2026/02/04 12:40 1/50 DOE603 - Managing and Storing Docker Images

Version: 2023.01

Last update: 2023/12/17 05:49

DOE603 - Managing and Storing Docker Images

Contents

 DOE603 - Managing and Storing Docker Images
o Contents
o LAB #1 - Re-creating an official docker image
= 1.1 - Using a Dockerfile
1.2 - FROM
1.3 -RUN
1.4 - ENV
1.5 - VOLUME
1.6 - COPY
1.7 - ENTRYPOINT
1.8 - EXPOSE
1.9-CMD
1.10 - Other commands
o LAB #2 - Creating a Dockerfile
= 2.1 - Creating and testing the script
= 2.2 - Good Cache Practices
o LAB #3 - Installing a Private Registry
= 3.1 - Creating a Local Registry,
= 3.2 - Creating a Dedicated Registry Server
¢ Configuring the Client

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 2/50 DOE603 - Managing and Storing Docker Images

LAB #1 - Re-creating an official docker image

1.1 - Using a Dockerfile

Although images are compiled by Docker Hub, it is possible to compile an “official” image from a Dockerfile:

root@debianll:~# mkdir mongodb
root@debianll:~# cd mongodb/
root@debianll:~/mongodb# touch Dockerfile docker-entrypoint.sh

The Docker file contains the instructions needed to build the image:

root@debianll:~/mongodb# vi Dockerfile
root@debianll:~/mongodb# cat Dockerfile
FROM ubuntu:bionic

add our user and group first to make sure their IDs get assigned consistently, regardless of whatever

dependencies get added
RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

RUN set -eux; \

apt-get update; \

apt-get install -y --no-install-recommends
ca-certificates
jq
numactl

HEAY

if ! command -v ps > /dev/null; then \
apt-get install -y --no-install-recommends procps; \

fi; \

rm -rf /var/lib/apt/lists/*

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 3/50 DOE603 - Managing and Storing Docker Images

grab gosu for easy step-down from root (https://github.com/tianon/gosu/releases)

ENV GOSU VERSION 1.11

grab "js-yaml" for parsing mongod's YAML config files (https://github.com/nodeca/js-yaml/releases)
ENV JSYAML VERSION 3.13.0

RUN set -ex; \
\
apt-get update; \
apt-get install -y --no-install-recommends
wget
HEAN
if ! command -v gpg > /dev/null; then \
apt-get install -y --no-install-recommends gnupg dirmngr; \

fi; \
rm -rf /var/lib/apt/lists/*; \
\

dpkgArch="$(dpkg --print-architecture | awk -F- '{ print $NF }')"; \
wget -0 /usr/local/bin/gosu
"https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch"; \\
wget -0 /usr/local/bin/gosu.asc
"https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch.asc"; \
export GNUPGHOME="$(mktemp -d)"; \
gpg --batch --keyserver pgp.mit.edu --recv-keys B42F6819007FOOF88E364FD4036A9C25BF357DD4; \
gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu; \
command -v gpgconf && gpgconf --kill all || :; \
rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc; \
chmod +x /usr/local/bin/gosu; \
gosu --version; \
gosu nobody true; \
\
wget -0 /js-yaml.js "https://github.com/nodeca/js-yaml/raw/${IJSYAML VERSION}/dist/js-yaml.js"; \
TODO some sort of download verification here
\
apt-get purge -y --auto-remove wget

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 4/50 DOE603 - Managing and Storing Docker Images

RUN mkdir /docker-entrypoint-initdb.d

ENV GPG_KEYS E162F504A20CDF15827F718D4B7C549A058F8B6B
RUN set -ex; \
export GNUPGHOME="$(mktemp -d)"; \
for key in $GPG KEYS; do \
gpg --batch --keyserver pgp.mit.edu --recv-keys "$key"; \

done; \
gpg --batch --export $GPG KEYS > /etc/apt/trusted.gpg.d/mongodb.gpg; \
command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME"; \
apt-key list

Allow build-time overrides (eg. to build image with MongoDB Enterprise version)

Options for MONGO PACKAGE: mongodb-org OR mongodb-enterprise

Options for MONGO REPO: repo.mongodb.org OR repo.mongodb.com

Example: docker build --build-arg MONGO PACKAGE=mongodb-enterprise --build-arg MONGO REPO=repo.mongodb.com .
ARG MONGO PACKAGE=mongodb-org-unstable

ARG MONGO REPO=repo.mongodb.org

ENV MONGO PACKAGE=${MONGO PACKAGE} MONGO REPO=${MONGO REPO}

ENV MONGO MAJOR 4.1

ENV MONGO VERSION 4.1.9

bashbrew-architectures:amd64 arm64v8 s390x

RUN echo "deb http://$MONGO REPO/apt/ubuntu bionic/${MONGO PACKAGES%-unstable}/$MONGO MAJOR multiverse" | tee
"/etc/apt/sources.list.d/${MONGO PACKAGES-unstable}.list"

RUN set -x
&& apt-get update \
&& apt-get install -y \
${MONGO_ PACKAGE}=$MONGO VERSION \
${MONGO_PACKAGE}-server=$MONGO VERSION \
${MONGO_PACKAGE} - shel1=$MONGO VERSION \y
${MONGO PACKAGE}-mongos=$MONGO VERSION \

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 5/50

DOEG603 - Managing and Storing Docker Images

${MONGO PACKAGE}-to0ls=$MONGO VERSION \
& rm -rf /var/lib/apt/lists/* \
& rm -rf /var/lib/mongodb \
&& mv /etc/mongod.conf /etc/mongod.conf.orig

RUN mkdir -p /data/db /data/configdb \
&& chown -R mongodb:mongodb /data/db /data/configdb

VOLUME /data/db /data/configdb

COPY docker-entrypoint.sh /usr/local/bin/
ENTRYPOINT ["docker-entrypoint.sh"]

EXHIBIT 27017
CMD ["mongod"]

The docker-entrypoint.sh file is used to launch the mongodb server in the container:

root@debianll:~/mongodb# vi docker-entrypoint.sh
root@debianll:~/mongodb# cat docker-entrypoint.sh
#!/bin/bash

set -Eeuo pipefail

if ["${1:0:1}" = '-']; then
set -- mongod "$@"
fi

originalArgOne="$1"

allow the container to be started with " --user’

all mongo* commands should be dropped to the correct user

if [["$originalArgOne" == mongo*]] && ["$(id -u)" = '0"']; then
if ["$originalArgOne" = 'mongod']; then

find /data/configdb /data/db ! -user mongodb -exec chown mongodb '{}' +

fi

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 6/50 DOE603 - Managing and Storing Docker Images

make sure we can write to stdout and stderr as "mongodb"

(for our "initdb" code later; see "--logpath" below)

chown --dereference mongodb "/proc/$$/fd/1" "/proc/$$/fd/2" ||

ignore errors thanks to https://github.com/docker-library/mongo/issues/149

exec gosu mongodb "$BASH SOURCE" "$@"
fi

you should use numactl to start your mongod instances, including the config servers, mongos instances, and any
clients.
https://docs.mongodb.com/manual/administration/production-notes/#configuring-numa-on-1linux
if [["$originalArgOne" == mongo*]]; then

numa='numactl --interleave=all'

if $numa true &> /dev/null; then

set -- $numa "$@"

fi

fi

usage: file env VAR [DEFAULT]
ie: file env 'XYZ DB PASSWORD' 'example’
(will allow for "$XYZ DB PASSWORD FILE" to fill in the value of
"$XYZ DB PASSWORD" from a file, especially for Docker's secrets feature)
file env() {
local var="$1"
local fileVar="${var} FILE"
local def="${2:-}"
if ["${'var:-}" 1 & ["${!fileVar:-}" 1; then
echo >&2 "error: both $var and $fileVar are set (but are exclusive)"
exit 1
fi
local val="¢$def"
if ["${!'var:-}" 1; then
val="${!var}"
elif ["${!fileVar:-}" 1; then

