2026/02/05 00:39 1/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

Derniere mise-a-jour : 2020/01/30 03:27

105.2 - Personnaliser ou écrire des scripts simples (4/60)

Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point ou vous étes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrdle des services.

Ecrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut étre adressée que lors
d'une formation dédiée a I'écriture des scripts.

Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une maniere séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse étre lu au quel cas le script est exécuté par un shell fils soit en I'appelant en argument a I'appel du
shell :

/bin/bash myscript
soit en redirigeant son entrée standard :
/bin/bash < myscript

Dans le cas ou le droit d'exécution est positionné sur le fichier script et a condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
I'utilisateur qui le lance, le script peut étre lancé en I'appelant simplement par son nom :

myscript

Dans le cas ou le script doit étre exécuté par le shell courant, dans les mémes conditions que I'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 2/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

. myscript et ./myscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent a d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractere #.

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit étre utilisé pour
I'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de I'utilisateur qui le lance. Le pseudo commentaire commence avec les
caracteres #!. Chaque script commence donc par une ligne similaire a celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent étre saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer I'utilisation de cette commande, saisissez la suite de commandes suivante :

[trainee@centos7 ~]$ script
Script started, file is typescript
[trainee@centos7 ~]$ pwd

/home/trainee
[trainee@centos7 ~1$ 1s
aac bca Desktop Downloads fichierl file Music Public training Videos xyz

abc codes Documents errorlog fichier2 filel Pictures Templates typescript vitext
[trainee@centos7 ~1$ exit

exit

Script done, file is typescript

[trainee@centos7 ~]$ cat typescript

Script started on Tue 29 Nov 2016 03:58:33 CET

[trainee@centos7 ~]$ pwd

/home/trainee
[trainee@centos7 ~]$ 1s
aac bca Desktop Downloads fichierl file Music Public training Videos xyz

abc codes Documents errorlog fichier2 filel Pictures Templates typescript vitext
[trainee@centos7 ~]$ exit
exit

www.ittraining.team - https://www.ittraining.team/

105.2 - Personnaliser ou écrire des scripts simples (4/60)

2026/02/05 00:39 3/25

Script done on Tue 29 Nov 2016 03:58:40 CET

Cette procédure peut étre utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer I'écriture et I'exécution d'un script, éditez le fichier myscript avec vi :

$ vi myscript [Entrée]
Editez votre fichier ainsi :

pwd
1s

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument a /bin/bash :

[trainee@centos7 ~]$ vi myscript
[trainee@centos7 ~]$ /bin/bash myscript

/home/trainee
aac codes Downloads fichier2 myscript Public typescript xyz
abc Desktop errorlog file Music Templates Videos
bca Documents fichierl filel Pictures training vitext
Lancez ensuite le script en redirigeant son entrée standard :
[trainee@centos7 ~]$ /bin/bash < myscript
/home/trainee
aac codes Downloads fichier2 myscript Public typescript xyz
abc Desktop errorlog file Music Templates Videos
Pictures training vitext

bca Documents fichierl filel

Pour lancer le script en I'appelant simplement par son nom, son chemin doit étre inclus dans votre PATH

[trainee@centos7 ~]$ echo $PATH

www.ittraining.team - https://www.ittraining.team/

105.2 - Personnaliser ou écrire des scripts simples (4/60)

2026/02/05 00:39 4025
/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/trainee/.local/bin:/home/trainee/bin

Dans le cas de RHEL/CentOS, méme si PATH contient $HOME/bin, le répertoire n'existe pas :

[trainee@centos7 ~]$ 1s

aac codes Downloads fichier2 myscript Public typescript xyz

abc Desktop errorlog file Music Templates Videos
Pictures training vitext

bca Documents fichierl filel

Créez donc ce répertoire :

[trainee@centos7 ~1$ mkdir bin

Ensuite déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

[trainee@centos7 ~]$ mv myscript ~/bin
[trainee@centos7 ~]$ chmod u+x ~/bin/myscript

Exécutez maintenant votre script en I'appelant par son nom a partir du répertoire /tmp :

[trainee@centos7 tmp]$ myscript

/tmp
hsperfdata root systemd-private-e526abcf335b40949dfc725f28456502-cups.service-uOxGilL

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :

e ./myscript
e . myscript

[trainee@centos7 tmpl$ cd ~/bin
[trainee@centos7 bin]$./myscript

/home/trainee/bin

myscript
[trainee@centos7 bin]$. myscript

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 5/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

/home/trainee/bin
myscript

4

- A faire : Notez bien la différence entre les sorties de cette derniere commande et la précédente. Expliqguez pourquoi.

