2026/02/04 12:46 1/47 DOEG601 - Virtualisation by Isolation

Version : 2024.01

Last update : 2024/12/17 13:46

DOEG601 - Virtualisation by Isolation

Contents

e DOE601 - Virtualisation by Isolation
o Contents
o Presentation of Virtualisation by Isolation
= History
o Presentation of Namespaces
o Presentation of CGroups
= LAB #1 - cgroups v1
e 1.1 - Preparation
e 1.2 - Presentation
1.3 - Memory Limitation
1.4 - The cgcreate command
1.5 - The cgexec command
1.6 - The cgdelete command
1.7 - The /etc/cgconfig.conf file
1.8 - The cgconfigparser command
= LAB #2 - cgroups v2
e 2.1 - Preparation
e 2.2 - Overview
e 2.3 - Limiting CPU Resources
e 2.4 - The systemctl set-property command
o Introducing Linux Containers
= LAB #3 - Working with LXC
e 3.1 - Installation

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 2/47 DOEG601 - Virtualisation by Isolation

e 3.2 - Creating a Simple Container
e 3.3 - Starting a Simple Container
e 3.4 - Attaching to a Simple Container
e 3.5 - Basic LXC Commands
o The Ixc-console Command
o The Ixc-stop Command
o The Ixc-execute Command
o The Ixc-info Command
o The Ixc-freeze Command
o The Ixc-unfreeze Command
o Other Commands
e 3.6 - Creating an Ephemeral Container
o The Ixc-copy Command
e 3.7 - Saving Containers
o The Ixc-snapshot Command

Introduction to Virtualisation using Isolation

An isolator is a piece of software used to isolate the execution of applications in containers, contexts or execution zones.

History

1979 - chroot - root change isolation,

2000 - BSD Jails - user-space isolation,

2004 - Solaris Containers - zone-based isolation, * 2005 - OpenVZ - kernel partitioning isolation under Linux,
2008 - LXC - LinuX Containers - isolation using namespaces and CGroups with liblxc,

2013 - Docker - isolation using namespaces and CGroups with libcontainer,

2014 - LXD - LinuX Container Daemon - isolation using namespaces and CGroups with liblxc.

www.ittraining.team - https://www.ittraining.team/

https://fr.wikipedia.org/wiki/Chroot
https://www.freebsd.org/doc/handbook/jails.html
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://openvz.org/
https://linuxcontainers.org/
https://www.docker.com/get-started
https://linuxcontainers.org/lxd/introduction/

2026/02/04 12:46 3/47

DOEG601 - Virtualisation by Isolation

Namespaces presentation

Namespaces allow processes to be grouped together in the same space and rights to resources to be allocated per space. This makes it possible to run

several inits, each in a namespace, in order to recreate an environment for processes that need to be isolated.

CGroups presentation

LAB #1 - cgroups vl
1.1 - Preparation

Debian 11 uses cgroups v2 by default. To revert to using cgroups v1, edit the /etc/boot/grub file and add the
systemd.unified_cgroup_hierarchy=0 directive to the GRUB_CMDLINE_LINUX DEFAULT line:

root@debianll:~# vi /etc/default/grub

root@debianll:~# cat /etc/default/grub

If you change this file, run 'update-grub' afterwards to update
/boot/grub/grub.cfg.

For full documentation of the options in this file, see:

info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0

GRUB_TIMEOUT=5

GRUB DISTRIBUTOR="1sb release -i -s 2> /dev/null || echo Debian’
GRUB CMDLINE LINUX DEFAULT="quiet systemd.unified cgroup hierarchy=0"
GRUB_CMDLINE LINUX=""

Uncomment to enable BadRAM filtering, modify to suit your needs
This works with Linux (no patch required) and with any kernel that obtains
the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 4/47

DOEG601 - Virtualisation by Isolation

#GRUB BADRAM="0x01234567,0xfefefefe,0x89abcdef, Oxefefefef"

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console

The resolution used on graphical terminal

note that you can use only modes which your graphic card supports via VBE
you can see them in real GRUB with the command "vbeinfo'
#GRUB_GFXMODE=640x480

Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux
#GRUB DISABLE LINUX UUID=true

Uncomment to disable generation of recovery mode menu entries
#GRUB DISABLE RECOVERY="true"

Uncomment to get a beep at grub start
#GRUB_INIT TUNE="480 440 1"

root@debianll:~# grub-mkconfig -o /boot/grub/grub.cfg

Generating grub configuration file ...

