1
35
[trainee@centos7 training]$ read value2
23
[trainee@centos7 training]$ [$value1 -lt $value2]
[trainee@centos7 training]$ echo $?
1
[trainee@centos7 training]$ [$value2 -lt $value1]
[trainee@centos7 training]$ echo $?
0
[trainee@centos7 training]$ [$value2 -eq $value1]
[trainee@centos7 training]$ echo $?
1

Les opérateurs

Test Description
!expression Retourne vrai si expression est fausse

2026/02/05 00:39 12/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Test Description
expression1 -a expression2 Représente un et logique entre expression1 et expression2
expression1 -o expression2 Représente un ou logique entre expression1 et expression2
\(expression\) Les parenthèses permettent de regrouper des expressions

LAB #4

Testez si $file n'est pas un répertoire :

[trainee@centos7 training]$ file=a1OO
[trainee@centos7 training]$ [! -d $file]
[trainee@centos7 training]$ echo $?
0

Testez si $directory est un répertoire et si l'utilisateur à le droit de le traverser :

[trainee@centos7 training]$ directory=/usr
[trainee@centos7 training]$ [-d $directory -a -x $directory]
[trainee@centos7 training]$ echo $?
0

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos7 training]$ [-w a100 -a \(-d /usr -o -d /tmp \)]
[trainee@centos7 training]$ echo $?
0

Tests d'environnement utilisateur

Test Description
-o option Retourne vrai si l'option du shell “option” est activée

2026/02/05 00:39 13/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

LAB #5

[trainee@centos7 training]$ [-o allexport]
[trainee@centos7 training]$ echo $?
1

La commande [[expression]]

La commande [[EspaceexpressionEspace]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression]] sauf -a et -o qui sont remplacés par && et || respectivement :

Test Description
!expression Retourne vrai si expression est fausse
expression1 && expression2 Représente un et logique entre expression1 et expression2
expression1 || expression2 Représente un ou logique entre expression1 et expression2
(expression) Les parenthèses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description
string = modele Retourne vrai si chaîne correspond au modèle
string != modele Retourne vrai si chaîne ne correspond pas au modèle
string1 < string2 Retourne vrai si string1 est lexicographiquement avant string2
string1 > string2 Retourne vrai si string1 est lexicographiquement après string2

LAB #6

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos7 training]$ [[-w a100 && (-d /usr || -d /tmp)]]
[trainee@centos7 training]$ echo $?

2026/02/05 00:39 14/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

0

Opérateurs du shell

Opérateur Description
Commande1 && Commande2 Commande 2 est exécutée si la première commande renvoie un code vrai
Commande1 || Commande2 Commande 2 est exécutée si la première commande renvoie un code faux

LAB #7

[trainee@centos7 training]$ [[-d /root]] && echo "The root directory exists"
The root directory exists
[trainee@centos7 training]$ [[-d /root]] || echo "The root directory exists"
[trainee@centos7 training]$

L'arithmétique

La commande expr

La commande expr prend la forme :

expr Espace value1 Espace opérateur Espace value2 Entrée

ou

expr Tab value1 Tab opérateur Tab value2 Entrée

ou

expr Espace chaîne Espace : Espace expression_régulière Entrée

ou

2026/02/05 00:39 15/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

expr Tab chaîne Tab : Tab expression_régulière Entrée

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
\(\) Parenthèses

Opérateurs de Comparaison

Opérateur Description
\< Inférieur
\<= Inférieur ou égal
\> Supérieur
\>= Supérieur ou égal
= égal
!= inégal

Opérateurs Logiques

Opérateur Description
\| ou logique
\& et logique

LAB #8

Ajoutez 2 à la valeur de $x :

2026/02/05 00:39 16/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

[trainee@centos7 training]$ x=2
[trainee@centos7 training]$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

[trainee@centos7 training]$ expr $x+2
2+2

Les opérateurs doivent être protégés :

[trainee@centos7 training]$ expr $x * 2
expr: syntax error
[trainee@centos7 training]$ expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

[trainee@centos7 training]$ resultat=`expr $x + 10`
[trainee@centos7 training]$ echo $resultat
12

La commande let

La commande let est l'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $
les caractères spéciaux du shell n'ont pas besoin d'être protégés
les affectations se font dans la commande
exécution plus rapide

2026/02/05 00:39 17/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
^ Puissance

Opérateurs de comparaison

Opérateur Description
< Inférieur
<= Inférieur ou égal
> Supérieur
>= Supérieur ou égal
== égal
!= inégal

Opérateurs Logiques

Opérateur Description
&& et logique
|| ou logique
! négation logique

Opérateurs travaillant sur les bits

Opérateur Description
~ négation binaire
>> décalage binaire à droite
<< décalage binaire à gauche