La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est I'espace. Par conséquent il est intéressant de noter les exemples suivants :

[trainee@centos7 binl$ read varl var2 var3 var4d
fenestros edu is great!

[trainee@centos7 bin]$ echo $varl

fenestros

[trainee@centos7 binl$ echo $var2

edu

[trainee@centos7 bin]$ echo $var3

is

[trainee@centos7 bin]$ echo $var4

great!

| Important: Notez que chaque champs a été placé dans une variable différente. Notez aussi que par convention les variables déclarées
£.% . pardes utilisateurs sont en miniscules afin de les distinguer des variables systéme qui sont en majuscules.

[trainee@centos7 bin]$ read varl var?2
fenestros edu is great!
[trainee@centos7 bin]$ echo $varl

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 6/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

fenestros
[trainee@centos7 bin]$ echo $var2
edu is great!

Important : Notez que dans le deuxieme cas, le reste de la ligne apres le mot fenestros est mis dans $var2.

F []
—_—)

Code de retour

La commande read renvoie un code de retour de 0 dans le cas ou elle ne recoit pas I'information fin de fichier matérialisée par les touches CtrI|+g.
Le contenu de la variable var peut étre vide et la valeur du code de retour 0 grace a l'utilisation de la touche Entrée| ;

[trainee@centos?7 bin]$ read var

o Entrée|

[trainee@centos7 bin]$ echo $?
0

[trainee@centos7 bin]$ echo $var
[trainee@centos7 binl$

Le contenu de la variable var peut étre vide et la valeur du code de retour autre que 0 grace a I'utilisation des touches CtrI|+g ;

[trainee@centos?7 bin]$ read var

ctrl+D)

[trainee@centos7 bin]$ echo $?
1

www.ittraining.team - https://www.ittraining.team/

105.2 - Personnaliser ou écrire des scripts simples (4/60)

2026/02/05 00:39 7/25

[trainee@centos7 bin]$ echo $var

[trainee@centos7 binl$

La variable IFS

La variable IFS contient par défaut les caractéres Espace|, Tabl et Entrée] :

[trainee@centos7 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de I'entrée standard au format octal. Ceci est utile afin de
visualiser les caracteres non-imprimables. L'option -c permet de sélectionner des caracteres ASCII ou des backslash dans le fichier ou dans

le contenu fourni a I'entrée standard.

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la

variable IFS peut étre modifiée :

[trainee@centos7 bin]$ OLDIFS="$IFS"
[trainee@centos7 bin]$ IFS=":"

[trainee@centos7 bin]$ echo "$IFS" | od -c
0000000 : \n
0000002

De cette facon I'espace redevient un caractere normal :

[trainee@centos?7 bin]$ read varl var2 var3

fenestros:edu is:great!
[trainee@centos7 bin]$ echo $varl

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 8/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

fenestros

[trainee@centos7 binl$ echo $var2
edu is

[trainee@centos7 bin]$ echo $var3
great!

Restaurez I'ancienne valeur de IFS avec la commande IFS=“$0OLDIFS”

[trainee@centos7 bin]$ IFS="$OLDIFS"

[trainee@centos7 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

La commande test

La commande test peut étre utilisée avec deux syntaxes :
test expression

ou

[Espace|expression Espace|]

Tests de Fichiers

Test Description

-f fichier Retourne vrai si fichier est d'un type standard

-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier

-w fichier Retourne vrai si I'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39

9/25

105.2 - Personnaliser ou écrire des scripts simples (4/60)

Test

Description

-s fichier

Retourne vrai si fichier n'est pas vide

fichierl -nt fichier2

Retourne vrai si fichierl est plus récent que fichier2

fichierl -ot fichier2

Retourne vrai si fichierl est plus ancien que fichier2

fichierl -ef fichier2

Retourne vrai si fichierl est identique a fichier2

LAB #1

Testez si le fichier al00 est un fichier ordinaire :

[trainee@centos7 bin]$ cd ../training/
[trainee@centos7 trainingl$ test -f al00
[trainee@centos7 training]$ echo $7?