Found background image: /usr/share/images/desktop-base/desktop-grub.png
Found linux image: /boot/vmlinuz-5.10.0-13-amd64

Found initrd image: /boot/initrd.img-5.10.0-13-amd64

done

Then reboot your VM :

root@debianll:~# reboot

1.2 - Overview

Control Groups (Control Groups) also known as CGroups, are a way of controlling and limiting resources. Control groups allow resources to be

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 5/47 DOEG601 - Virtualisation by Isolation

allocated, even dynamically while the system is running, such as processor time, system memory, network bandwidth, or a combination of these
resources among user-defined groups of tasks (processes) running on a system.

Control groups are organised hierarchically, like processes. However, comparing the two shows that while processes are in a single tree structure all
descending from the init process and inheriting the environment from their parents, control groups can be multiple giving rise to multiple trees or
hierarchies which inherit certain attributes from their parent control groups.

These multiple and separate hierarchies are necessary because each hierarchy is attached to one or more subsystem(s) also called Resource
Controllers or simply Controllers. The controllers available under Debian 11 are :

blkio - used to set limits on 1/0 access to and from block devices,

cpu - used to provide tasks in control groups with CPU access through the scheduler,

cpuacct - used to produce automatic reports on CPU resources used by tasks in a control group,

cpuset - used to assign individual CPUs on a multicore system and memory nodes to tasks in a control group,

devices - used to allow or deny task access to devices in a control group,

freezer - used to suspend or reactivate tasks in a control group,

memory - used to set memory usage limits for tasks in a control group and to generate automatic reports on memory resources used by these
tasks,

net_cls - used to track network packets with a class identifier (c/lassid) to allow the Linux traffic controller, tc, to identify packets originating from
a particular control group task.

perf_event - used to allow CGroups to be monitored with the perf tool,

hugetlb - used to limit resources on large virtual memory pages.

Note that :

each process in the system belongs to a cgroup and only to one cgroup at a time,

all threads in a process belong to the same cgroup,

when a process is created, it is placed in the same cgroup as its parent process,

a process can be migrated from one cgroup to another cgroup. However, migrating a process has no impact on the cgroup membership of its
child processes.

Start by installing the cgroup-tools package:

root@debianll:~# apt -y install cgroup-tools

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 6/47

DOEG601 - Virtualisation by Isolation

To view the hierarchies, use the Issubsys command:

root@debianll:~# lssubsys -am

cpuset /sys/fs/cgroup/cpuset

cpu, cpuacct /sys/fs/cgroup/cpu,cpuacct
blkio /sys/fs/cgroup/blkio

memory /sys/fs/cgroup/memory

devices /sys/fs/cgroup/devices

freezer /sys/fs/cgroup/freezer

net cls,net prio /sys/fs/cgroup/net cls,net prio
perf event /sys/fs/cgroup/perf event
hugetlb /sys/fs/cgroup/hugetlb

pids /sys/fs/cgroup/pids

rdma /sys/fs/cgroup/rdma

Under Debian 11, Systemd organises processes into each CGroup. For example all processes started by the Apache server will be in the same CGroup,

including CGI scripts. This means that resource management using hierarchies is coupled with Systemd's unit tree.

At the top of the Systemd unit tree is the root slice - -.slice, on which depends :

 the system.slice - the location of system services,
¢ the user.slice - the location of user sessions,
* the machine.slice - the location of virtual machines and containers.

Below the slices you can find :

e scopes - processes created by fork,
e services - processes created by a Unit.

