2026/02/04 12:40 1/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

Version : 2023.01

Last update : 2023/12/27 08:34

DOF606 - Overlay Network Management with Docker in Swarm
Mode

Contents

* DOF606 - Overlay Network Management with Docker in Swarm mode
o Contents
o The Docker Network Model
o LAB #1 - Overlay Network Management
1.1 - Creating a network overlay
1.2 - Creating a Service
1.3 - Moving the Service to another Overlay Network
1.4 - DNS container discovery
1.5 - Creating a Custom Overlay Network
o LAB #2 - Microservices Architecture Management
= 2.1 - Implementing Docker Swarm with overlay networks

The Docker Network Model

The Docker network model is libnetwork, which implements the Container Network Model (CNM). There are three components in this model:

e Sandbox,

o contains the container's network configuration, i.e. interface management, routing table and DNS,
e Endpoint,

o connects a sandbox to a network,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 2/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

o Network,
o a group of endpoints which communicate directly.

Docker Container Docker Container Docker Container

Network Sandbox Network Sandbox Network Sandbox

[Endpmnt] [Endpﬂint] Endpnintl

| | L J

i
"\

Back End Network | |r Front End Network]

- L

I

LAB #1 - Network overlay management

In addition to the bridge, host and none networks, Docker offers two other types of network, namely overlay and macvlan. This module is about
overlay. For more information about the macvlan type, see the Docker documentation site ici.

As the name suggests, an overlay network is a network that sits on top of the host network. When an overlay network is created, by default it is only
available to swarm services. However, it is possible to connect autonomous containers to the overlay network if the -attachable option is specified
when the network is created. This type of use of the overlay network is not recommended by Docker, which says that support for this feature may be
withdrawn.

Traffic linked to the management of swarm services is encrypted by default using the AES algorithm in GCM mode. In order to encrypt application-
related data traffic, it is possible to use the -opt encrypted option when creating the overlay network. In this case, Docker creates IPSEC tunnels
between each node using the same algorithm as the swarm services traffic. There is therefore a performance degradation to be assessed before going
into production. In both cases the keys are changed every 12 hours (see https://www.vaultproject.io/docs/internals/rotation.html)

www.ittraining.team - https://www.ittraining.team/

https://docs.docker.com/network/network-tutorial-macvlan/
https://www.vaultproject.io/docs/internals/rotation.html

2026/02/04 12:40 3/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

- CAUTION: Encryption of application-related data is not compatible with
| Windows™ . When connecting the Windows™ node to an encrypted overlay
network, no errors will be reported. However the node will be unable to
communicate

Start by re-creating a swarm using the manager, workerl and worker2 virtual machines:

root@debianll:~# ssh -1 trainee 10.0.2.62

The authenticity of host '10.0.2.62 (10.0.2.62)' can't be established.

ECDSA key fingerprint is SHA256:sEfHBv9azmK60cjqF/algUc9jg56s1NazQdAUcvBOVE.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '10.0.2.62' (ECDSA) to the list of known hosts.
trainee@l0.0.2.62's password: trainee

Linux manager.i2tch.loc 4.9.0-8-amd64 #1 SMP Debian 4.9.130-2 (2018-10-27) x86 64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Jul 17 08:27:29 2022 from 10.0.2.1
trainee@manager:~$ su -

Mot de passe : fenestros

root@manager:~#

root@manager:~# docker swarm leave

Node left the swarm.

root@manager:~# docker swarm init --advertise-addr 10.0.2.62

Swarm initialized: current node (tpnlzsk20sfsfafmk2cvefqjc) is now a manager.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 4/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-1-23d7n1fkkk9rvlhtyl106q9390bfpf9daljjguq3s8071leb6c5qs-
e0slygsajvmi7s8t919mw48ao 10.0.2.62:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

Connect to worker1l :

root@manager:~# ssh -1 trainee 10.0.2.63

The authenticity of host '10.0.2.63 (10.0.2.63)' can't be established.

ECDSA key fingerprint is SHA256:sEfHBv9azmK60cjqF/algUc9jg56s 1NaZzQdAUcvBOVE.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.0.2.63' (ECDSA) to the list of known hosts.
trainee@l0.0.2.63's password: trainee

Linux workerl.i2tch.loc 4.9.0-8-amd64 #1 SMP Debian 4.9.130-2 (2018-10-27) x86 64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Mar 21 16:34:26 2021 from 10.0.2.11
trainee@workerl:~$ su -

Mot de passe : fenestros

root@workerl:~#

root@workerl:~# docker swarm leave
Node left the swarm.

root@workerl:~# docker swarm join --token SWMTKN-1-23d7nlfkkk9rvlhtyl06q9390bfpf9daljjguq3s8071e6c5qs-
eOslygsajvmi7s8t919mw48ao 10.0.2.62:2377
This node joined a swarm as a worker.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 5/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

root@workerl:~# exit
déconnexion

trainee@workerl:~$ exit
déconnexion
Connection to 10.0.2.63 closed.

root@manager:~#
Connect to worker?2 :

root@manager:~# ssh -1 trainee 10.0.2.64

The authenticity of host '10.0.2.64 (10.0.2.64)' can't be established.

ECDSA key fingerprint is SHA256:sEfHBv9azmK60cjqF/algUc9jg56s1NazQdAUcvBOVE.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.0.2.64' (ECDSA) to the list of known hosts.
trainee@l0.0.2.64's password: trainee

Linux worker2.i2tch.loc 4.9.0-8-amd64 #1 SMP Debian 4.9.130-2 (2018-10-27) x86 64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Mar 21 16:18:25 2021 from 10.0.2.11
trainee@worker2:~$ su -

Mot de passe : fenestros

root@worker2:~#

root@worker2:~# docker swarm leave
Node left the swarm.

root@worker2:~# docker swarm join --token SWMTKN-1-23d7nlfkkk9rvlhtyl06q9390bfpf9daljjguq3s8071lebc5qs-

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 6/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

eOslygsajvmi7s8t919mw48ao0 10.0.2.62:2377
This node joined a swarm as a worker.

root@worker2:~# exit
déconnexion

trainee@worker2:~$ exit
déconnexion
Connection to 10.0.2.64 closed.