0

[trainee@centos7 trainingl]$ [-f aloo]
[trainee@centos7 training]$ echo $?

0

Testez si le fichier al01 existe :

[trainee@centos7 trainingl$ [-f al0l]
[trainee@centos7 trainingl$ echo $?

1

Testez si /home/trainee/training est un répertoire :

[trainee@centos7 trainingl]$ [-d /home/trainee/training]

[trainee@centos7 training]$ echo $?

0

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 10/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

Tests de chaines de caractere

Test Description
-n chaine Retourne vrai si chaine n'est pas de longueur 0
-z chaine Retourne vrai si chaine est de longueur 0

stringl = string2 |Retourne vrai si stringl est égale a string2
stringl != string2|Retourne vrai si stringl est différente de string2
stringl Retourne vrai si stringl n'est pas vide

LAB #2

Testez si les deux chaines sont égales :

[trainee@centos? training]$ stringl="root"
[trainee@centos7 training]$ string2="fenestros"
[trainee@centos7 trainingl]$ [$stringl = $string2]
[trainee@centos7 trainingl$ echo $?

1

Testez si la stringl n'a pas de longueur 0 :
[trainee@centos?7 training]$ [-n $stringl]
[trainee@centos7 trainingl$ echo $?

0

Testez si la stringl a une longueur de 0 :

[trainee@centos7 trainingl$ [-z $stringl]
[trainee@centos7 trainingl$ echo $?
1

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 11/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

Tests sur des nombres

Test Description

valuel -eq value2|Retourne vrai si valuel est égale a value2

valuel -ne value2|Retourne vrai si valuel n'est pas égale a value2

valuel -It value2 |Retourne vrai si valuel est inférieure a value2

valuel -le value2 |[Retourne vrai si valuel est inférieur ou égale a value2
valuel -gt value2 |[Retourne vrai si valuel est supérieure a value2

valuel -ge value2|Retourne vrai si valuel est supérieure ou égale a value2

LAB #3

Comparez les deux nombres valuel et value2 :

[trainee@centos7 trainingl$ read valuel

35

[trainee@centos7 training]$ read value2

23

[trainee@centos7 training]$ [$valuel -1t $value2]
[trainee@centos7 trainingl$ echo $?

1

[trainee@centos7 trainingl$ [$value2 -1t $valuel]
[trainee@centos7 trainingl$ echo $?

0

[trainee@centos7 trainingl$ [$value2 -eq $valuel]
[trainee@centos7 training]$ echo $?

1

Les opérateurs

Test Description
lexpression Retourne vrai si expression est fausse

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39

12/25

105.2 - Personnaliser ou écrire des scripts simples (4/60)

Test

Description

expressionl -a expression2

Représente un et logique entre expressionl et expression2

expressionl -0 expression2

Représente un ou logique entre expressionl et expression2

\(expression\)

Les parenthéses permettent de regrouper des expressions

LAB #4

Testez si $file n'est pas un répertoire :

[trainee@centos7 training]$ file=al00
[trainee@centos7 trainingl$ [! -d $file]
[trainee@centos7 trainingl$ echo $?

0

Testez si $directory est un répertoire et si 'utilisateur a le droit de le traverser :

[trainee@centos7 trainingl$ directory=/usr
[trainee@centos?7 training]$ [-d $directory -a -x $directory |
[trainee@centos7 training]$ echo $7?

0

Testez si I'utilisateur peut écrire dans le fichier al00 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos?7 training]$ [-w al00 -a \(-d /usr -o -d /tmp \)]

[trainee@centos7 training]$ echo $?

0

Tests d'environnement utilisateur

Test Description

-0 option|Retourne vrai si I'option du shell “option” est activée

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 13/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

LAB #5

[trainee@centos7 training]$ [-o allexport]
[trainee@centos7 training]$ echo $?
1

La commande [[expression]]

La commande [[Espace|expression Espace|]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression 1] sauf -a et -0 qui sont remplacés par && et || respectivement :

Test Description

lexpression Retourne vrai si expression est fausse

expressionl && expression2|Représente un et logique entre expressionl et expression?2
expressionl || expression2 |Représente un ou logique entre expressionl et expression2
(expression) Les parentheses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description

string = modele |Retourne vrai si chaine correspond au modele

string != modele|Retourne vrai si chaine ne correspond pas au modele

stringl < string2|Retourne vrai si stringl est lexicographiguement avant string2
stringl > string2|Retourne vrai si stringl est lexicographiquement apres string2

LAB #6

Testez si 'utilisateur peut écrire dans le fichier al00 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos7 trainingl$ [[-w al00 && (-d /usr || -d /tmp)]I
[trainee@centos7 trainingl$ echo $?