Slices can be viewed with the following command:

root@debianll:~# systemctl list-units --type=slice

UNIT LOAD ACTIVE SUB DESCRIPTION
-.slice loaded active active Root Slice
system-getty.slice loaded active active system-getty.slice

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 7/47 DOEG601 - Virtualisation by Isolation
system-lvm2\x2dpvscan.slice loaded active active system-lvm2\x2dpvscan.slice
system-modprobe.slice loaded active active system-modprobe.slice
system-systemd\x2dcryptsetup.slice loaded active active Cryptsetup Units Slice
system.slice loaded active active System Slice
user-1000.slice loaded active active User Slice of UID 1000
user.slice loaded active active User and Session Slice

LOAD = Reflects whether the unit definition was properly loaded.

ACTIVE = The high-level unit activation state, i.e. generalization of SUB.

SUB = The low-level unit activation state, values depend on unit type.

8 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

The Systemd unit tree is as follows:

root@debianll:~# systemd-cgls
Control group /:

-.slice

—user.slice
Luser-1000.slice
—user@l000.service ..
—app.slice
—pulseaudio.service

—pipewire.service
-973 /usr/bin/pipewire

—dbus.service

syslog-only
Linit.scope
-958 /lib/systemd/systemd --user
L959 (sd-pam)
—session-3.scope

L984 /usr/bin/pipewire-media-session

L974 /usr/bin/pulseaudio --daemonize=no --log-target=journal

L982 /usr/bin/dbus-daemon --session --address=systemd: --nofork --nopidfile --systemd-activation --

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

8/47

DOEG601 - Virtualisation by Isolation

— 993
— 999
—1000
—1003
—1004
—1010
—1011

sshd: trainee [priv]
sshd: trainee@pts/0
-bash

su -

-bash

systemd-cgls

less

—session-1.scope
—578 /bin/login -p --

—975 -bash

—986 su -

L0987 -bash
—init.scope

L1 /sbin/init
—system.slice
—apache2.service

=595 /usr/sbin/apache2 -k start

=597 /usr/sbin/apache2 -k start

L 598 /usr/sbin/apache2 -k start
—systemd-udevd.service

L 317 /lib/systemd/systemd-udevd
—cron.service

L-491 /usr/sbin/cron -f
—polkit.service

L-495 /usr/libexec/polkitd --no-debug
—rtkit-daemon.service

L979 /usr/libexec/rtkit-daemon
—auditd.service

L-460 /sbin/auditd
—wpa_supplicant.service

498 /sbin/wpa supplicant -u -s -0 /run/wpa supplicant
—ModemManager.service

L515 /usr/sbin/ModemManager
—inetd.service

www.ittraining.team - https://www.ittraining.team/

9/47 DOEG601 - Virtualisation by Isolation

2026/02/04 12:46

L694 /usr/sbin/inetd
—systemd-journald.service
L2096 /1ib/systemd/systemd-journald

—mdmonitor.service
L432 /sbin/mdadm --monitor --scan

—ssh.service
L 580 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups

lines 1-58
[q]

Using Systemd, several resources can be limited:

e CPUShares - default 1024,
e MemoryLimit - limit expressed in MB or GB. No default value,

¢ BlocklOWeight - value between 10 and 1000. No default value,

e StartupCPUShares - like CPUShares but only applied during startup,

e StartupBlocklOWeight - like BlocklOWeight but only applied during startup,

e CPUQuota - used to limit CPU time, even when the system is not doing anything.

1.3 - Memory limiting
Start by creating the hello-world.sh script that will be used to generate a process to work with CGroups:

root@debianll:~# vi hello-world.sh
root@debianll:~# cat hello-world.sh
#!/bin/bash

while [1]; do
echo "hello world"

sleep 360
done

Make the script executable and test it :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 10/47

DOEG601 - Virtualisation by Isolation

root@debianll:~# chmod u+x hello-world.sh
root@debianll:~# ./hello-world.sh

hello world

~C

Now create a CGroup in the memory subsystem called helloworld :

root@debianll:~# mkdir /sys/fs/cgroup/memory/helloworld

By default, this CGroup will inherit all available memory. To avoid this, now create a 40000000 byte limit for this CGroup:

root@debianll:~# echo 40000000 > /sys/fs/cgroup/memory/helloworld/memory.limit in bytes
root@debianll:~# cat /sys/fs/cgroup/memory/helloworld/memory.limit in bytes

39997440

39997 440 /4096 =9 765).