root@manager:~#
Check the state of the swarm:

root@manager:~# docker node 1s

ID HOSTNAME STATUS
ENGINE VERSION

b85hxlixbrimhltxdlhrfed4us * manager.i2tch.loc Ready
19.03.4

4sui75vvdhmet4qvtOzbvzlzl workerl.i2tch.loc Ready
19.03.4

1bjtg509kw3x6xg7frmO7j fuw worker2.i2tch.loc Ready
19.03.4

root@manager:~# docker node ls --filter role=manager

ID HOSTNAME STATUS

ENGINE VERSION

b85hx1lixbrimhltxdlhrfed4us * manager.i2tch.loc Ready
19.03.4

root@manager:~# docker node ls --filter role=worker

ID HOSTNAME STATUS
ENGINE VERSION

4sui75vvdhmet4qvtOzbvzlzl workerl.i2tch.loc Ready
19.03.4

1bjtg509kw3x6xg7frm0O7j fuw worker2.i2tch.loc Ready

AVAILABILITY

Active

Active

Active

AVAILABILITY

Active

AVAILABILITY

Active

Active

MANAGER STATUS

Leader

MANAGER STATUS

Leader

MANAGER STATUS

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 7/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

19.03.4
Check the presence of the overlay network ingress as well as the bridged network docker_gwbridge :

root@manager:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE
4edb7186dcc9 bridge bridge local
d4c9b0c9437a docker gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
de563e30d473 none null local

host's network adapter and therefore connects the Docker daemon to the

i i Info: The docker_gwbridge network connects the ingress network to the
other Docker daemons participating in swarm.

Best Practice : Docker recommends using different overlay networks for
£ each application or group of applications.

.1 - Creating an Overlay Network

From the Manager, create an overlay type network called nginx-net :

root@manager:~# docker network create -d overlay nginx-net
j57jhtugdkjxp22aily6641lqr

root@manager:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 8/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

dde514eea83f bridge bridge local
d4c9b0c9437a docker gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
j57jhtugdkjx nginx-net overlay swarm
de563e30d473 none null local

1.2 - Creating a Service

Create a nginx service that uses the nginx-net network:

root@manager:~# docker service create --name my-nginx --publish target=80,published=80 --replicas=5 --network
nginx-net nginx

fpydgix3elrclqum72gvwcb7f

overall progress: 5 out of 5 tasks

1/5: running [>]
2/5: running [>]
3/5: running [>]
4/5: running [>]
5/5: running [>]

verify: Service converged

)\ Info: The service publishes port 80, which is visible from the outside.
Containers communicate with each other without opening additional ports.

Check that the service is working before continuing:

root@manager:~# docker service ls
ID NAME MODE REPLICAS IMAGE PORTS

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 9/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

fpydgix3elrc my -nginx replicated 5/5 nginx:latest *:80->80/tcp

Now take a look at the service details:

root@manager:~# docker service inspect my-nginx
[
{
"ID": "fpydgix3elrclqum72gvwcb7f",
"Version": {
"Index": 40

b,
"CreatedAt": "2019-10-28T06:23:29.17883246Z2",
"UpdatedAt": "2019-10-28T06:23:29.183438696Z2",

"SpeC": {
"Name": "my-nginx",
"Labels": {},

"TaskTemplate": {
"ContainerSpec": {
"Image":
"nginx:latest@sha256:922c815aa4df050d4df476e92daed4231f466acc8ee90e0e774951b0fd7195a4",
"Init": false,
"StopGracePeriod": 10000000000,
"DNSConfig": {},

"Isolation": "default"
b
"Resources": {
"Limits": {},
"Reservations": {}
b
"RestartPolicy": {
"Condition": "any",
"Delay": 5000000000,
"MaxAttempts": 0
b

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 10/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

"Placement": {
"Platforms": |
{
"Architecture":
"0S": "linux"
},
{
"0S": "linux"
},
{
"Architecture":
"0S": "linux"
}
{
"Architecture":
"0S": "linux"
},
{
"Architecture":
"0S": "linux"
},
{
"Architecture":
"0S": "linux"
}
]
o
"Networks": [
{
"Target":
}
I,

"ForceUpdate": 0,

"Runtime":

"container"

"amd64",

"arme4",

II386II ,

"ppcb4dle”,

"s390x",

"j57jhtugdkjxp22aily664lqr"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 11/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

5,
"Mode": {
"Replicated": {
"Replicas": 5
}
5,

"UpdateConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,
"Order": "stop-first"

b

"RollbackConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0O,
"Order": "stop-first"

b
"EndpointSpec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
“TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
]
}
I
"Endpoint": {
"Spec": {

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 12/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

IIMOdeII: "Vip"'
"Ports": [
{

"Protocol": "tcp",
"TargetPort": 80,
"PublishedPort": 80,

"PublishMode": "ingress"
}
]
},
"Ports": [
{
"Protocol": "tcp",
“TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
1,
"VirtualIPs": [
{
"NetworkID": "r8htcvc8oxmzy896xvwvv87k5",
"Addr": "10.255.0.5/16"
},
{
"NetworkID": "j57jhtugd4kjxp22aily664lqr",
"Addr": "10.0.0.2/24"
}
]

£25 % Important: Note here information about the ports and Endpoints used by

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 13/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

the service.

L]
-

1.3 - Move the Service to another Network overlay

Check the overlay network nginx-net on the three nodes:

root@manager:~# docker inspect nginx-net
[
{
“Name": "nginx-net",
"Id": "j57jhtugd4kjxp22aily664lqr",
"Created": "2019-10-28T07:23:29.492986337+01:00",

"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

“Subnet": "10.0.0.0/24",
“Gateway": "10.0.0.1"

]
b
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""

}

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 14/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

“"ConfigOnly": false,
"Containers": {
"b2e882e530b10f8fdOb248118510071864cel495bc9fdedcf51a475cO0fcO3aeb" :
“Name": "my-nginx.2.bo4q3uslfém@uwxhqgtaulyg5”,

"EndpointID": "f6f82bcb81ba82191f3988702b0e91f7f5f139c5c88899ad7c95e12ab189e055",

"MacAddress": "02:42:0a:00:00:04",
"IPv4Address": "10.0.0.4/24",
"IPv6Address": ""
|
"c0a76b54dad58b0faf80d21915a10072aa7d726c46036caa3157d22c30dba843" :
“Name": "my-nginx.4.aqj5vafpqtkc8f4rndv04x4kn”,