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 14/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

0

Opérateurs du shell

Opérateur Description
Commandel && Commande2|Commande 2 est exécutée si la premiére commande renvoie un code vrai
Commandel || Commande2 |Commande 2 est exécutée si la premiere commande renvoie un code faux

LAB #7

[trainee@centos? training]$ [[-d /root]] && echo "The root directory exists"
The root directory exists

[trainee@centos7 trainingl$ [[-d /root]] || echo "The root directory exists"
[trainee@centos7 training]$

L'arithmétique
La commande expr

La commande expr prend la forme :

expr Espace| valuel Espace| opérateur Espace| value2 Entrée|

ou
expr Tab| valuel Tab| opérateur Tab| value2 Entrée]
ou

expr Espace| chaine Espace] : Espace| expression_réguliére Entréel

ou

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 15/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

expr Tab| chaine Ta b| : Ta b| expression_réguliere Entrée|

Opérateurs Arithmétiques

Opérateur|Description
+ Addition

- Soustraction

* Multiplication
/ Division

% Modulo

\(\) Parentheses

Opérateurs de Comparaison

Opérateur|Description

\< Inférieur

\<= Inférieur ou égal
\> Supérieur

\>= Supérieur ou égal
= égal

= inégal

Opérateurs Logiques

Opérateur|Description

\| ou logique
\& et logique
LAB #8

Ajoutez 2 a la valeur de $x :

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 16/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

[trainee@centos7 trainingl]$ x=2
[trainee@centos7 trainingl$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

[trainee@centos7 training]$ expr $x+2
2+2

Les opérateurs doivent étre protégés :

[trainee@centos7 trainingl$ expr $x * 2
expr: syntax error

[trainee@centos7 trainingl$ expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

[trainee@centos7 training]$ resultat= expr $x + 10°
[trainee@centos7 training]$ echo $resultat
12

La commande let

La commande let est I'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

e plus grand nombre d'opérateurs

pas besoin d'espaces ou de tabulations entre les arguments

pas besoin de préfixer les variables d'un $

les caracteres spéciaux du shell n'ont pas besoin d'étre protégés
les affectations se font dans la commande

exécution plus rapide

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:

39 17/25

105.2 - Personnaliser ou écrire des scripts simples (4/60)

Opérateurs Arithmétiques

Opérateur|Description

+ Addition

- Soustraction

* Multiplication

/ Division

% Modulo

~ Puissance
Opérateurs de comparaison
Opérateur|Description

< Inférieur

<= Inférieur ou égal
> Supérieur

>= Supérieur ou égal
== égal

= inégal

Opérateurs Logiques

Opérateur|Description

&&

et logique

ou logique

négation logique

Opérateurs travaillant sur les bits

Opérateur

Description

~

négation binaire

>>

décalage binaire a droite

<<

décalage binaire a gauche

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 18/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

Opérateur|Description

& et binaire

| ou binaire

~ ou exclusif binaire

LAB #9

[trainee@centos7 trainingl]$ x=2
[trainee@centos7 trainingl$ ((x=$x+10))
[trainee@centos7 trainingl$ echo $x

12

[trainee@centos7 trainingl$ ((x=$x+20))
[trainee@centos7 trainingl$ echo $x

32

Structures de controle

La syntaxe de la commande If est la suivante :

if condition
then
commande(s)
else
commande(s)
fi

ou:

if condition

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 19/25

105.2 - Personnaliser ou écrire des scripts simples (4/60)

then
commande(s)
commande(s)
fi

Ou encore :

if condition
then
commande(s)
elif condition
then
commande(s)
elif condition
then
commande(s)
else
commande(s)

fi

LAB #10

Créez le script user_check suivant :

#!/bin/bash
if [$# -ne 1] ; then

echo "Mauvais nombre d'arguments"
echo "Usage : $0 nom utilisateur"

exit 1
fi

if grep "7$1:" /etc/passwd > /dev/null

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 20/25

105.2 - Personnaliser ou écrire des scripts simples (4/60)

then
echo "Utilisateur $1 est défini sur ce systéme"

else

echo "Utilisateur $1 n'est pas défini sur ce systeme"
fi
exit 0

Testez-le :