Now run the helloworld.sh script:

root@debianll:~# ./hello-world.sh &
[1] 1073

root@debianll:~# hello world
[Entrée]

root@debianll:~# ps aux | grep hello-world
root 1073 0.0 0.0 6756 3100 pts/0
root 1077 0.0 0.0 6180 712 pts/0

S 06:33
R+ 06:34

Note that there is no memory limit, which implies inheritance by default:

Important - Note that the 40,000,000 requested has become 39,997,440
which corresponds to an integer number of kernel memory pages of 4KB. (

0 /bin/bash ./hello-world.sh

0:0
0:00 grep hello-world

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 11/47 DOEG601 - Virtualisation by Isolation

root@debianll:~# ps -ww -0 cgroup 1073
CGROUP
8:devices:/user.slice,7:pids:/user.slice/user-1000.slice/session-3.scope,5:memory:/user.slice/user-1000.slice/ses

sion-3.scope, l:name=systemd:/user.slice/user-1000.slice/session-3.scope,0::/user.slice/user-1000.slice/session-3.
scope

Insert the PID of our script in the helloworld CGroup :

root@debianll:~# echo 1073 > /sys/fs/cgroup/memory/helloworld/cgroup.procs

Now note the inheritance of the memory limitation - 5:memory:/helloworld :

root@debianll:~# ps -ww -0 cgroup 1073

CGROUP
8:devices:/user.slice,7:pids:/user.slice/user-1000.slice/session-3.scope,5:memory:/helloworld,l:name=systemd:/use
r.slice/user-1000.slice/session-3.scope,0::/user.slice/user-1000.slice/session-3.scope

Then note the actual memory consumption :

root@debianll:~# cat /sys/fs/cgroup/memory/helloworld/memory.usage in bytes
274432

Kill the hello-world.sh script:

root@debianll:~# kill 1073

root@debianll:~# ps aux | grep hello-world

root 1086 0.0 0.0 6180 716 pts/0 S+ 06:37 0:00 grep hello-world
[1]+ Terminated ./hello-world.sh

Create a second, much more restrictive CGroup:

root@debianll:~# mkdir /sys/fs/cgroup/memory/helloworldl
root@debianll:~# echo 6000 > /sys/fs/cgroup/memory/helloworldl/memory.limit in bytes

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 12/47 DOEG601 - Virtualisation by Isolation

root@debianll:~# cat /sys/fs/cgroup/memory/helloworldl/memory.limit in bytes
4096

Relaunch the hello-world.sh script and insert it into the new CGroup:

root@debianll:~# ./hello-world.sh &
[1] 1089

root@debianll:~# hello world
[Entrée]

root@debianll:~# echo 1089 > /sys/fs/cgroup/memory/helloworldl/cgroup.procs

Wait for the next hello world output on the STDOut and then notice that the script stops:
root@debianll:~# ps aux | grep hello-world

root 1100 0.0 0.0 6180 720 pts/0 S+ 06:45 0:00 grep hello-world
[1]+ Killed ./hello-world.sh

Note the contents of the /var/log/messages file:

root@debianll:~# tail /var/log/messages
May 4 06:44:43 debianll kernel: [994.012423] workingset nodereclaim 0

May 4 06:44:43 debianll kernel: [994.012423] pgfault O

May 4 06:44:43 debianll kernel: [994.012423] pgmajfault O

May 4 06:44:43 debianll kernel: [994.012423] pgrefill ©

May 4 06:44:43 debianll kernel: [994.012423] pgscan 0

May 4 06:44:43 debianll kernel: [994.012423] pgsteal 0

May 4 06:44:43 debianll kernel: [994.012425] Tasks state (memory values in pages):
[

May 4 06:44:43 debianll kernel:
oom score adj name

May 4 06:44:43 debianll kernel: [994.012428] [1089] 0 1089 1689 780 53248 0
0 hello-world.sh