"EndpointID": "813bef65edc4de42d5ec4357013f5b711cd21ce7d1alc8361c1d989d0d709071",

"MacAddress": "02:42:0a:00:00:06",
"IPv4Address": "10.0.0.6/24",

"IPv6Address": ""
},
"lb-nginx-net": {
“Name": "nginx-net-endpoint",
"EndpointID": "d087f5fe91481b12ca®b966d01584d143b25c746952bb517441cfadbbeba90de”,
"MacAddress": "02:42:0a:00:00:08",
"IPv4Address": "10.0.0.8/24",
"IPvbAddress": ""
}
3
“Options": {
“com.docker.network.driver.overlay.vxlanid list": "4097"
b
"Labels": {},
"Peers": [
{
“Name": "1199cab4a6dd",
"IP": "10.0.2.62"
}
{

{

{

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 15/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Name": "69676ae46ab9",
"IP": "10.0.2.63"

b

{
“Name": "d058d363197d",
“IP": "10.0.2.64"

}

]

root@workerl:~# docker inspect nginx-net
[
{
“Name": "nginx-net",
"Id": "j57jhtugd4kjxp22aily664lqr",
“Created": "2019-10-28T07:23:29.561068917+01:00",

“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

"Subnet": "10.0.0.0/24",
"Gateway": "10.0.0.1"

]
s
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 16/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Network":
},
"ConfigOnly": false,
"Containers": {
"50b205e2ed4ccaaad5adc06c508at235557¢c89¢c116c819e367a1d925e9c2b564": {
"Name": "my-nginx.l.gcz867ezj0Oy46tsdgoz8j3jz2",
"EndpointID": "a48a43da98acef2748f42ffa992ba302863ed3c417fa3289cbd3aed0e33e97fa",
"MacAddress": "02:42:0a:00:00:03",
"IPv4Address": "10.0.0.3/24",

"IPv6Address": ""
}
"lb-nginx-net": {
“Name": "nginx-net-endpoint",
"EndpointID": "54ed15511cdd574cb60d37d39257cbf7b30331b24bb069aadb33b457b2864789",
“MacAddress": "02:42:0a:00:00:0a",
"IPv4Address": "10.0.0.10/24",
"IPv6Address": ""
}
b
“Options": {
"com.docker.network.driver.overlay.vxlanid list": "4097"
I
"Labels": {},
"Peers": [
{
"Name": "69676ae46ab9",
"IP": "10.0.2.63"
}
{
“Name": "d058d363197d",
"IP": "10.0.2.64"
},
{

"Name": "1199cab4a6dd",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 17/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

“IP": "10.0.2.62"

]

root@worker2:~# docker inspect nginx-net
[
{
"Name": "nginx-net",
"Id": "j57jhtugd4kjxp22aily664lqr",
“Created": "2019-10-28T07:23:29.562818383+01:00",

“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

"Subnet": "10.0.0.0/24",
"Gateway": "10.0.0.1"

]
IE
"Internal": false,
"Attachable": false,
"Ingress": false,
“"ConfigFrom": {
"Network": ""

}

onfigOnly": false,
"Containers": {
"31bcb5e553886cd9b3a6b8e70feOc2bed92fe081bd0def0c94864631a940chd6" : {

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 18/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Name": "my-nginx.5.t3be85jtp2qlhpmvs14866s5m",
"EndpointID": "ffa92f5f3bb7fd2665a8be336efle4e2d786790852eb152dacla2c45f18518ba",
"MacAddress": "02:42:0a:00:00:07",
"IPv4Address": "10.0.0.7/24",
"IPvb6Address": ""
},
"8e2ce40ab6e0d9fb2bc64c264b92164b6ea241a2369d8e6844d00b8952F5729a7": {
"Name": "my-nginx.3.dma616z2rkbted13zd824fyo2",
"EndpointID": "99cfb31lce34ccd9b6b15f71c87eddb5f39a84512ec76d215d54bdaaf851d5129",
"MacAddress": "02:42:0a:00:00:05",
"IPv4Address": "10.0.0.5/24",

"IPv6Address": ""
H
"lb-nginx-net": {
“Name": "nginx-net-endpoint",
"EndpointID": "c0816f6fle5c046acldeb8163c5a8cf40765a126bf76b6f10bflbb708a51dfal”,
"MacAddress": "02:42:0a:00:00:09",
"IPv4Address": "10.0.0.9/24",
"IPv6Address": ""
}
},
“Options": {
"com.docker.network.driver.overlay.vxlanid list": "4097"
b
“Labels": {},
"Peers": [
{
"Name": "d058d363197d",
"IP": "10.0.2.64"
|
{
"Name": "69676ae46ab9",
"IP": "10.0.2.63"
}

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 19/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Name": "1199cab4a6dd",
"TP": "10.0.2.62"

Important: Note that the nginx-net network has been created
automatically on both Workers. Also note the contents of the Peers
section, which lists the nodes, as well as the Containers section, which
lists the containers on each node that are connected to the overlay
network.

[
-

Now create a second overlay network, called nginx-net-2 :

root@manager:~# docker network create -d overlay nginx-net-2
aez5huut9hd472gmldzf2tsud

Move the my-nginx service to the nginx-net-2 network:

root@manager:~# docker service update --network-add nginx-net-2 --network-rm nginx-net my-nginx

my -nginx

overall progress: 5 out of 5 tasks

1/5: running [>
2/5: running [>]
3/5: running [>]
4/5: running [>]
5/5: running [>]

verify: Service converged

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 20/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

Check that the service is running before continuing:

root@manager:~# docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
fpydgix3elrc my -nginx replicated 5/5 nginx: latest *:80->80/tcp

Check that there are no containers in the nginx-net network:

root@manager:~# docker network inspect nginx-net
[
{
“Name": "nginx-net",
"Id": "j57jhtugd4kjxp22aily664lqr",
"Created": "2019-10-28T06:21:18.337578134Z2",

"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

“Subnet”: "10.0.0.0/24",
“Gateway": "10.0.0.1"

]
}I
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
b,
"ConfigOnly": false,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 21/56