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 7/50 DOE603 - Managing and Storing Docker Images

val="$(< "${!filevar}")"
fi
export "$var"="$val"
unset "$fileVar"

}

see https://github.com/docker-library/mongo/issues/147 (mongod is picky about duplicated arguments)
_mongod hack have arg() {
local checkArg="$1"; shift
local arg
for arg; do
case "$arg" in
"$checkArg"|"$checkArg"=*)

return 0
esac
done
return 1
}
mongod hack get arg val '--some-arg' "$@"

~mongod hack get arg val() {
local checkArg="$1"; shift
while ["$#" -gt 0]; do
local arg="$1"; shift
case "$arg" in
"$checkArg")
echo "$1"
return 0
"$checkArg"=*)
echo "${arg#$checkArg=}"
return 0

esac

www.ittraining.team - https://www.ittraining.team/

DOEG603 - Managing and Storing Docker Images

2026/02/04 12:40 8/50
done
return 1
}
declare -a mongodHackedArgs
mongod hack ensure arg '--some-arg' "$@"
set -- "${mongodHackedArgs[@]}"

_mongod hack ensure arg() {
local ensureArg="$1"; shift
mongodHackedArgs=("$@")
if ' mongod hack have arg "$ensureArg" "$@"; then
mongodHackedArgs+=("$ensureArg")

fi
}
mongod hack ensure no arg '--some-unwanted-arg' "$@"
set -- "${mongodHackedArgs[@]}"

~mongod hack ensure no arg() {
local ensureNoArg="$1"; shift
mongodHackedArgs=()
while ["$#" -gt 0]; do
local arg="$1"; shift

if ["$arg" = "$ensureNoArg" 1; then
continue
fi
mongodHackedArgs+=("$arg")
done
}
mongod hack ensure no arg '--some-unwanted-arg' "$@"
set -- "${mongodHackedArgs[@]}"

_mongod hack ensure no arg val() {
local ensureNoArg="$1"; shift
mongodHackedArgs=()
while ["$#" -gt 0]; do

local arg="$1"; shift
case "$arg" in

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 9/50

DOEG603 - Managing and Storing Docker Images

"$ensureNoArg")
shift # also skip the value
continue

"$ensureNoArg"=*)
value is already included

continue
esac
mongodHackedArgs+=("$arg")
done
}
mongod hack ensure arg val '--some-arg' 'some-val' "$@"
set -- "${mongodHackedArgs[@]}"

_mongod hack ensure arg val() {
local ensureArg="$1"; shift
local ensureVal="$1"; shift
~mongod hack ensure no arg val "$ensureArg" "$@"
mongodHackedArgs+=("$ensureArg" "$ensureVal")

}

Jjs escape 'some "string" value'
_js _escape() {

jq --null-input --arg 'str' "$1" "$str'
}

jsonConfigFile="${TMPDIR: -/tmp}/docker-entrypoint-config.json"
tempConfigFile="${TMPDIR: -/tmp}/docker-entrypoint-temp-config.json"

_parse _config() {
if [-s "$tempConfigFile"]; then
return 0
fi

local configPath

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 10/50 DOE603 - Managing and Storing Docker Images

if configPath="$(mongod hack get arg val --config "$@")"; then
if --config is specified, parse it into a JSON file so we can remove a few problematic keys
(especially SSL-related keys)
see https://docs.mongodb.com/manual/reference/configuration-options/
mongo --norc --nodb --quiet --eval "load('/js-yaml.js'); printjson(jsyaml.load(cat($(js escape
"$configPath"))))"" > "$jsonConfigFile"
jq 'del(.systemLog, .processManagement, .net, .security)' "$jsonConfigFile" > "$tempConfigFile"

return 0
fi
return 1
}
dbPath=
_dbPath() {

if [-n "$dbPath"]; then
echo "$dbPath"
return

fi

if ! dbPath="$(mongod hack get arg val --dbpath "$@")"; then
if parse config "$@"; then
dbPath="$(jq -r '.storage.dbPath // empty' "$jsonConfigFile")"
fi
fi

if [-z "$dbPath"]; then

if mongod hack have arg --configsvr "$@" || {
_parse config "$@" \
&& clusterRole="$(jq -r '.sharding.clusterRole // empty' "$jsonConfigFile")" \
& ["$clusterRole" = 'configsvr']

}; then
if running as config server, then the default dbpath is /data/configdb
https://docs.mongodb.com/manual/reference/program/mongod/#cmdoption-mongod-configsvr
dbPath=/data/configdb

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 11/50 DOE603 - Managing and Storing Docker Images

fi
fi

"${dbPath:=/data/db}"

echo "$dbPath"
}

if ["$originalArgOne" = 'mongod']; then
file env 'MONGO INITDB ROOT USERNAME'
file env 'MONGO INITDB ROOT PASSWORD'
pre-check a few factors to see if it's even worth bothering with initdb

shouldPerformInitdb=

if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD"]; then
if we have a username/password, let's set "--auth"
~mongod hack ensure arg '--auth' "$@"
set -- "${mongodHackedArgs[@]}"

shouldPerformInitdb="'true’
elif ["$MONGO INITDB ROOT USERNAME"] || ["$MONGO INITDB ROOT PASSWORD"]; then
cat >&2 <<-'EOF'
error: missing 'MONGO INITDB ROOT USERNAME' or 'MONGO INITDB ROOT PASSWORD'
both must be specified for a user to be created
EOF
exit 1
fi

if [-z "$shouldPerformInitdb"]; then
if we've got any /docker-entrypoint-initdb.d/* files to parse later, we should initdb
for f in /docker-entrypoint-initdb.d/*; do
case "$f" in
.sh|.js) # this should match the set of files we check for below
shouldPerformInitdb="¢f"
break

..
r

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 12/50 DOE603 - Managing and Storing Docker Images

esac
done
fi

check for a few known paths (to determine whether we've already initialized and should thus skip our
initdb scripts)
if [-n "$shouldPerformInitdb"]; then
dbPath="$(dbPath "$@")"
for path in \
"$dbPath/WiredTiger" \
"$dbPath/journal" \
"$dbPath/local.0" \
"$dbPath/storage.bson" \

; do
if [-e "$path"]; then
shouldPerformInitdb=
break
fi
done

fi

if [-n "$shouldPerformInitdb"]; then
mongodHackedArgs=("$@")
if parse config "$@"; then

_mongod_hack ensure arg val --config "$tempConfigFile" "${mongodHackedArgs[@]}"

fi
~mongod hack ensure arg val --bind ip 127.0.0.1 "${mongodHackedArgs[@]}"
~mongod hack ensure arg val --port 27017 "${mongodHackedArgs[@]}"
~mongod hack ensure no arg --bind ip all "${mongodHackedArgs[@]}"

remove "--auth" and "--replSet" for our initial startup (see
https://docs.mongodb.com/manual/tutorial/enable-authentication/#start-mongodb-without-access-control)

https://github.com/docker-1library/mongo/issues/211

~mongod hack ensure no arg --auth "${mongodHackedArgs[@]}"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 13/50 DOE603 - Managing and Storing Docker Images

if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD"]1; then
_mongod _hack ensure no arg val --replSet "${mongodHackedArgs[@]}"

fi

sslMode="$(mongod hack have arg '--sslPEMKeyFile' "$@" && echo 'allowSSL' || echo 'disabled')" #
"BadValue: need sslPEMKeyFile when SSL is enabled" vs "BadValue: need to enable SSL via the sslMode flag when
using SSL configuration parameters”