May 4 06:44:43 debianll kernel: [994.012430] oom-

994.012426] [pid] uid tgid total vm rss pgtables bytes swapents

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

13/47

DOEG601 - Virtualisation by Isolation

kill:constraint=CONSTRAINT MEMCG, nodemask=(null),cpuset=/,mems allowed=0,00om memcg=/helloworldl, task memcg=/hello
worldl, task=hello-world.sh,pid=1089,uid=0

1.4 - The cgcreate command

This command is used to create a CGroup:

root@debianll:~# cgcreate -g memory:helloworld2

root@debianll:~# 1s -1
total 0

-rw-r--r-- 1 root root
--w--w--w- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-eW--- - - - 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-r--r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-r--r--r-- 1 root root
-r--r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-r--r--r-- 1 root root
-rw-r--r-- 1 root root
-r--r--r-- 1 root root

/sys/fs/cgroup/memory/helloworld2/

May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May

[cNoNoNoNcoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNolNol

B . TE T T Y~ ~ S - N -t S - S S S S S I T S ~ e S R

06
06
06
06

06
06
06

06
06
06
06
06
06

06
06
06

06
06

147
147
147
147
06:
147
147
147
06:
147
147
147
147
147
147
06:
147
147
147
06:
147
147

47

47

47

47

cgroup.
cgroup.
cgroup.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.
memory.

clone children

event control

procs

failent

force empty

kmem. failcnt
kmem.limit in bytes
kmem.max usage in bytes
kmem.slabinfo
kmem.tcp.failcnt
kmem.tcp.limit in bytes

kmem.tcp.max_usage in bytes

kmem.tcp.usage in bytes
kmem.usage in bytes
limit in bytes
max_usage in bytes
memsw. failcnt
memsw.limit in bytes

memsw.max _usage in bytes

memsw.usage in bytes

move charge at immigrate

numa_stat

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

14/47

DOEG601 - Virtualisation by Isolation

-rwW-r--r--
-rw-r--r--
-r--r--r--
-rw-r--r--
-r--r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--

ey

L I = N = Sy S

root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root

May
May
May
May
May
May
May
May
May

ol coNoNoNoNoNoNoNO)

06
06

06
06
06

06
06

B N L L T I - -

147
147
06:
147
147
147
06:
147
147

47

47

memory.
memory.
memory.
memory .
memory .
memory .
memory .
notify
tasks

However, there is no command to assign a memory limit:

oom_control
pressure_level
soft limit in bytes

stat

swappiness
usage in bytes
use hierarchy
on_release

root@debianll:~# echo 40000000 > /sys/fs/cgroup/memory/helloworld2/memory.limit in bytes

1.5 - The cgexec Command

This command inserts the limit into the CGroup and runs the script in a single line:

root@debianll:~# cgexec -g memory:helloworld2 ./hello-world.sh &

[1] 1106

root@debianll:~# hello world

[Entrée]

root@debianll:~# cat /sys/fs/cgroup/memory/helloworld2/cgroup.procs

1106

1107

root@debianll:~# ps a
root 1106 0.0
root 1107 0.0
root 1168 0.0
root 1113 0.0

0.0
0.0
0.0
0.0

ux | grep 110

6756 3060 pts/0
508 pts/0

5304
0
6180

07

652 pts/0

S
S
I

S+

06:48
06:48
06:49
06:50

0:00 /bin/bash ./hello-world.sh
0:00 sleep 360

0:00 [kworker/1:0-events freezable]
0:00 grep 110

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

15/47

DOEG601 - Virtualisation by Isolation

1.6 - The cgdelete Command

Once the script has completed, this command deletes the cgroup:

root@debianll:~#
root@debianll:~#

root 1107
root 1108
root 1115

[1]+ Terminated
root@debianll:~#

root@debianll:~#

kill 1106
ps aux | grep 110

.0 0.0
.0 0.0 0
.0 0.0

[cNoNo)

5304 508 pts/0

07

6180 716 pts/0

S 06:48 0:00 sleep 360
I 06:49 0:00 [kworker/1:0-mm _percpu wq]
R+ 06:51 0:00 grep 110

cgexec -g memory:helloworld2 ./hello-world.sh

cgdelete memory:helloworld?2

ls -1 /sys/fs/cgroup/memory/helloworld2/
ls: cannot access '/sys/fs/cgroup/memory/helloworld2/': No such file or directory