DOF606

- Overlay Network Management with Docker in Swarm Mode

"Containers": null,
"Options": {

"com.docker.network.driver.overlay.vxlanid list":

},
"Labels": null

Now check that the containers are in the nginx-net-2 network :

root@manager:~# docker network inspect nginx-net-2

[
{

“Name": "nginx-net-2",

"Id": "aez5huut9hd472gmldzf2tsud",

“Created": "2019-10-28T10:09:54.465105557+01:00",
“Scope": "swarm",

"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{

"Subnet": "10.0.1.0/24",
"Gateway": "10.0.1.1"

]
s
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""

“4097"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 22/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

s
"ConfigOnly": false,

"Containers": {
"ObT159064e30d5e788al2baca53ee8e9504a2d7300017fb268cb9e90caaecal7a":
"Name": "my-nginx.2.8lpveqac42zesvuulpbiho7k6",

"EndpointID": "25c9587e76cfcalddl7bl0fa967186bc73cabb444cc2689e43a7243f5d1795b2",

"MacAddress": "02:42:0a:00:01:05",
"IPv4Address": "10.0.1.5/24",
"IPv6Address": ""
},
"74e656da8c670fca23270078565af164c4d42415f012ff51ccb02395c6d121e9":
"Name": "my-nginx.3.mjjlbsguaaewk6ldw7yxxjdlu",

"EndpointID": "2be3c3e0286d3afb5bad7bbd903151a4d337a45743cb30c46595160223e02fba",

"MacAddress": "02:42:0a:00:01:07",
"TPv4Address": "10.0.1.7/24",

"IPvbAddress": ""
}
"lb-nginx-net-2": {
“Name": "nginx-net-2-endpoint",
"EndpointID": "768a4cc926b5c94a20904e5db500dc62b40a063077a49769cccccOO7abecbblac”,
"MacAddress": "02:42:0a:00:01:06",
"IPv4Address": "10.0.1.6/24",
"IPv6Address": ""
}
H
“Options": {
"com.docker.network.driver.overlay.vxlanid list": "4098"
}
“"Labels": {},
"Peers": [
{
"Name": "69676ae46ab9",
"IP": "10.0.2.63"
}

{

{

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 23/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Name": "1199cab4a6dd",
"TP": "10.0.2.62"

b

{
"Name": "d058d363197d",
“IP": "10.0.2.64"

}

Now remove the my-nginx service as well as the two overlay networks nginx-net and nginx-net-2 :

root@manager:~# docker service rm my-nginx
my -nginx

root@manager:~# docker network rm nginx-net nginx-net-2

nginx-net
nginx-net-2

1.4 - DNS container discovery

The Docker daemon runs an embedded DNS server at address 127.0.0.11 that enables name resolution in a custom network. If this server is unable to
perform the resolution, it transfers the request to any external server defined in the container.

For DNS container discovery to work, the following ports must be open on the nodes:

2377 /tcp
7946/tcp
7946/udp
4789/udp

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 24/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

Now create the overlay network test-net :

root@manager:~# docker network create --driver=overlay --attachable test-net

hrs25w41951kkickhj6262mjg

. i)

On the Manager, start an interactive container called alpinel that connects to the test-net network:

root@manager:~# docker run -it --name alpinel --network test-net alpine

Important: Note that the NETWORK-ID here is
hrs25w41951kkickhj6262mjg.

Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine

89d9c30c1d48: Pull complete

Digest: sha256:c19173c5ada610a5989151111163d28a67368362762534d8a8121ce95cf2bd5a

Status: Downloaded newer image for alpine:latest

/ #

List the networks available on Worker1l :

root@workerl:~# docker network 1ls

NETWORK ID NAME DRIVER
3fe43b514f9d bridge bridge
ee22b3e623ca docker gwbridge bridge
f3cb3bc3c581 host host
r8htcvc8oxmz ingress overlay
de563e30d473 none null

2]
-_)

SCOPE
local
local
local
swarm
local

Important: Note that the test-net network has not been created.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 25/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

Now start a alpine2 container on Worker1l :

root@workerl:~# docker run -dit --name alpine2 --network test-net alpine

Unable to find image 'alpine:latest' locally

latest: Pulling from library/alpine
89d9c30c1d48: Pull complete

Digest: sha256:c19173c5ada610a5989151111163d28a67368362762534d8a8121ce95cf2bd5a

Status: Downloaded newer image for alpine:latest

5734e84cd460cdd33ce90970d98a96837a0305832a86fc4d86be38aect51b23b

Enter the docker network Is command on Worker1l :

root@workerl:~# docker network 1ls

NETWORK ID NAME
3fe43b514f9d bridge
ee22b3e623ca docker gwbridge
f3cb3bc3c581 host
r8htcvc8oxmz ingress
de563e30d473 none
hrs25w41951k test-net

DRIVER
bridge
bridge
host
overlay
null
overlay

SCOPE
local
local
local
swarm
local
swarm

| Important: Note that the test-net network, having the same NETWORK
. ID, was automatically created when the alpine2 container was created.

List the networks available on Worker2:

root@worker2:~# docker network 1s

NETWORK ID NAME
ff7308310160 bridge
0celd8369c29 docker gwbridge
f3cb3bc3c581 host

DRIVER
bridge
bridge
host

SCOPE
local
local
local

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 26/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

r8htcvc8oxmz ingress overlay swarm
de563e30d473 none null local

Important: Note that the test-net network has not been created.