_mongod hack ensure arg val --sslMode "$sslMode" "${mongodHackedArgs[@]}"

if stat "/proc/$$/fd/1" > /dev/null && [-w "/proc/$$/fd/1" 1; then
#
https://github.com/mongodb/mongo/blob/38c0eb538d0fd390c6ch9ce9ae9894153f6e8ef5/src/mongo/db/initialize server glo
bal state.cpp#L237-L251
https://github.com/docker-library/mongo/issues/164#issuecomment-293965668
_mongod_hack ensure arg val --logpath "/proc/$$/fd/1" "${mongodHackedArgs[@]}"
else
initdbLogPath="$(dbPath "$@")/docker-initdb.log"
echo >&2 "warning: initdb logs cannot write to '/proc/$$/fd/1', so they are in
'$initdbLogPath' instead"
_mongod_hack ensure arg val --logpath "$initdbLogPath" "${mongodHackedArgs[@]}"
fi
~mongod hack ensure arg --logappend "${mongodHackedArgs[@]}"

pidfile="${TMPDIR: - /tmp}/docker-entrypoint-temp-mongod.pid"

rm -f "$pidfile"

_mongod _hack ensure arg val --pidfilepath "$pidfile" "${mongodHackedArgs[@]}"
"${mongodHackedArgs[@]}" --fork

mongo=(mongo --host 127.0.0.1 --port 27017 --quiet)

check to see that our "mongod" actually did start up (catches "--help", "--version", MongoDB

3.2 being silly, slow prealloc, etc)
https://jira.mongodb.org/browse/SERVER-16292

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 14/50 DOE603 - Managing and Storing Docker Images

tries=30
while true; do
if ! { [-s "$pidfile"] && ps "$(< "$pidfile")" &> /dev/null; }; then
bail ASAP if "mongod" isn't even running
echo >&2
echo >&2 "error: $originalArgOne does not appear to have stayed running --
perhaps it had an error?"

echo >&2
exit 1
fi
if "${mongo[@]}" 'admin' --eval 'quit(0)' &> /dev/null; then
success!
break
fi

((tries--))
if ["$tries" -l1le 0]; then

echo >&2
echo >&2 "error: $originalArgOne does not appear to have accepted connections
quickly enough -- perhaps it had an error?"
echo >&2
exit 1
fi
sleep 1

done

if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD"]1; then
rootAuthDatabase='admin'

"${mongo[@]}" "$rootAuthDatabase" <<-E0JS
db.createUser({
user: $(_js escape "$MONGO INITDB ROOT USERNAME"),
pwd: $(_js escape "$MONGO INITDB ROOT PASSWORD"),
roles: [{ role: 'root', db: $(js escape "$rootAuthDatabase") } 1

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

15/50 DOE603 - Managing and Storing Docker Images

fi

E0JS
fi

export MONGO INITDB DATABASE="${MONGO INITDB DATABASE:-test}"

echo
for f in /docker-entrypoint-initdb.d/*; do
case "$f" in
*.sh) echo "$0: running $f"; . "$f" ;;
*.js) echo "$0: running $f"; "${mongo[@]}" "$MONGO INITDB DATABASE" "$f"; echo ;;
*) echo "$0: ignoring $f" ;;
esac
echo
done

"${mongodHackedArgs[@]}" --shutdown
rm -f "$pidfile"

echo
echo 'MongoDB init process complete; ready for start up.'
echo

MongoDB 3.6+ defaults to localhost-only binding

longer supported

if mongod --help 2>&1 | grep -q -- --bind ip all; then # TODO remove this conditional when 3.4 is no
haveBindIp=
if mongod hack have arg --bind ip "$@" || mongod hack have arg --bind ip all "$@"; then

/dev/null; then

haveBindIp=1
elif parse config "$@" && jq --exit-status '.net.bindIp // .net.bindIpAll' "$jsonConfigFile" >

haveBindIp=1
fi
if [-z "$haveBindIp"]; then

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 16/50 DOE603 - Managing and Storing Docker Images

so if no "--bind ip" is specified, let's add "--bind ip all"
set -- "$@" --bind ip all
fi
fi

unset "${!MONGO INITDB @}"
fi

rm -f "$jsonConfigFile" "$tempConfigFile"
exec n $@II

Let's examine each command in the Dockerfile:

1.2 - FROM

FROM ubuntu:bionic

This line defines the image from which our image will be built. When the image is not built from another image, the value of FROM is scratch.

1.3 - RUN

RUN groupadd -r mongodb && useradd -r -g mongodb

RUN set -eux; \
apt-get update; \
apt-get install -y --no-install-recommends
ca-certificates

jq

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 17/50 DOE603 - Managing and Storing Docker Images

numactl
P
if ! command -v ps > /dev/null; then \
apt-get install -y --no-install-recommends procps; \
fi; \
rm -rf /var/lib/apt/lists/*

RUN set -ex; \
\
apt-get update; \
apt-get install -y --no-install-recommends
wget
o
if ! command -v gpg > /dev/null; then \
apt-get install -y --no-install-recommends gnupg dirmngr; \

fi; \
rm -rf /var/lib/apt/lists/*; \
\

dpkgArch="$(dpkg --print-architecture | awk -F- '{ print $NF }')"; \

wget -0 /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch";
\\

wget -0 /usr/local/bin/gosu.asc
"https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch.asc"; \

export GNUPGHOME="$(mktemp -d)"; \

gpg --batch --keyserver pgp.mit.edu --recv-keys B42F6819007FOOF88E364FD4036A9C25BF357DD4; \

gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu; \

command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc; \

chmod +x /usr/local/bin/gosu; \

gosu --version; \

gosu nobody true; \

\

wget -0 /js-yaml.js "https://github.com/nodeca/js-yaml/raw/${JSYAML VERSION}/dist/js-yaml.js"; \
TODO some sort of download verification here

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 18/50 DOE603 - Managing and Storing Docker Images

\
apt-get purge -y --auto-remove wget

RUN mkdir /docker-entrypoint-initdb.d

RUN set -ex; \
export GNUPGHOME="$(mktemp -d)"; \
for key in $GPG _KEYS; do \
gpg --batch --keyserver pgp.mit.edu --recv-keys "$key"; \

done; \
gpg --batch --export $GPG KEYS > /etc/apt/trusted.gpg.d/mongodb.gpg; \
command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME"; \
apt-key list
RUN set -x \

&& apt-get update \

& apt-get install -y \
${MONGO_ PACKAGE}=$MONGO VERSION \
${MONGO PACKAGE}-server=$MONGO VERSION \
${MONGO PACKAGE}-shell=$MONGO VERSION \y
${MONGO_ PACKAGE}-mongos=$MONGO VERSION \
${MONGO_PACKAGE}-tools=$MONGO VERSION \

&& rm -rf /var/lib/apt/lists/* \

& rm -rf /var/lib/mongodb \

&& mv /etc/mongod.conf /etc/mongod.conf.orig

RUN mkdir -p /data/db /data/configdb \
&& chown -R mongodb:mongodb /data/db /data/configdb

This command launches a process in the image construction. In the cases above, each string corresponds to the command passed to the /bin/sh shell.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 19/50 DOE603 - Managing and Storing Docker Images

There is another syntax for the RUN command called the exec format, namely:

RUN ["/bin/bash", "-c", "command"]

- Important: The RUN command is used to execute a command passed as
| an argument when compiling the image only. This command should
&% therefore not be used to execute a command when launching the
container. The command used to accomplish the latter is ENTRYPOINT.

1.4 - ENV

This command is used to set the value of an environment variable available in the Dockerfile suite:

ENV GOSU VERSION 1.11
grab "js-yaml" for parsing mongod's YAML config files (https://github.com/nodeca/js-yaml/releases)
ENV JSYAML VERSION 3.13.0

ENV GPG_KEYS E162F504A20CDF15827F718D4B7C549A058F8B6B
ENV MONGO PACKAGE=${MONGO PACKAGE} MONGO REPO=${MONGO REPO}
ENV MONGO MAJOR 4.1

ENV MONGO VERSION 4.1.95

and in containers generated from the constructed image.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 20/50 DOE603 - Managing and Storing Docker Images

1.5 - VOLUME

VOLUME /data/db /data/configdb

This command exposes the directories passed as arguments so that they can be mapped to directories on the host machine or elsewhere, as we saw
with the nginx example.