1.7 - The /etc/cgconfig.conf file

In order to make them persistent, the /etc/cgconfig.conf file needs to be edited:

root@debianll:~# vi /etc/cgconfig.conf

root@debianll:~# cat /etc/cgconfig.conf

group helloworld
cpu {

}

memory {

}

2 {

cpu.shares = 100;

memory.limit in bytes

40000;

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

16/47

DOEG601 - Virtualisation by Isolation

- Important - Note the creation of two limits, one of 40,000 bytes of
| memory and the other of 100 cpu.shares. The latter is a value expressed
- over 1,024, where 1,024 represents 100% of CPU time. The limit set is
therefore equivalent to 9.77% of CPU time.

Now create the two CGroups required:

root@debianll:~# cgcreate -g memory:helloworld2

root@debianll:~# 1s -1
total 0

-rw-r--r-- 1 root root
--w--w--w- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
—eWemm---- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-r--r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-r--r--r-- 1 root root
-r--r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-r--r--r-- 1 root root

/sys/fs/cgroup/memory/helloworld2/

0 May 4 06:53 cgroup.clone children

0 May 4 06:53 cgroup.event control

0 May 4 06:53 cgroup.procs

0 May 4 06:53 memory.failcnt

0 May 4 06:53 memory.force empty

0 May 4 06:53 memory.kmem.failcnt

0 May 4 06:53 memory.kmem.limit in bytes

0 May 4 06:53 memory.kmem.max usage in bytes
0 May 4 06:53 memory.kmem.slabinfo

0 May 4 06:53 memory.kmem.tcp.failcnt

0 May 4 06:53 memory.kmem.tcp.limit in bytes
0 May 4 06:53 memory.kmem.tcp.max usage in bytes
0 May 4 06:53 memory.kmem.tcp.usage in bytes
0 May 4 06:53 memory.kmem.usage in bytes

0 May 4 06:53 memory.limit in bytes

0 May 4 06:53 memory.max usage in bytes

0 May 4 06:53 memory.memsw.failcnt

0 May 4 06:53 memory.memsw.limit in bytes

0 May 4 06:53 memory.memsw.max usage in bytes
0 May 4 06:53 memory.memsw.usage in bytes

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

17/47

DOEG601 - Virtualisation by Isolation

-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
---------- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root
root
root

May
May
May
May
May
May
May
May
May
May
May

[cNoNoNoNoNoNoNoNoNOoNO)

B T T - N i S - R s

06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:

53
53
53
53
53
53
53
53
53
53
53

memory.
memory.
memory.
memory .
memory .
memory .
memory .
memory .
memory .
notify
tasks

root@debianll:~# cgcreate -g cpu:helloworld2

root@debianll:~# 1s -1

total O

-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

move charge at immigrate
numa_ stat

oom_control

pressure_ level

soft limit in bytes

stat

swappiness
usage in bytes

use hierarchy

on release

/sys/fs/cgroup/cpu/helloworld2/

May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNO)

B T R~ e R S T T L T - N N S o

06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:

54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54

cgroup.
cgroup.

cpuacct.
cpuacct.
cpuacct.
cpuacct.
cpuacct.
cpuacct.
cpuacct.
cpuacct.
_period us

cpu.cfs

clone children
procs

stat

usage

usage all
usage_percpu
usage _percpu sys
usage percpu_user
usage sys
usage_user

cpu.cfs quota us

cpu.sha
cpu.sta
notify
tasks

res
t
on release

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 18/47 DOEG601 - Virtualisation by Isolation

1.8 - The cgconfigparser command

Apply the contents of the /etc/cgconfig.conf file using the cgconfigparser command:

root@debianll:~# cgconfigparser -1 /etc/cgconfig.conf

root@debianll:~# cat /sys/fs/cgroup/memory/helloworld2/memory.limit in bytes
36864

root@debianll:~# cat /sys/fs/cgroup/cpu/helloworld2/cpu.shares
100

LAB #2 - cgroups v2

2.1 - Preparation

To revert to using cgroups v2, edit the /etc/boot/grub file and change the systemd.unified_cgroup_hierarchy=0 directive to
systemd.unified_cgroup_hierarchy=1 in the GRUB_CMDLINE_LINUX_DEFAULT line:

root@debianll:~# vi /etc/default/grub

root@debianll:~# cat /etc/default/grub

If you change this file, run 'update-grub' afterwards to update
/boot/grub/grub.cfg.