F L}
-

Attach to the alpine2 container on Workerl and try to contact the alpinel container :

root@workerl:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

ce9097b864dc alpine “/bin/sh" 23 minutes ago Up 23 minutes

alpine2

root@workerl:~# docker attach alpine2
/ #

/ # ping -c 2 alpinel

PING alpinel (10.0.2.2): 56 data bytes

64 bytes from 10.0.2.2: seq=0 ttl=64 time=1.874 ms
64 bytes from 10.0.2.2: seqg=1 ttl=64 time=1.669 ms

--- alpinel ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 1.669/1.771/1.874 ms

/ #

Return to the Manager VM and try to contact the alpine2 container from the alpinel container:

root@manager:~# docker attach alpinel
/ #

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 27/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

/ # ping -c 2 alpine2

PING alpine2 (10.0.0.4): 56 data bytes

64 bytes from 10.0.0.4: seq=0 ttl=64 time=0.666 ms
64 bytes from 10.0.0.4: seq=1 ttl=64 time=1.239 ms

--- alpine2 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.666/0.952/1.239 ms

/ #

Then create the alpine3 container on the Worker2 try to contact the alpinel container :

root@worker2:~# docker run -it --rm --name alpine3 --network test-net alpine
Unable to find image 'alpine:latest' locally

latest: Pulling from library/alpine

c9b1b535fdd9: Pull complete

Digest: sha256:ab00606a42621fb68f2edbad3c88be54397f981a7b70a79db3d1172b11c4367d
Status: Downloaded newer image for alpine:latest

/ #

/ # ping -c 2 alpinel

PING alpinel (10.0.2.2): 56 data bytes

64 bytes from 10.0.2.2: seq=0 ttl=64 time=0.642 ms
64 bytes from 10.0.2.2: seq=1 tt1=64 time=1.684 ms

--- alpinel ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.642/1.163/1.684 ms

/ # exit

Now stop the alpine2 container on Worker1 :

root@workerl:~# docker container stop alpine2

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 28/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

alpine2
Enter the docker network Is command:

root@workerl:~# docker network 1ls

NETWORK ID NAME
3bb801391804 bridge
ee22b3e623ca docker gwbridge
f3cb3bc3c581 host
r8htcvc8oxmz ingress
de563e30d473 none

2 []
-

Delete the alpine2 container:

DRIVER
bridge
bridge
host
overlay
null

root@workerl:~# docker container rm alpine2

alpine2

Stop the alpinel container and delete the test-net network on Manager:

/ # exit

root@manager:~# docker container stop alpinel

alpinel

root@manager:~# docker network 1ls

NETWORK ID NAME
a604e7db6195 bridge
d4c9b0c9437a docker gwbridge
f3cb3bc3c581 host

DRIVER
bridge
bridge
host

SCOPE
local
local
local
swarm
local

SCOPE
local
local
local

Important: Note that the test-net network has been removed.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 29/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

jxu667wzmj2u ingress overlay swarm
de563e30d473 none null local
5181091cjhsp test-net overlay swarm

root@manager:~# docker network rm test-net
test-net

1.5 - Creating a Custom Network overlay

It is possible to create a custom overlay network. In this case, the existing ingress network must be deleted:

root@manager:~# docker network rm ingress

WARNING! Before removing the routing-mesh network, make sure all the nodes in your swarm run the same docker
engine version. Otherwise, removal may not be effective and functionality of newly create ingress networks will
be impaired.

Are you sure you want to continue? [y/N] y

ingress

Next, create your custom network:
root@manager:~# docker network create --driver overlay --ingress --subnet=10.11.0.0/16 --gateway=10.11.0.2 --opt
com.docker.network.driver.mtu=1200 my-ingress

440zn3vtg23zkksrvloxuulcl

root@manager:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE
24be8a0f0ef5 bridge bridge local
d4c9b0c9437a docker gwbridge bridge local
f3cb3bc3c581 host host local
440zn3vtg23z my-ingress overlay swarm
de563e30d473 none null local

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 30/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

Create the my-nginx service again:

root@manager:~# docker service create --name my-nginx --publish target=80,published=80 --replicas=5 nginx
gpliozmbi25dx3skn@Om6suoz

overall progress: 5 out of 5 tasks

1/5: running [>]

2/5: running [>]

3/5: running [>]

4/5: running [>]

5/5: running [>]

verify: Service converged

root@manager:~# docker service ls

ID NAME MODE REPLICAS IMAGE PORTS
gpliozmbi25d my -nginx replicated 5/5 nginx:latest *:80->80/tcp
root@manager:~# docker service ps my-nginx

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
ERROR PORTS

upmbwmt r76cm my-nginx.1 nginx:latest workerl.i2tch.loc Running Running about
a minute ago

qz6plli7zmef my-nginx.2 nginx: latest worker2.i2tch.loc Running Running about
a minute ago

me50mkhd11yk my-nginx.3 nginx:latest manager.i2tch.loc Running Running about
a minute ago

sctjud70ihkl my-nginx.4 nginx:latest workerl.i2tch.loc Running Running about
a minute ago

kql9gx3phb73 my-nginx.5 nginx:latest worker2.i2tch.loc Running Running about

a minute ago
View information about the my-nginx service:

root@manager:~# docker service inspect my-nginx

[

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

31/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

{

"ID": "gpliozmbi25dx3skn@Om6suoz",
"Version": {

}'

"Index": 230

"CreatedAt": "2019-10-28T14:49:33.6719228Z",
"UpdatedAt": "2019-10-28T14:49:33.679624758Z",

“Spec": {
"Name": "my-nginx",
"Labels": {},

"TaskTemplate": {
"ContainerSpec": {
"Image":

“nginx:latest@sha256:922c815aa4df050d4df476e92daed4231f466acc8ee90e0e774951b0fd7195a4",

"Init": false,
"StopGracePeriod": 10000000000,
"DNSConfig": {},

"Isolation": "default"
b
"Resources": {
"Limits": {},
"Reservations": {}
b
"RestartPolicy": {
“Condition": "any",
"Delay": 5000000000,
"MaxAttempts": 0
b

"Placement": {
"Platforms": [
{
"Architecture": "amd64",
"0S": "linux"

I

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 32/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

{
"0S": "linux"
b
{
"Architecture": "armé64",
"0S": "linux"
b
{
"Architecture": "386",
"0S": "linux"
b
{
"Architecture": "ppc64le",
"0S": "linux"
b
{
"Architecture": "s390x",
"0S": "linux"
}
|
b
"ForceUpdate": 0,
"Runtime": "container"
b
"Mode": {
"Replicated": {
"Replicas": 5
}
b

"UpdateConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 33/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

"Order": "stop-first"

b

"RollbackConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0O,
"Order": "stop-first"

b
"EndpointSpec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
“TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
]
}
IE
"endpoint": {
"Spec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
“"TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
]
by
"Ports": [

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 34/56

DOF606

- Overlay Network Management with Docker in Swarm Mode

{
"Protocol": "tcp",
“TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
1,
"VirtualIPs": [
{
"NetworkID": "44o0zn3vtg23zkksrvloxuulcl",
"Addr": "10.11.0.1/16"
}