1.6 - COPY

COPY docker-entrypoint.sh /usr/local/bin/

This command retrieves the files in the context and copies them to the image.
Please note: all files in the context are included in the final image, even those that are unnecessary.

It is possible to exclude files present in the context by putting them in a file called .dockerignore placed in the context.

Important - There is another command similar to COPY: ADD. ADD is a
command that is no longer recommended except in specific cases. Note
| that when using the ADD command, if the source file is a TAR archive, its
£.% . contents will be unarchived and copied to the destination whereas if the
source file is referenced by a URL, the contents will be downloaded and
then dropped into the destination.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 21/50 DOE603 - Managing and Storing Docker Images

1.7 - ENTRYPOINT

ENTRYPOINT ["docker-entrypoint.sh"]

This command stipulates the command that will be executed when the container is started.

There are two possible scenarios:

e ENTRYPOINT followed by a string - a shell is started to execute the string,
e ENTRYPOINT followed by a JSON table (as above) in ENTRYPOINT format [“command to execute”, “command parameters”].

In the docker-entrypoint.sh file:

originalArgOne="$1"

allow the container to be started with " --user’
all mongo* commands should be dropped to the correct user
if [["$originalArgOne" == mongo*]] && ["$(id -u)" = '0']; then
if ["$originalArgOne" = 'mongod']; then
find /data/configdb /data/db ! -user mongodb -exec chown mongodb '{}' +

fi

make sure we can write to stdout and stderr as "mongodb"
(for our "initdb" code later; see "--logpath" below)

chown --dereference mongodb "/proc/$$/fd/1" "/proc/$$/fd/2" ||
ignore errors thanks to https://github.com/docker-1library/mongo/issues/149

exec gosu mongodb "$BASH SOURCE" "$@"
fi

you should use numactl to start your mongod instances, including the config servers, mongos instances, and any

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 22/50

DOEG603 - Managing and Storing Docker Images
clients.

https://docs.mongodb.com/manual/administration/production-notes/#configuring-numa-on-1linux
if [["$originalArgOne" == mongo*]]; then

numa='numactl --interleave=all'
if $numa true & /dev/null; then
set -- $numa "$@"
fi
fi
exec ||$@||
if the value of the parameter passed to entrypoint.sh is mongod, the script assigns the user mongodb to the directories /data/configdb and /data/db
then launches mongo under the user mongodb with reduced rights (gosu).

This file ends with “$@"” which indicates that if no condition has been met, the command is executed with the value passed as an argument.

/> Important - Note that an image is compiled inside a context. The
/ &+ . context is the build directory. Lastly, note that there can be several
ENTRYPOINTSs in the Dockerfile but only the last one is taken into account.

1.8 - EXPOSE

EXHIBIT 27017

This command exposes a port outside the container.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 23/50 DOE603 - Managing and Storing Docker Images

1.9 - CMD

CMD ["mongod"]
This represents the value of the default parameter if no parameter is specified at the end of the docker run command.

1.10 - Other Commands

The Dockerfile can also contain the following commands:

e WORKDIR,
o This command sets the working directory when compiling an image. It can appear several times in the Dockerfile, allowing the working

directory to change,

e LABEL,
o This command allows you to define key/value pairs to be included in the metadata describing the image when it is distributed, for example,

the version, the description or a readme.
Compile the image:

root@debianll:~/mongodb# docker build .

[+] Building 56.9s (15/15) FINISHED
docker:default

=> [internal] load .dockerignore
0.0s

=> => transferring context: 2B

0.0s

=> [internal] load build definition from Dockerfile

0.1s
=> => transferring dockerfile: 3.55kB

0.0s

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 24/50 DOE603 - Managing and Storing Docker Images

=> [internal] load metadata for docker.io/library/ubuntu:bionic

0.3s

=> [internal] load build context

0.0s

=> => transferring context: 42B

0.0s

=> [1/10] FROM
docker.io/library/ubuntu:bionic@sha256:152dc042452c496007f07ca9127571cb9c29697f42acbfad72324b2bb2e43c98
0.0s

=> CACHED [2/10] RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

0.0s

=> CACHED [3/10] RUN set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates
jg numactl ; if ! command -v ps > /dev/null; then ap 0.0s

=> [4/10] RUN set -ex; apt-get update; apt-get install -y --no-install-recommends wget ; if ! command -v

gpg > /dev/null; then apt-get install -y --no-install-r 20.6s

=> [5/10] RUN mkdir /docker-entrypoint-initdb.d

0.5s

=> [6/10] RUN set -ex; export GNUPGHOME="$(mktemp -d)"; for key in E162F504A20CDF15827F718D4B7C549A058F8B6B;
do gpg --batch --keyserver pgp.mit.edu --recv-keys "$key 10.4s

=> [7/10] RUN echo "deb http://$MONGO REPO/apt/ubuntu bionic/${MONGO PACKAGES%-unstable}/$MONGO MAJOR
multiverse" | tee "/etc/apt/sources.list.d/${MONGO PACKAGE%-unstable} 0.5s

=> [8/10] RUN set -x && apt-get update && apt-get install -y mongodb-org-unstable=4.1.9 mongodb-org-
unstable-server=4.1.9 mongodb-org-unstable-shell=4.1.9 mong 21.1s

=> [9/10] RUN mkdir -p /data/db /data/configdb && chown -R mongodb:mongodb /data/db /data/configdb

0.5s

=> [10/10] COPY docker-entrypoint.sh /usr/local/bin/

0.1s

=> exporting to image

2.6s

=> => exporting layers

2.6s

=> => writing image sha256:72fad0b7e0c2206f31al2b7d49f0812c0a594a51el7a8c0e36687f5f626bc735

0.0s

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

25/50

DOEG603 - Managing and Storing Docker Images

View the list of images:

root@debianll:~/mongodb# docker images

REPOSITORY TAG

<none> <none>
ittraining/mongodb latest
ubuntu latest
nginx latest
hello-world latest
centos latest

IMAGE ID

72fad0Ob7e0c2
fb3c6d5d186a
b6548eacbh063
abbd71f48f68
9c7a54a9%a43c
5d0da3dc9764

CREATED SIZE

About a minute ago 352MB
7 hours ago 1.11GB
9 days ago 77 .8MB
2 weeks ago 187MB
7 months ago 13.3kB
2 years ago 231MB

Note that the image has no REPOSITORY or TAG. So create a TAG:

root@debianll:~/mongodb# docker tag 72f i2tch/mongodbl

root@debianll:~/mongodb# docker images

REPOSITORY TAG

i2tch/mongodbl latest
ittraining/mongodb latest
ubuntu latest
nginx latest
hello-world latest
centos latest

IMAGE ID

72fad0b7e0c2
fb3c6d5d186a
b6548eacbh063
abbd71f48f68
9c7a54a9%a43c
5d0da3dc9764

Boot a container from the i2tch/mongodbl image:

CREATED SIZE

2 minutes ago 352MB
7 hours ago 1.11GB
9 days ago 77 .8MB
2 weeks ago 187MB
7 months ago 13.3kB
2 years ago 231MB

root@debianll:~/mongodb# docker run -d --name mongol i2tch/mongodbl
3¢c578ea2a0428a07b60dac3b63d806351dffa2bb05224bcf7d12f1189766138e
docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime

create failed: runc create failed: unable to start container process: exec:

file not found in $PATH: unknown.

root@debianll:~/mongodb# ls -1
total 16

"docker-entrypoint.sh": executable

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 26/50 DOE603 - Managing and Storing Docker Images

-rw-r--r-- 1 root root 10971 Dec 10 16:57 docker-entrypoint.sh
-rw-r--r-- 1 root root 3514 Dec 10 17:09 Dockerfile

Important - Note that the docker-entrypoint.sh file is not executable!