[trainee@centos7 training]$ chmod 770 user check
[trainee@centos7 training]$./user check

Mauvais nombre d'arguments

Usage : ./user check nom utilisateur

[trainee@centos7 training]$./user check root
Utilisateur root est défini sur ce systeme
[trainee@centos7 training]$./user check mickey mouse
Mauvais nombre d'arguments

Usage : ./user check nom utilisateur

[trainee@centos7 training]$./user_check "mickey mouse"

Utilisateur mickey mouse n'est pas défini sur ce systeme

case

La syntaxe de la commande case est la suivante :

case $variable in
modelel) commande

..
r

modele2) commande

..
r

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 21/25

105.2 - Personnaliser ou écrire des scripts simples (4/60)

modele3 | modele4 | modele5) commande

..
r

esac
Exemple

case "$1" in
start)
start
stop)
stop
restart|reload)
stop
start
status)
status
*) r
echo $"Usage: $0 {start|stop|restart|status}"
exit 1
esac

- Important : L'exemple indique que dans le cas ou le premier argument qui suit le nom du script contenant la clause case est start, la

| fonction start sera exécutée. La fonction start n'a pas besoin d'étre définie dans case et est donc en regle générale définie en début de

£.% . script. La méme logique est appliquée dans le cas ou le premier argument est stop, restart ou reload et status. Dans tous les autres
cas, représentés par une étoile, case affichera la ligne Usage: $0 {start|stop|restart|status} ou $0 est remplacé par le nom du script.

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 22/25

105.2 - Personnaliser ou écrire des scripts simples (4/60)

Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste variables
do

commande(s)
done

while

La syntaxe de la commande while est |a suivante :

while condition
do

commande(s)
done

Exemple

u=1
while [$U -1t $MAX ACCOUNTS]
do

useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null

useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null

echo "Compte fenestros$U créé"
let U=U+1

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 23/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

done
Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans I'ordre suivant :

¢ /etc/profile,
e ~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de RHEL/CentOS, le systeme exécute le fichier ~/.bash_profile.
Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

LAB #11
! " A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts suivants ligne par ligne.

~/.bash_profile

[trainee@centos7 training]$ cat ~/.bash profile
.bash profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

www.ittraining.team - https://www.ittraining.team/

2026/02/05 00:39 24/25

105.2 - Personnaliser ou écrire des scripts simples (4/60)

User specific environment and startup programs
PATH=$PATH: $HOME/ . Local/bin: $HOME/bin

export PATH

~/.bashrc

[trainee@centos7 training]$ cat ~/.bashrc
.bashrc

Source global definitions

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

Uncomment the following line if you don't like systemctl's auto-paging feature:

export SYSTEMD PAGER=

User specific aliases and functions

<html>

Copyright © 2004-2017 Hugh Norris.

 <img alt="Licence
Creative Commons” style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/fr/88x31.png"” />
Ce(tte) oeuvre est mise a
disposition selon les termes de la Licence Creative Commons Attribution

- Pas d’Utilisation Commerciale - Pas de Modification 3.0 France.

</html>

www.ittraining.team - https://www.ittraining.team/

http://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://i.creativecommons.org/l/by-nc-nd/3.0/fr/88x31.png
http://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2026/02/05 00:39 25/25 105.2 - Personnaliser ou écrire des scripts simples (4/60)

From:
https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:french:14:102:1101

Last update: 2020/01/30 03:27

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:french:14:102:l101

	105.2 - Personnaliser ou écrire des scripts simples (4/60)
	Les Scripts Shell
	Exécution
	La commande read
	Code de retour
	La variable IFS

	La commande test
	Tests de Fichiers
	LAB #1

	Tests de chaînes de caractère
	LAB #2

	Tests sur des nombres
	LAB #3

	Les opérateurs
	LAB #4

	Tests d'environnement utilisateur
	LAB #5

	La commande [[expression]]
	LAB #6

	Opérateurs du shell
	LAB #7

	L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques
	LAB #8

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits
	LAB #9

	Structures de contrôle
	If
	LAB #10
	case
	Exemple

	Boucles
	for
	while
	Exemple

	Scripts de Démarrage
	LAB #11
	~/.bash_profile
	~/.bashrc