]

Now check that the containers are in the my-ingress network:

root@manager:~# docker inspect my-ingress
[
{
“Name": "my-ingress",
"Id": "11lucubSufjfwwz6e@umtygdqy",
"Created": "2020-03-10T11:02:38.278429829+01:00",

“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

“Subnet": "10.11.0.0/16",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 35/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Gateway": "10.11.0.2"

]
s
"Internal": false,
"Attachable": false,
"Ingress": true,
“ConfigFrom": {
"Network": ""
IE
"ConfigOnly": false,
"Containers": {
"6f0168ff5153b899a131098740de34997b12417ef7c013824938edf79b2bca7f": {
“Name": "my-nginx.3.me50mkhdllykwz7aj07znlohl",
"EndpointID": "41531d43496f4723cb62cadld57c5a088faebe79c430d04a1765022e31d8ael7",
"MacAddress": "02:42:0a:0b:00:05",
"IPv4Address": "10.11.0.5/16",

"IPv6bAddress": ""
|
"my-ingress-sbox": {
“Name": "my-ingress-endpoint",
"EndpointID": "0205796eeb005ef77b3ea382fdle72c312a58fd717b5a79cabcacc7e090068e6",
"MacAddress": "02:42:0a:0b:00:0a",
"IPv4Address": "10.11.0.10/16",
"IPvbAddress": ""
}
},
"Options": {
"com.docker.network.driver.mtu": "1200",
"com.docker.network.driver.overlay.vxlanid list": "4100"
¥,
“Labels": {},
"Peers": [
{

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 36/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Name": "9a00e8bc72fe",
"TP": "10.0.2.62"

b

{
"Name": "3ea669d48ca2",
"IP": "10.0.2.64"

b

{
"Name": "f30e39df1704",
"IP": "10.0.2.63"

¥

]
Now remove the my-nginx service:

root@manager:~# docker service rm my-nginx
my -nginx

LAB #2 - Managing a Microservices Architecture

You are going to set up a simple application, called demo-voting-app and developed by Docker, in the form of microservices:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 37/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

voting-app
Python

n-memaory DB
Redis

Worker

result-app
NodedS

db
PostgressQL

]

In this application, the voting-app container allows you to vote for cats or dogs. This application runs under Python and provides an HTML interface:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 38/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

[4 Cats s Dogs! x [4 cCatsvsDogs - Result ® | [4 Catswvs Dogs! ¥ | [CatsvsDogs - Result W + -

&« C @ Monsécurisé * & o @m a8 o M

i Applications [§ HowtoCreate an & Telafriend W izchEurope (B S Mes ressources ENI 2 Suggested Namir B Ssimple-HelpSerw & WirtualBowes - Fre: & \irtualBoo Virtual L

Cats vs Dogs!

During the vote, the result of the vote is stored in Redis in an in-memory database. The result is then passed to the Worker container, which runs
under .NET and updates the persistent database in the db container, which runs under PostgreSQL.

The result-app application running in NodeJS then reads the table from the PostgreSQL database and displays the result in HTML form:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 39/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

[4 Cats w5 Dogs! ® [0 Cats vs Dogs - Result W [4 Cats ws Dogs! *® [0 Cats vs Dogs - Result ® o+ - ¢ D
£ 3 C Y | © Nonsécunisé | [BREIEEIEE * &« pmBcocEBO A
it applcations [HowtoCreate an & Tellafriend W iwchEwope (@2 [f§ Mesressources ENI 2 Suggested Naomins § simple-Help Serve 4 WirtuaBowes - Fre: o wirtualfox Virtual =

CATS DOGS

100.0% 0.0%

}

2.1 - Setting up with Docker Swarm using Overlay networks

This application can be set up using docker swarm with the docker stack command. A stack is a group of services. First, check the state of the
Swarm:

root@manager:~# docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ENGINE VERSION
b85hx1lixbrilmhltxdlhrfed4us * manager.i2tch.loc Ready Active Leader

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 40/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

19.03.4
4sui75vvdhmet4qvtOzbvzlzl workerl.i2tch.loc
19.03.4
1bjtg509kw3x6xg7frm0O7j fuw worker2.i2tch. loc
19.03.4

Now create the docker-stack.yml file:
root@manager:~# vi docker-stack.yml

root@manager:~# cat docker-stack.yml
version: "3"
services:

redis:
image: redis:alpine
networks:
- frontend
deploy:
replicas: 1
update config:
parallelism: 2
delay: 10s
restart policy:
condition: on-failure

db:
image: postgres:9.4
environment:
POSTGRES USER: "postgres"
POSTGRES PASSWORD: "postgres"
volumes:
- db-data:/var/lib/postgresql/data
networks:

- backend

Active

Active

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 41/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

deploy:
placement:
constraints: [node.role == manager]
vote:
image: dockersamples/examplevotingapp vote:before
ports:
- 5000:80
networks:
- frontend
depends on:
- redis
deploy:
replicas: 2
update config:
parallelism: 2
restart policy:
condition: on-failure
result:
image: dockersamples/examplevotingapp result:before
ports:
- 5001:80
networks:
- backend
depends on:
- db
deploy:
replicas: 1
update config:
parallelism: 2
delay: 10s
restart policy:
condition: on-failure

worker:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 42/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

image: dockersamples/examplevotingapp worker
networks:
- frontend
- backend
depends on:
- db
- redis
deploy:
mode: replicated
replicas: 1
labels: [APP=VOTING]
restart policy:
condition: on-failure
delay: 10s
max_attempts: 3
window: 120s

placement:
constraints: [node.role == manager]
visualizer:
image: dockersamples/visualizer:stable
ports:
"8080:8080"
stop grace period: 1m30s
volumes:
"/var/run/docker.sock:/var/run/docker.sock"
deploy:
placement:
constraints: [node.role == manager]
networks:
frontend:
backend:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 43/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

volumes:
db-data:

In this file we can see 6 services, redis, db, vote, result, worker and visualizer. The first 5 services together form the application, while the
visualizer service will allow us to see how the application has been set up.