4 u
s

Recompile the image:

root@debianll:~/mongodb# docker rm mongol
mongol

root@debianll:~/mongodb# chmod +x docker-entrypoint.sh

root@debianll:~/mongodb# docker build .

[+] Building 0.8s (15/15) FINISHED
docker:default

=> [internal] load build definition from Dockerfile
0.1s

=> => transferring dockerfile: 3.55kB

0.0s

=> [internal] load .dockerignore

0.1s

=> => transferring context: 2B

0.0s

=> [internal] load metadata for docker.io/library/ubuntu:bionic
0.3s

=> [1/10] FROM
docker.io/library/ubuntu:bionic@sha256:152dc042452c496007f07ca9127571cb9c29697f42acbfad72324b2bb2e43¢c98
0.0s

=> [internal] load build context

0.0s

=> => transferring context: 11.02kB

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 27/50 DOE603 - Managing and Storing Docker Images

0.0s

=> CACHED [2/10] RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

0.0s

=> CACHED [3/10] RUN set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates
jq numactl ; if ! command -v ps > /dev/null; then ap 0.0s

=> CACHED [4/10] RUN set -ex; apt-get update; apt-get install -y --no-install-recommends wget ; if !

command -v gpg > /dev/null; then apt-get install -y --no-ins 0.0s

=> CACHED [5/10] RUN mkdir /docker-entrypoint-initdb.d

0.0s

=> CACHED [6/10] RUN set -ex; export GNUPGHOME="$(mktemp -d)"; for key in
E162F504A20CDF15827F718D4B7C549A058F8B6B; do gpg --batch --keyserver pgp.mit.edu --recv-keys 0.0s

=> CACHED [7/10] RUN echo "deb http://$MONGO_REPO/apt/ubuntu bionic/${MONGO_PACKAGES-unstable}/$MONGO_MAJOR
multiverse" | tee "/etc/apt/sources.list.d/${MONGO PACKAGE%-un 0.0s

=> CACHED [8/10] RUN set -x && apt-get update && apt-get install -y mongodb-org-unstable=4.1.9 mongodb-
org-unstable-server=4.1.9 mongodb-org-unstable-shell=4.1.9 0.0s

=> CACHED [9/10] RUN mkdir -p /data/db /data/configdb && chown -R mongodb:mongodb /data/db /data/configdb
0.0s

=> [10/10] COPY docker-entrypoint.sh /usr/local/bin/

0.2s

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:56e5b1fb4284e2474392238ee5f91a5d27d%9a4a43fal5f655136ae0283d269c2

0.0s

Important - Note the CACHED lines here. However, it is possible not to
use the cache by stipulating -no-cache. Note also the use of temporary
/1 containers per new step, with a commit to an image and deletion of the
&% . container. Finally, note that an image is compiled within a context. The
context is the build directory. Please note: all files in the context are
included in the final image, even unnecessary ones.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

28/50

DOEG603 - Managing and Storing Docker Images

Check the list of images again and rename your last image:

root@debianll:~/mongodb# docker images

REPOSITORY TAG

<none> <none>
i2tch/mongodbl latest
ittraining/mongodb latest
ubuntu latest
nginx latest
hello-world latest
centos latest

IMAGE ID

56e5b1fb4284
72fadOb7e0c2
fb3c6d5d186a
b6548eacb063
abbd71f48f68
9c7a54a9%a43c
5d0da3dc9764

CREATED

About a minute ago
5 minutes ago

7 hours ago
9 days ago

2 weeks ago
7 months ago
2 years ago

root@debianll:~/mongodb# docker tag 56e i2tch/mongodb2

root@debianll:~/mongodb# docker images

REPOSITORY TAG

i2tch/mongodb?2 latest
i2tch/mongodbl latest
ittraining/mongodb latest
ubuntu latest
nginx latest
hello-world latest
centos latest

Launch a container from the last image:

root@debianll:~/mongodb# docker run -d --name mongo2 i2tch/mongodb2

IMAGE ID

56e5b1fb4284
72fad0b7e0c?2
fb3c6d5d186a
b6548eacb063
abbd71f48f68
9c7a54a9a43c
5d0da3dc9764

CREATED

About a minute ago
5 minutes ago
7 hours ago

9 days ago

2 weeks ago

7 months ago
2 years ago

880733cbhdc33a9a8fabael71e977cf745ea9al1b9cfc914992a2d0d3f8cd9d39

Use the docker ps command to see if the mongodb process is started:

root@debianll:~/mongodb# docker ps

CONTAINER ID
NAMES

IMAGE

COMMAND

CREATED

SIZE
352MB
352MB
1.11GB
77.8MB
187MB
13.3kB
231MB

SIZE
352MB
352MB
1.11GB
77.8MB
187MB
13.3kB
231MB

STATUS

PORTS

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 29/50 DOE603 - Managing and Storing Docker Images
880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s.." 15 seconds ago Up 13 seconds 27017/tcp

mongo2

885f75b6aa57 ittraining/mongodb "bash" 7 hours ago Up 7 hours

mongo

04d910a3c¢c93d nginx "/docker-entrypoint..." 7 hours ago Up 7 hours 0.0.0.0:81->80/tcp,
:::81->80/tcp quirky moore

Connect to mongodb from your host machine:

root@debianll:~/mongodb# docker inspect mongo2 | grep IP

"LinkLocalIPv6Address":

nmn
1

"LinkLocalIPv6PrefixLen": 0,

"SecondaryIPAddresses":

null,

"SecondaryIPv6Addresses": null,

"GlobalIPv6Address": ""

"GlobalIPv6PrefixLen":

’

0,

"IPAddress": "172.17.0.4",

"IPPrefixLen": 16,
"IPvbeGateway": "",

"IPAMConfig": null,
"IPAddress": "172.17.0.4",

"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",

"GlobalIPv6PrefixLen": 0,

root@debianll:~/mongodb# mongo --host 172.17.0.4

MongoDB shell version v4.0.28

connecting to: mongodb://172.17.0.4:27017/7?gssapiServiceName=mongodb

Implicit session: session { "id"
MongoDB server version: 4.1.9
WARNING: shell and server versions
Server has startup warnings:

: UUID("O57eacfe-5b02-4653-9b20-a2a2044cheba") }

do not match

2023-12-10T16:16:13.395+0000 I STORAGE [initandlisten]

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

30/50

DOEG603 - Managing and Storing Docker Images

2023-12-10T16:16:

recommended with

2023-12-10T16:
2023-12-10T16:
2023-12-10T16:
2023-12-10T16:
2023-12-10T16:
2023-12-10T16:

database.

2023-12-10T16:

unrestricted.

2023-12-10T16:
2023-12-10T16:
2023-12-10T16:

'always'.

2023-12-10T16:
2023-12-10T16:

16:
16:
16:
16:
16:
16:

16:
16:
16:
16:

16:
16:

Enable MongoDB's

13.395+0000 I STORAGE [initandlisten]
the WiredTiger storage engine

13.
14,
14.
14.

14

14.

14.
14.

14

14.
14.

395+0000
255+0000
255+0000
255+0000

.255+0000
14,

255+0000

255+0000

255+0000
256+0000

.256+0000

256+0000
256+0000

I

HHHH H

STORAGE
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL

CONTROL
CONTROL
CONTROL
CONTROL

CONTROL
CONTROL

[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]

[initandlisten]
[initandlisten]
[initandlisten]

[initandlisten]

[initandlisten]
[initandlisten]

k%

k%

k%
k%

k%

* %

k%

k%

WARNING: Using the XFS filesystem is strongly
See http://dochub.mongodb.org/core/prodnotes-filesystem

NOTE: This is a development version (4.1.9) of MongoDB.
Not recommended for production.

WARNING: Access control is not enabled for the

Read and write access to data and configuration is

WARNING: /sys/kernel/mm/transparent hugepage/enabled is

We suggest setting it to 'never'

free cloud-based monitoring service, which will then receive and display
metrics about your deployment (disk utilization, CPU, operation statistics, etc).