2026/02/05 00:39 18/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Opérateur Description
& et binaire
| ou binaire
^ ou exclusif binaire

LAB #9

[trainee@centos7 training]$ x=2
[trainee@centos7 training]$ ((x=$x+10))
[trainee@centos7 training]$ echo $x
12
[trainee@centos7 training]$ ((x=$x+20))
[trainee@centos7 training]$ echo $x
32

Structures de contrôle

If

La syntaxe de la commande If est la suivante :

if condition
then
 commande(s)
else
 commande(s)
fi

ou :

if condition

2026/02/05 00:39 19/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

then
 commande(s)
 commande(s)
fi

ou encore :

if condition
then
 commande(s)
elif condition
then
 commande(s)
elif condition
then
 commande(s)
else
 commande(s)

fi

LAB #10

Créez le script user_check suivant :

#!/bin/bash
if [$# -ne 1] ; then
 echo "Mauvais nombre d'arguments"
 echo "Usage : $0 nom_utilisateur"
 exit 1
fi
if grep "^$1:" /etc/passwd > /dev/null

2026/02/05 00:39 20/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

then
 echo "Utilisateur $1 est défini sur ce système"
else
 echo "Utilisateur $1 n'est pas défini sur ce système"
fi
exit 0

Testez-le :

[trainee@centos7 training]$ chmod 770 user_check
[trainee@centos7 training]$./user_check
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
[trainee@centos7 training]$./user_check root
Utilisateur root est défini sur ce système
[trainee@centos7 training]$./user_check mickey mouse
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
[trainee@centos7 training]$./user_check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce système

case

La syntaxe de la commande case est la suivante :

case $variable in
modele1) commande
 ...
 ;;
modele2) commande
 ...
 ;;

2026/02/05 00:39 21/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

modele3 | modele4 | modele5) commande
 ...
 ;;
esac

Exemple

 case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart|reload)
 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 1
esac

Important : L'exemple indique que dans le cas où le premier argument qui suit le nom du script contenant la clause case est start, la
fonction start sera exécutée. La fonction start n'a pas besoin d'être définie dans case et est donc en règle générale définie en début de
script. La même logique est appliquée dans le cas où le premier argument est stop, restart ou reload et status. Dans tous les autres
cas, représentés par une étoile, case affichera la ligne Usage: $0 {start|stop|restart|status} où $0 est remplacé par le nom du script.

2026/02/05 00:39 22/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste_variables
do
 commande(s)
done

while

La syntaxe de la commande while est la suivante :

while condition
do
 commande(s)
done

Exemple

U=1
while [$U -lt $MAX_ACCOUNTS]
do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1

2026/02/05 00:39 23/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

done

Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans l'ordre suivant :

/etc/profile,
~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de RHEL/CentOS, le système exécute le fichier ~/.bash_profile.

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

LAB #11

A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts suivants ligne par ligne.

~/.bash_profile

[trainee@centos7 training]$ cat ~/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

2026/02/05 00:39 24/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH

~/.bashrc

[trainee@centos7 training]$ cat ~/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions

<html>

Copyright © 2004-2017 Hugh Norris.

 <img alt=“Licence
Creative Commons” style=“border-width:0” src=“http://i.creativecommons.org/l/by-nc-nd/3.0/fr/88x31.png” />
Ce(tte) oeuvre est mise à
disposition selon les termes de la Licence Creative Commons Attribution
- Pas d’Utilisation Commerciale - Pas de Modification 3.0 France.

</html>

http://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://i.creativecommons.org/l/by-nc-nd/3.0/fr/88x31.png
http://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2026/02/05 00:39 25/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

www.ittraining.team - https://www.ittraining.team/

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:french:14:102:l101

Last update: 2020/01/30 03:27

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:french:14:102:l101

	105.2 - Personnaliser ou écrire des scripts simples (4/60)
	Les Scripts Shell
	Exécution
	La commande read
	Code de retour
	La variable IFS

	La commande test
	Tests de Fichiers
	LAB #1

	Tests de chaînes de caractère
	LAB #2

	Tests sur des nombres
	LAB #3

	Les opérateurs
	LAB #4

	Tests d'environnement utilisateur
	LAB #5

	La commande [[expression]]
	LAB #6

	Opérateurs du shell
	LAB #7

	L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques
	LAB #8

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits
	LAB #9

	Structures de contrôle
	If
	LAB #10
	case
	Exemple

	Boucles
	for
	while
	Exemple

	Scripts de Démarrage
	LAB #11
	~/.bash_profile
	~/.bashrc