First, look at the deploy key for the worker service:

deploy:

mode: replicated

replicas: 1

labels: [APP=VOTING]

restart policy:
condition: on-failure
delay: 10s
max_attempts: 3
window: 120s

placement:
constraints: [node.role == manager]

The deploy key is used to specify options when deploying the service :

e mode - There are two types of service. Replicated where we specify the number of instances that Docker should set up on available hosts

depending on the value of replicas and Global which implies that Docker will start an instance of the service on each host each time a host
becomes available.

* replicas - specifies the number of replicas

» restart_policy specifies what happens if the service is stopped. In the case above, docker will try to restart the service 3 times (max_attempts)
at 10 second intervals (delay), waiting 120 seconds (window) each time to see if the service has actually restarted,
* placement - specifies where the service should be started.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

44/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

Now deploy the stack:

root@manager:~# docker stack deploy -c docker-stack.yml app

Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating

network
network
network
service
service
service
service
service
service

app_backend
app_default
app_frontend
app_worker
app_visualizer
app_redis
app_db
app_vote
app_result

Now check the status of the stack:

root@manager:~# docker stack 1s

NAME
app

SERVICES
6

Then check the status of the services:

Important - Note that each network and service has the application name

app as its prefix.

root@manager:~# docker service 1ls

ID
PORTS

d0id4ac4fshwo
funp5kboyipl
dpdkc490j671

NAME

app_db

app_redis
app_result
dockersamples/examplevotingapp result:before

ORCHESTRATOR

Swarm

MODE REPLICAS
replicated 1/1
replicated 1/1
replicated 1/1

*:5001->80/tcp

IMAGE

postgres:9.4
redis:alpine

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 45/56

DOF606 - Overlay Network Management with Docker in Swarm Mode
vrkahv38v5mn app_visualizer replicated 1/1 dockersamples/visualizer:stable
*:8080->8080/tcp
t4ul6cpdrx21 app_vote replicated 2/2
dockersamples/examplevotingapp vote:before *:5000->80/tcp
so40eljbcviy app_worker replicated 1/1

dockersamples/examplevotingapp worker:latest

Important: Note that the visualizer service configuration has exposed

/3 port 8080. This way, this service is available on port 8080 of every node in
the swarm.

Return to the Apache Guacamole window in your computer's browser. Click on the Debianl1l_10.0.2.46_VNC connection. Then launch an Internet
browser. Go to the URL http://10.0.2.62:8080 and consult the visualizer service:

www.ittraining.team - https://www.ittraining.team/

http://10.0.2.62:8080

2026/02/04 12:40 46/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

~ Manager (Instantané 1) [En fonction] - Oracle VM VirtualBox =

Fichier ~Machine Ecran Entrée Périphériques Aide

“mk Applications =|@ Visualizer - Mozilla Firefox e 18:16 Q-L trainee
Q Visualizer - Mozilla Firefox | @ o= 2a3
@ Bienvenue dans Firefox X | [Firefox — Politique de cor X | & Visualizer x | +
« G @ () 10.0.2.15:8080 e @ 1Y iIn @@ =

g It
app_visualizer app_redis app_resu

o
app_worker

As you can see, according to the docker-stack.yml file, the three containers db, worker and visualizer have been started on the manager node.

o EEECc @akcr

Go back to your SSH connection and check the status of the networks in the three nodes:

root@manager:~# docker network 1ls

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 47/56 DOF606 - Overlay Network Management with Docker in Swarm Mode
NETWORK ID NAME DRIVER SCOPE
sw489bb290zb app_backend overlay swarm
smuxoglyudpo app_default overlay swarm
1fizui950d90 app_frontend overlay swarm
24be8alf0ef5 bridge bridge local
d4c9b0c9437a docker gwbridge bridge local
f3cb3bc3c581 host host local
x714mk41db75 my-ingress overlay swarm
de563e30d473 none null local
. ! Important: Note that the three networks created are of type overlay.
root@workerl:~# docker network 1ls
NETWORK ID NAME DRIVER SCOPE
ghysvpoolsw0 app_frontend overlay swarm
f9a69d02de3b bridge bridge local
ee22b3e623ca docker gwbridge bridge local
f3cb3bc3c581 host host local
x714mk41db75 my-ingress overlay swarm
de563e30d473 none null local
| Important: Note that only the app_frontend network has been created in
&% workerl.
root@worker2:~# docker network 1ls
NETWORK ID NAME DRIVER SCOPE
s4gbgidispli app_backend overlay swarm
ghysvpoolsw0 app_frontend overlay swarm

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 48/56 DOF606 - Overlay Network Management with Docker in Swarm Mode
0e6c118bf3fd bridge bridge local
0celd8369c29 docker gwbridge bridge local
f3cb3bc3c581 host host local
x714mk41db75 my-ingress overlay swarm
de563e30d473 none null local
| Important: Note that the two networks app_frontend and app_backend

were created in worker2.

View information about the app_backend network:

root@manager:~# docker inspect app backend
[
{

"Name": "app backend",
"Id": "s4gbgid4ispliSwjpgnfduci2a",
“Created": "2019-11-03T17:30:56.822222239+01:00",

“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

“Subnet": "10.0.3.0/24",
“Gateway": "10.0.3.1"

]
}'

"Internal": false,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 49/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Attachable": false,

"Ingress": false,

“"ConfigFrom": {
"Network": ""

},
"ConfigOnly": false,
"Containers": {
"7d0b28e4e1828b437afladlf322acb5cf19afc25c42303986dd2c7b4d5aea568" : {
“Name": "app db.1.s6gbw47k532rvaeoyske8as9i”,
"EndpointID": "c26795c837f6dc736a3f9be34525ae505€9db6381a2144bb62087b3eebc7ff25",
"MacAddress": "02:42:0a:00:03:03",
"IPv4Address": "10.0.3.3/24",
"IPvbAddress": ""
¥,
"ef7227281d297b001bb0f60ac81a0c9926e8fh663a7f43eb201cced632dc5564": {
"Name": "app worker.1l.38kniuqoelvfyonwdcytlhpqo",
"EndpointID": "990065eec5062ff159e82bcled4666fd098d5597439221995af4f01040ab24599",
"MacAddress": "02:42:0a:00:03:09",
"IPv4Address": "10.0.3.9/24",

"IPv6Address": ""
},
"lb-app backend": {
"Name": "app backend-endpoint",
"EndpointID": "913845cbab9a6c301leaaal87fcc66f10268b5e11554be9f1a20b1078f7b9b8a4d",
"MacAddress": "02:42:0a:00:03:04",
"IPv4Address": "10.0.3.4/24",
"IPv6Address": ""
}
}
“Options": {
"com.docker.network.driver.overlay.vxlanid list": "4101"
H
"Labels": {

"com.docker.stack.namespace": "app

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 50/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

i
"Peers": [
{
"Name": "377986fb7d5a",
"IP": "10.0.2.62"
},
{
"Name": "5cc4b863da9f",
"TP": "10.0.2.64"
}
]

| Important: Note that the network is 10.0.3.0/24 and the gateway
&2 10.0.3.1.