The monitoring data will be available on a MongoDB website with a unique URL accessible to you
and anyone you share the URL with. MongoDB may use this information to make product
improvements and to suggest MongoDB products and deployment options to you.

To enable free monitoring,

To permanently disable this reminder,

> exit
bye

root@debianll:~/mongodb#

run the following command: db.enableFreeMonitoring()
run the following command: db.disableFreeMonitoring()

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 31/50

DOEG603 - Managing and Storing Docker Images

LAB #2 - Creating a Dockerfile

====2.1 - Creating and testing the==== script

Create a directory named myDocker:
root@debianll:~/mongodb# mkdir ~/myDocker
root@debianll:~/mongodb# cd ~/myDocker
root@debianll:~/myDocker#

Create the myEntrypoint.sh file:

root@debianll:~/myDocker# vi myEntrypoint.sh

root@debianll:~/myDocker# cat myEntrypoint.sh
#!/bin/bash

if [-z "$myVariable"]; then
echo "The variable myVariable must have a value"
return 1

fi

while true;

do
echo $1 \($(date +%H:%M:%S)\);
sleep "$myVariable";

done

Test this script:

root@debianll:~/myDocker# myVariable=3 . ./myEntrypoint.sh Hello!

Hello! (18:01:54)
Hello! (18:01:57)
Hello! (18:02:00)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 32/50

DOEG603 - Managing and Storing Docker Images

Hello! (18:02:03)

Hello! (18:02:06)

~C
root@debianll:~/myDocker#

Make this script executable:
root@debianll:~/myDocker# chmod u+x myEntrypoint.sh
Now create the Dockerfile file in the ~/myDocker directory:
root@debianll:~/myDocker# vi Dockerfile
root@debianll:~/myDocker# cat Dockerfile

FROM centos:latest
MAINTAINER Team IT Training "infos@ittraining.team"

COPY myEntrypoint.sh /entrypoint.sh
ENV myVariable 3

ENTRYPOINT ["/entrypoint.sh"]

CMD ["mycommand"]

Now generate the image:

root@debianll:~/myDocker# docker build -t i2tch/mydocker .

[+] Building 0.8s (7/7) FINISHED
docker:default
=> [internal] load .dockerignore

0.2s
=> => transferring context: 2B

0.0s

=> [internal] load build definition from Dockerfile

0.1s
=> => transferring dockerfile: 211B

0.0s

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 33/50 DOE603 - Managing and Storing Docker Images

=> [internal] load metadata for docker.io/library/centos:latest

0.0s

=> [internal] load build context

0.1s

=> => transferring context: 224B

0.0s

=> [1/2] FROM docker.io/library/centos:latest
0.1s

=> [2/2] COPY myEntrypoint.sh /entrypoint.sh
0.2s

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:c5a41438d278439fac2cd65d53d87cabc5¢c771dd9b99bel1913ce049024eba961
0.0s

=> => naming to docker.io/i2tch/mydocker

0.0s

Launch the container:

root@debianll:~/myDocker# docker run -it --name myDocker i2tch/mydocker
mycommand (17:05:57)

mycommand (17:06:00)

mycommand (17:06:03)

~Cmycommand (17:06:06)

mycommand (17:06:09)

mycommand (17:06:12)

~P~Q

root@debianll:~/myDocker#

Important - Note that ~C has no effect. To detach from the container you

(_

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 34/50 DOE603 - Managing and Storing Docker Images

should use “P~Q.

A
Note that the container is still running:

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

97fe360bb1ld6 i2tch/mydocker “/entrypoint.sh myco.." 4 minutes ago Up 4 minutes

myDocker

880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s.." 54 minutes ago Up 54 minutes 27017/tcp

mongo2

885f75bb6aa57 ittraining/mongodb “bash"” 8 hours ago Up 8 hours

mongo

04d910a3c93d nginx "/docker-entrypoint..." 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,

:::81->80/tcp quirky moore

root@debianll:~/myDocker# docker logs myDocker | tail
mycommand (17:10:30)

mycommand (17:10:33)
mycommand (17:10:36)
mycommand (17:10:39)
mycommand (17:10:42)
mycommand (17:10:45)
mycommand (17:10:48)

mycommand (17:10:51)
mycommand (17:10:54)
mycommand (17:10:57)

Stop the container:

root@debianll:~/myDocker# docker stop -t 1 myDocker
myDocker

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 35/50 DOE603 - Managing and Storing Docker Images

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s.." 55 minutes ago Up 55 minutes 27017 /tcp

mongo2

885f75b6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours

mongo

04d910a3c¢93d nginx "/docker-entrypoint..." 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,

:::81->80/tcp quirky moore
Start the container

root@debianll:~/myDocker# docker start myDocker
myDocker

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

97fe360bb1ld6 i2tch/mydocker “/entrypoint.sh myco.." 6 minutes ago Up 5 seconds

myDocker

880733c6bdc3 i2tch/mongodb?2 "docker-entrypoint.s.." 56 minutes ago Up 56 minutes 27017/tcp

mongo2

885f75bb6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours

mongo

04d910a3c93d nginx "/docker-entrypoint..." 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,

:::81->80/tcp quirky moore
Pause the container:

root@debianll:~/myDocker# docker start myDocker
myDocker

root@debianll:~/myDocker# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 36/50 DOE603 - Managing and Storing Docker Images
NAMES

97fe360bbldé i2tch/mydocker "/entrypoint.sh myco.." 6 minutes ago Up 5 seconds

myDocker

880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s.." 56 minutes ago Up 56 minutes 27017 /tcp
mongo2

885f75b6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours

mongo

04d910a3c¢93d nginx "/docker-entrypoint..." 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,
:::81->80/tcp quirky moore

Unpause the container:

root@debianll:~/myDocker# docker unpause myDocker

myDocker

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

97fe360bb1ld6 i2tch/mydocker “/entrypoint.sh myco.." 7 minutes ago Up About a minute

myDocker

880733c6bdc3 i2tch/mongodb?2 "docker-entrypoint.s.." 57 minutes ago Up 57 minutes 27017/tcp
mongo2

885f75bb6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours

mongo

04d910a3c93d nginx "/docker-entrypoint..." 8 hours ago Up 8 hours

0.0.0.0:81->80/tcp, :::81->80/tcp
Now launch the container with a parameter:

root@debianll:~/myDocker# docker rm
myDocker

quirky moore

-fv myDocker

root@debianll:~/myDocker# docker run -d --name myDocker i2tch/mydocker "Up and Running"
fd5ac836f674feObf7b5056e851cd15e4762a5e41b05e00d384bede5234elf5f

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

37/50

DOEG603 - Managing and Storing Docker Images

root@debianll:~/myDocker# docker logs myDocker

Up
Up
Up
Up
Up
Up

Change the value of the myVariable environment variable:

root@debianll:~/myDocker# docker rm -fv myDocker

and
and
and
and
and
and

Running
Running
Running
Running
Running
Running

myDocker

(17:14:23)

(1
(1
(1
(1

7:14:26)
7:14:29)
7:14:32)
7:14:35)

38)

(17:14:
root@debianll:~/myDocker#

root@debianll:~/myDocker# docker run -d --name myDocker --env myVariable=1 i2tch/mydocker

a9e02a8bb39df9d5c84fc1d58643bc38c228b0562731792e2356a801b50a9a14

root@debianll:
mycommand (17:

mycommand (17
mycommand (17
mycommand (17:
mycommand (17
mycommand (17

mycommand (17:
root@debianll:

15

:15:
:15:
:41)

~/myDocker#

15

~/myDocker# docker logs myDocker
15:
:15:36)
:15:37)
:38)
39)
40)

35)

2.2 - Best practices related to Cache

Non-ldempotent Operations

Create a bestp directory and the following Dockerfile:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 38/50 DOE603 - Managing and Storing Docker Images

root@debianll:~/myDocker# cd
root@debianll:~# mkdir bestp
root@debianll:~# cd bestp
root@debianll:~/bestp# vi Dockerfile
root@debianll:~/bestp# cat Dockerfile
FROM ubuntu:latest

RUN date +%N > /tmp/moment

ENTRYPOINT ["more"]

CMD ["/tmp/moment"]

The Dokerfile contains a non-idempotent operation.

| Important: An idempotent operation is one that consistently produces the
£.% % same result when run in the same context.

Compile the image:

root@debianll:~/bestp# docker build -t testcache .
[+] Building 0.9s (6/6) FINISHED

docker:default

=> [internal] load build definition from Dockerfile

0.2s

=> => transferring dockerfile: 123B
0.0s

=> [internal] load .dockerignore
0.1s

=> => transferring context: 2B

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 39/50 DOE603 - Managing and Storing Docker Images

0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest
0.0s

=> [1/2] FROM docker.io/library/ubuntu:latest
0.1s

=> [2/2] RUN date +%N > /tmp/moment

0.4s

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:842ab4a40890alb5fe7a3af5a41513cb6edd5fd2da503b82¢c3751350671b62707
0.0s

=> => naming to docker.io/library/testcache

0.0s

Now run a first container from the compiled image:

root@debianll:~/bestp# docker run --name testl -it testcache
771723987

Now remove the container and compile the image again:

root@debianll:~/bestp# docker rm testl
testl

root@debianll:~/bestp# docker build -t testcache .
[+] Building 0.3s (6/6) FINISHED

docker:default

=> [internal] load .dockerignore

0.1s

=> => transferring context: 2B

0.0s
=> [internal] load build definition from Dockerfile

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 40/50 DOE603 - Managing and Storing Docker Images

0.1s

=> => transferring dockerfile: 123B

0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest
0.0s

=> [1/2] FROM docker.io/library/ubuntu:latest
0.0s

=> CACHED [2/2] RUN date +%N > /tmp/moment
0.0s

=> exporting to image

0.0s

=> => exporting layers

0.0s

=> => writing image sha256:842ab4a40890alb5fe7a3af5a41513c6edd5fd2da503b82c375f350671b62707
0.0s

=> => naming to docker.io/library/testcache

0.0s

Launch a container from the re-compiled image:

root@debianll:~/bestp# docker run --name testl -it testcache
771723987

Important - Note that the two container outputs are identical despite the
fact that the value of the date command should have changed the result
/1 obtained when the second container was run. The reason this is not the
£2% . case is the use of the cache in the second compilation. If this command had
been something more important such as apt-get upgrade, the result could
be embarrassing!

To get around this problem, it is possible to use the -no-cache option. Unfortunately this would produce a full compilation every time, even for

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 41/50 DOE603 - Managing and Storing Docker Images

idempotent operations. It is therefore advisable to combine non-idempotent operations with idempotent operations in the same command line in order
to invalidate the cache for that command line only

root@debianll:~/bestp# vi Dockerfile

root@debianll:~/bestp# cat Dockerfile
FROM ubuntu:latest
RUN date +%N > /tmp/moment \

&& echo "V1.1" > /tmp/version
ENTRYPOINT ["more"]
CMD ["/tmp/moment"]

Now remove the container and start compiling the image again:

root@debianll:~/bestp# docker rm testl
testl

root@debianll:~/bestp# docker build -t testcache .
[+] Building 0.7s (6/6) FINISHED

docker:default

=> [internal] load .dockerignore

0.1s

=> => transferring context: 2B
0.0s

=> [internal] load build definition from Dockerfile

0.1s

=> => transferring dockerfile: 159B

0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest
0.0s

=> CACHED [1/2] FROM docker.io/library/ubuntu:latest

0.0s

=> [2/2] RUN date +%N > /tmp/moment && echo "V1.1" > /tmp/version
0.4s

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

42/50

DOEG603 - Managing and Storing Docker Images

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:5a36blc7ec76e7bde962c41f5f5dccllae0ce3968e4953fbababcc8b7b282dab

0.0s

=> => naming to docker.io/library/testcache

0.0s

Launch a container from the re-compiled image:

root@debianll:~/bestp# docker run --name testl -it testcache

063819144

LAB #3 - Installing a Private Registry

3.1 - Installing a Local Registry

To install a private registry, a public docker image should be used:
root@debianll:~/bestp# cd ..

root@debianll:~# docker run -d --name registry -p 88:5000 registry:latest
Unable to find image 'registry:latest' locally

latest: Pulling from library/registry

c926b61bad3b:
5501dced60f8:
e875fe5e6b9c:
21f4bf2f86f9:
98513cca25bb:
Digest: sha256:0a182cb82c93939407967d6d71d6caflldcef0e5689c6afe2d60518e3b34ab86

Pull
Pull
Pull
Pull
Pull

complete
complete
complete
complete
complete

www.ittraining.team - https://www.ittraining.team/

DOEG603 - Managing and Storing Docker Images

2026/02/04 12:40 43/50

Status: Downloaded newer image for registry:latest
272df4a849bcbc58a70d6c8ele74751124e4851d8ad6817427ef180b9f28b518

Now use lynx from a terminal on your Docker host machine to check that the registry is active:

root@debianll:~# lynx --dump http://localhost:88/v2
{}root@debianll:~#

Important - Note the server response is {} either an empty JSON list.

F [
-

Rename the i2tch/mydocker image to point to the new registry:

root@debianll:~# docker tag i2tch/mydocker localhost:88/mydocker

Send your localhost:88/mydocker image to this new registry:

root@debianll:~# docker push localhost:88/mydocker

Using default tag: latest
The push refers to repository [localhost:88/mydocker]

f981bd64e799: Pushed

74ddd0ec08fa: Pushed
latest: digest: sha256:32f7al11ld8a8523bb5b4ac0986844d569ca96df4d1875e7e678a885ee3a3c61lc3 size: 736

Now note the presence of the image in the registry:

root@debianll:~# lynx --dump http://localhost:88/v2/mydocker/tags/list
{"name":"mydocker","tags":["latest"]}

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 44/50 DOE603 - Managing and Storing Docker Images

3.2 - Creating a Dedicated Registry Server

Currently, the private registry created above cannot be accessed from the local network because it is referenced by localhost. We now need to set up a
dedicated server

Connect to the Cent0S_10.0.3.45 _SSH VM from your Debian_10.0.3.46_SSH VM:

root@debianll:~# ssh -1 trainee 10.0.3.45

trainee@l0.0.3.45's password: trainee
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Wed Nov 15 05:24:16 2023 from 10.0.3.1
[trainee@centos8 ~]$

Become root:

[trainee@centos8 ~]$ su -
Password: fenestros
[root@centos8 ~]#

Change the hostname of the machine:

[root@centos8 ~]# nmcli general hostname myregistry.i2tch.loc
[root@centos8 ~]# hostname
myregistry.i2tch.loc

Edit the /etc/hosts file and change the entry to the IP address 10.0.3.61:

[root@centos8 ~]# vi /etc/hosts

[root@centos8 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

2edl localhost localhost.localdomain localhost6 localhost6.localdomain6
10.0.3.45 myregistry.i2tch.loc

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 45/50

DOEG603 - Managing and Storing Docker Images

10.0.3.46 debianll.i2tch.loc

Now create a self-signed certificate with openssl:

[root@centos8 ~]# cd /
[root@centos8 /]# vi myconfig.cnf

[root@centos8 /1# cat myconfig.cnf
[req]

distinguished name = dn

x509 extensions = extensions
prompt = no

[extensions]

subjectAltName = DNS:i2tch.loc,DNS:myregistry.i2tch.loc

[dn]
0.DC = loc
1.DC = i2tch

commonName = i2tch. loc

[root@centos8 ~]# mkdir certs && openssl req -config myconfig.cnf -newkey rsa:4096 -nodes -sha256 -keyout

certs/domain.key -x509 -days 365 -out certs/domain.crt

Generating a RSA private key

[root@centos8 /]# 1s certs/
domain.crt domain.key

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 46/50 DOE603 - Managing and Storing Docker Images