View information about the app_frontend network:

root@manager:~# docker inspect app frontend
[
{

“Name": "app_frontend",
"Id": "ghysvpoolsw0318gsubbvd3rx",
"Created": "2019-11-03T17:31:27.354293132+01:00",
“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 51/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

"Config": [
{
"Subnet": "10.0.2.0/24",
"Gateway": "10.0.2.1"

]
H
“Internal": false,
“Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""
b
“ConfigOnly": false,
“Containers": {
"ef7227281d297b001bb0f60ac81a0c9926e8fb663a7f43eb201cced632dc5564": {
"Name": "app worker.1l.38kniuqoelvfyonwdcytlhpqo",
"EndpointID": "3fad9773920412464b6aecee59f8d9ffc5aac2e937b88dc384268591cf7d21fb9",
"MacAddress": "02:42:0a:00:02:0a",
"IPv4Address": "10.0.2.10/24",

"IPv6Address": ""
b,
"lb-app_frontend": {
“Name": "app_ frontend-endpoint",
"EndpointID": "343887373c1f92ac08b271ee52dd160089eeed7cadl3b7924e438919254b6442",
"MacAddress": "02:42:0a:00:02:0b",
"IPv4Address": "10.0.2.11/24",
"IPv6Address": ""
}
H
“Options": {
“com.docker.network.driver.overlay.vxlanid list": "4100"
I
"Labels": {

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

52/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

"com.docker.stack.namespace":

}

"Peers":

{

[
"Name": "Oe2lbalbbfab",
"IP": "10.0.2.63"

"Name": "5cc4b863dadf",
"IP": "10.0.2.64"

"Name": "377986fb7d5a",
“IP": "10.0.2.62"

| Important: Note that the network is 10.0.2.0/24 and the gateway

&5 10.0.2.1.

Check the network information app_default :

root@manager:~# docker inspect app default

[
{

"Name" :

“Id": "z62t49wl8wl2mrboa92tunrhq"”,

“Created": "2019-10-28T17:22:44.724040846+01:00",

"Scope":

"app_default",

"swarm",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 53/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {
"“Driver": "default",
"Options": null,
"Config": [
{

“Subnet”: "10.0.1.0/24",
“Gateway": "10.0.1.1"

]
b
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {

"Network":

s
"ConfigOnly": false,

"Containers": {

"2032d9%eae353130e283a91bcO9b65b4a84b7e815602a466f4ealbd9c64e964dc”: {

"Name": "app visualizer.1l.nbf78cn5g37dmu@fwrxt7kbrg",

"EndpointID": "d5274ff057c9d9af0288efb7f9bfed3a5calb3e656e265ad343f52c0blclolf5",

"MacAddress": "02:42:0a:00:01:03",
"IPv4Address": "10.0.1.3/24",

"IPv6Address": ""

},
"lb-app default": {

“Name": "app default-endpoint",

"EndpointID": "6afb8909d94528633e41500543111645790280blablc686c43e865ba97ec3df9",

"MacAddress": "02:42:0a:00:01:04",
"IPv4Address": "10.0.1.4/24",

"IPvbAddress": ""

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 54/56 DOF606 - Overlay Network Management with Docker in Swarm Mode

}
“Options": {
"com.docker.network.driver.overlay.vxlanid list": "4099"
H
"Labels": {
"com.docker.stack.namespace": "app"
H
"Peers": [
{
"Name": "377986fb7d5a",
"IP": "10.0.2.62"
}
]

| Important: Note that the network is 10.0.1.0/24 and the gateway
" 10.0.1.1.

Schematically, the implementation of the application in the Swarm is as follows:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40 55/56

DOF606 -

Overlay Network Management with Docker in Swarm Mode

workerl
10.0.2.4

app-redis

app-vote

manager
10.0.2.15

app-visualizer

10.0.1.3

End Paint
10014

workerZ
10025

app-result

app-vote

ﬂﬂ]_bﬂ.ﬂkﬂﬂd app_d i] .
100.3.0/24 10033 o054
gw 10.0.3.1 e
_frontend app-worker End Point
10.0.2.0/24 10.0.2.10 10.0.2.11
gw 10.0.2.1 10.0.3.9
Lastly, delete the stack:
root@manager:~# docker stack 1s
NAME SERVICES ORCHESTRATOR
app 6 Swarm

root@manager:~# docker stack rm app
Removing service app_db

Removing service app redis

Removing service app result
Removing service app visualizer

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:40

56/56

DOF606 - Overlay Network Management with Docker in Swarm Mode

Removing service
Removing service
Removing network
Removing network
Removing network

app_vote
app_worker
app_frontend
app_backend
app default

root@manager:~# docker ps -a

CONTAINER ID
PORTS
d02c6115724c
alpinel

IMAGE
NAMES
alpine

Copyright © 2023 Hugh Norris.

From:

COMMAND

“/bin/sh"

https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:

CREATED

6 days ago

https://www.ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre05

Last update: 2023/12/27 08:34

STATUS

Exited (@) 6 days ago

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre05

	DOF606 - Overlay Network Management with Docker in Swarm Mode
	Contents
	The Docker Network Model
	LAB #1 - Network overlay management
	.1 - Creating an Overlay Network
	1.2 - Creating a Service
	1.3 - Move the Service to another Network overlay
	1.4 - DNS container discovery
	1.5 - Creating a Custom Network overlay

	LAB #2 - Managing a Microservices Architecture
	2.1 - Setting up with Docker Swarm using Overlay networks