Disconnect from the CentO0S8_10.0.3.45_SSH VM:

[root@centos8 /1# exit
logout
[trainee@centos8 ~]$ exit

logout
Connection to 10.0.3.45 closed.

root@debianll:~#
Reconnect to the Cent0S8_10.0.3.45_SSH VM:

root@debianll:~# ssh -1 trainee 10.0.3.45

trainee@l0.0.3.45's password: trainee
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Fri Dec 15 01:07:37 2023 from 10.0.3.46
[trainee@centos8 ~]$%

Become root:

[trainee@myregistry ~1$ su -
Password: fenestros
[root@myregistry ~]#

Create a container in secure mode with TLS from the registry image:

[root@myregistry ~]# docker run -d -p 5000:5000 --name registry -v /certs:/certs -e

REGISTRY HTTP TLS CERTIFICATE=/certs/domain.crt -e REGISTRY HTTP TLS KEY=/certs/domain.key registry:latest
Unable to find image 'registry:latest' locally

latest: Pulling from library/registry

c926b61lbad3b: Pull complete

5501dced60f8: Pull complete

e875fe5e6b9c: Pull complete

21f4bf2f86f9: Pull complete

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 47/50 DOE603 - Managing and Storing Docker Images

98513cca25bb: Pull complete
Digest: sha256:0a182cb82c93939407967d6d71d6caflldcef0e5689c6afe2d60518e3b34ab86

Status: Downloaded newer image for registry:latest
bf0d4fe9fcb121f9c2d9e85b8f2bb54b01397602ef0dcefdfc71327acf832fec

[root@myregistry ~]# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

bfed4fe9fcbl registry: latest "/entrypoint.sh /etc.." 47 seconds ago Up 44 seconds
0.0.0.0:5000->5000/tcp, :::5000->5000/tcp registry

90267aac9800 hello-world "/hello" 15 hours ago Exited (@) 15 hours ago

eloquent chatelet

Send a copy of the /certs/domain.crt file to the /tmp directory of the Debian11_10.0.3.46 virtual machine, renaming it ca.crt:

[root@myregistry ~]# scp /certs/domain.crt trainee@l0.0.3.46:/tmp/ca.crt
The authenticity of host '10.0.3.46 (10.0.3.46)' can't be established.

ECDSA key fingerprint is SHA256:JFem/QUXFwOaDA0STf0S3vs0GsSD11wP0za6bybTG07/8.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '10.0.3.46' (ECDSA) to the list of known hosts.
trainee@l0.0.3.46's password: trainee

domain.crt 100% 2053 2.9MB/s 00:00

Configuring the Client

Exit the VM Cent0S8_10.0.3.45_SSH:

[root@myregistry ~]# exit
logout

[trainee@myregistry ~]$ exit
logout

Connection to 10.0.3.45 closed.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

48/50

DOEG603 - Managing and Storing Docker Images

root@debianll:~#

Remove the registry container:

root@debianll:~# docker rm -f registry

registry

As well as the registry image:

root@debianll:~# docker rmi registry:latest
registry:latest

registry@sha256:0a182cb82c93939407967d6d71d6caflldcef0e5689cbafe2d60518e3b34ab86
909c3ff012b7f9fc4b802b73f250ad45e4ffa385299b71fdd6813f70a6711792
577c3b283118ca6108aba8c8abafbeff666dec82c482dd239dfed49f31553df6

Untagged:
Untagged:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted:

sha256:
sha256:

sha256

sha256:
sha256:

:2babactf6ed95c86cfb2c830693135513bc019a0cOcf8f2c58990bc215995699f
sha256:

65920463e77382a5cbe8da3e814c4449fc665487c8a9fadac27179e809f5ba2e
54501ccbeaec2665849d200fc4a6lab7254ff0f3bd31ab673879fe321fa2ad7f
9fe9al137fd002363acb64f5af66146702432b638a83ee0c5b620c40a9e433e813

Rename the i2tch/mydocker image to point to the registry server:

root@debianll:~# docker tag i2tch/mydocker myregistry.i2tch.loc:5000/mydocker

root@debianll:~# docker images

REPOSITORY TAG

testcache latest
<none> <none>
i2tch/mydocker latest
localhost:88/mydocker latest
myregistry.i2tch.loc:5000/mydocker latest
i2tch/mongodb?2 latest
i2tch/mongodbl latest
ittraining/mongodb latest
ubuntu latest

IMAGE ID

5a36blc7ec76
842ab4a40890
c5a41438d278
c5a41438d278
c5a41438d278
56e5b1fb4284
72fad0b7e0c?2
fb3c6d5d186a
b6548eacbh063

CREATED

NOUO DSBS BRD

days
days
days
days
days
days
days
days

weeks ago

ago
ago
ago
ago
ago
ago
ago
ago

SIZE
77.8MB
77.8MB
231MB
231MB
231MB
352MB
352MB
1.11GB
77.8MB

www.ittraining.team - https://www.ittraining.team/

DOEG603 - Managing and Storing Docker Images

2026/02/04 12:40 49/50
nginx latest abbd71f48f68 3 weeks ago 187MB
hello-world latest 9c7a54a%a43c 7 months ago 13.3kB
centos latest 5d0da3dc9764 2 years ago 231MB

Edit the /etc/hosts file to point the 10.0.3.45 to the name myregistry.i2tch.loc:

root@debianll:~# vi /etc/hosts

root@debianll:~# cat /etc/hosts

127.0.0.1 localhost
10.0.3.46 debianll.i2tch.loc debianll
10.0.3.45 myregistry.i2tch. loc myregistry

The following lines are desirable for IPv6 capable hosts

il localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Move the /tmp/ca.crt file to the /etc/docker/certs.d/myregistry:5000/ directory:
root@debianll:~# mkdir -p /etc/docker/certs.d/myregistry:5000
root@debianll:~# mv /tmp/ca.crt /etc/docker/certs.d/myregistry:5000/
Create the /etc/docker/daemon.json file to accept the self-signed certificate:

root@debianll:~# vi /etc/docker/daemon.json

root@debianll:~# cat /etc/docker/daemon.json
{"insecure-registries" : ["myregistry.i2tch.loc:5000"]}

Restart the docker service:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 50/50 DOE603 - Managing and Storing Docker Images

root@debianll:~# systemctl restart docker

Test the registry response:

root@debianll:~# curl -k https://myregistry:5000/v2/
{}root@debianll:~#

Finally, send the image to the registry:

root@debianll:~# docker push myregistry.i2tch.loc:5000/mydocker

Using default tag: latest
The push refers to repository [myregistry.i2tch.loc:5000/mydocker]

f981bd64e799: Pushed

74ddd0Oec08fa: Pushed
latest: digest: sha256:32f7al1l1d8a8523bb5b4ac0986844d569ca96df4d1875e7e678a885ee3a3c61lc3 size: 736

Copyright © 2023 Hugh Norris.

From:
https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker3:en:drel0

Last update: 2023/12/17 05:49

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre10

	DOE603 - Managing and Storing Docker Images
	Contents
	LAB #1 - Re-creating an official docker image
	1.1 - Using a Dockerfile
	1.2 - FROM
	1.3 - RUN
	1.4 - ENV
	1.5 - VOLUME
	1.6 - COPY
	1.7 - ENTRYPOINT
	1.8 - EXPOSE
	1.9 - CMD
	1.10 - Other Commands

	LAB #2 - Creating a Dockerfile
	2.2 - Best practices related to Cache
	Non-Idempotent Operations

	LAB #3 - Installing a Private Registry
	3.1 - Installing a Local Registry
	3.2 - Creating a Dedicated Registry Server
	Configuring the Client