For full documentation of the options in this file, see:

info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0

GRUB_TIMEOUT=5

GRUB DISTRIBUTOR="1sb release -i -s 2> /dev/null || echo Debian’
GRUB_CMDLINE LINUX DEFAULT="quiet systemd.unified cgroup hierarchy=1"

GRUB_CMDLINE LINUX=""

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 19/47

DOEG601 - Virtualisation by Isolation

Uncomment to enable BadRAM filtering, modify to suit your needs

This works with Linux (no patch required) and with any kernel that obtains
the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...)
#GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,Oxefefefef"

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console

The resolution used on graphical terminal

note that you can use only modes which your graphic card supports via VBE
you can see them in real GRUB with the command "vbeinfo'

#GRUB GFXMODE=640x480

Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux
#GRUB DISABLE LINUX UUID=true

Uncomment to disable generation of recovery mode menu entries
#GRUB_DISABLE RECOVERY="true"

Uncomment to get a beep at grub start
#GRUB_INIT TUNE="480 440 1"

root@debianll:~# grub-mkconfig -o /boot/grub/grub.cfg

Generating grub configuration file ...

Found background image: /usr/share/images/desktop-base/desktop-grub.png
Found linux image: /boot/vmlinuz-5.10.0-13-amd64

Found initrd image: /boot/initrd.img-5.10.0-13-amd64

done

Then reboot your VM :

root@debianll:~# reboot

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

20/47 DOEG601 - Virtualisation by Isolation

2.2 - Presentation

Unlike cgroup v1, cgroup v2 has only one tree or hierarchy and therefore only one mount point. All v2-compatible controllers that are not linked to a v1
hierarchy are automatically linked to the v2 hierarchy. An inactive controller in the v2 hierarchy can be linked to another hierarchy. Migration of a
controller from one hierarchy to another is only possible if the controller is deactivated and no longer referenced in the original hierarchy.

To check that cgroups v2 is being used, the mount point should be viewed:

root@debianll:~# mount -1 | grep cgroup

cgroup2 on /sys/fs/cgroup type cgroup2 (rw,nosuid,nodev,noexec,relatime,nsdelegate,memory recursiveprot)

and view the contents of this mount point:

root@debianll:
total 0

-r--r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1
-r--r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1
-r--r--r-- 1
-r--r--r-- 1
-r--r--r-- 1
drwxr-xr-x 2
drwxr-xr-x 2
drwxr-xr-x 2
-rw-r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1
-r--r--r-- 1

~# ls -1 /sys/fs/cgroup/

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo)

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

(o)) o) I e)) o) le) lie) B e) I e) B o) lie) Bie) Be) B e) B o) B o) Bie))

10:
11:
132
10:
11:
10:
11:
11:
11:
:32
11:
10:
10:
10:
11:
11:
11:
11:

11

11

58
32

58
32
58
32
32
32

32
58
58
58
32
32
32
32

cgroup.controllers
cgroup.max.depth
cgroup.max.descendants
cgroup.procs
cgroup.stat
cgroup.subtree control
cgroup.threads
Cpu.pressure
cpuset.cpus.effective
cpuset.mems.effective
cpu.stat
dev-hugepages.mount
dev-mqueue.mount
init.scope
io.cost.model
io.cost.qos
io.pressure

io.stat

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

21/47

DOEG601 - Virtualisation by Isolation

-r--r--r--
-rw-r--r--
-r--r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

N
A WMNNNNRFE R

root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root

[cloNoNoNoNoNoNOoNO)

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

(o)) o) Ie) o) o) Ie) Be) Be))

11:
11:

11

32
32

:32
10:
10:
10:
10:
11:
11:

58
58
58
58
26
30

memory.numa_ stat
memory.pressure

memory.stat
sys-fs-fuse-connections.mount
sys-kernel-config.mount
sys-kernel-debug.mount
sys-kernel-tracing.mount
system.slice

user.slice

In version 2 of cgroups, some names have changed from those used in version 1:

Version 1 Version 2
CPUShares CPUWeight
StartupCPUShares|StartupCPUWeight
MemoryLimit MemoryMax

Start by creating the child cgroup pids in the root cgroup:

root@debianll:~# mkdir /sys/fs/cgroup/pids

Place the PID of the current terminal in the cgroup.procs file of the child cgroup:

root@debianll:~# echo $$

1230

root@debianll:~# echo $$ > /sys/fs/cgroup/pids/cgroup.procs

Now check the contents of the cgroup.procs file as well as the number of PIDs in the pids cgroup:

root@debianll:~# cat /sys/fs/cgroup/pids/cgroup.procs

1230
1281

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

22/47

DOEG601 - Virtualisation by Isolation

root@debianll:~# cat /sys/fs/cgroup/pids/pids.current

2

Important - Note that the cgroup.procs file contains two PIDs. The first is
from the Shell while the second is from the cat command.

Now inject the value of 5 into the pids.max file of the cgroup pids :

root@debianll:~# echo 5 > /sys/fs/cgroup/pids/pids.max

Run the following command to create 6 pids in the cgroup:

root@debianll:~# for a in $(seq 1 5); do sleep 60 & done

[1] 1290
[2] 1291
[3] 1292
[4] 1293
-bash: fork:
-bash: fork:
-bash: fork:
-bash: fork:
-bash: fork:

retry: Resource
retry: Resource
retry: Resource
retry: Resource

temporarily unavailable
temporarily unavailable
temporarily unavailable
temporarily unavailable

Resource temporarily unavailable

Lastly, try deleting the pids cgroup:

Important - Note that when attempting to create the 6th process, an error

is returned. The system then tries 4 more times and finally gives up with
the error message -bash: fork: Resource temporarily unavailable.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 23/47 DOEG601 - Virtualisation by Isolation

root@debianll:~# rmdir /sys/fs/cgroup/pids
rmdir: failed to remove '/sys/fs/cgroup/pids': Device or resource busy

| Important - Note that it is not possible to remove a cgroup as long as it
contains a process.

Move the current terminal process into the root cgroup:
root@debianll:~# echo $$ > /sys/fs/cgroup/cgroup.procs
It is now possible to delete the pids cgroup:

root@debianll:~# rmdir /sys/fs/cgroup/pids
root@debianll:~#

2.3 - Limiting CPU Resources

There are two ways to limit CPU resources:

e CPU bandwidth,
o a limiting system based on a percentage of CPU for one or more processes,
e CPU weight,
o a limiting system based on the prioritisassion of one or more processes relative to other processes.

In the following example, you are going to set up a CPU bandwidth type limit.

Start by creating a service called foo :

root@debianll:~# vi /lib/systemd/system/foo.service
root@debianll:~# cat /lib/systemd/system/foo.service

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 24/47 DOE601 - Virtualisation by Isolation

[Unit]
Description=The foo service that does nothing useful
After=remote-fs.target nss-lookup.target

[Service]
ExecStart=/usr/bin/shalsum /dev/zero
ExecStop=/bin/kill -WINCH ${MAINPID}

[Install]
WantedBy=multi-user.target

Start and enable the service:

root@debianll:~# systemctl start foo.service
root@debianll:~# systemctl enable foo.service
Created symlink /etc/systemd/system/multi-user.target.wants/foo.service -» /lib/systemd/system/foo.service.
root@debianll:~# systemctl status foo.service
® foo.service - The foo service that does nothing useful
Loaded: loaded (/lib/systemd/system/foo.service; enabled; vendor preset: enabled)
Active: active (running) since Wed 2022-07-06 11:41:18 CEST; 19s ago
Main PID: 997 (shalsum)
Tasks: 1 (limit: 19155)
Memory: 296.0K
CPU: 19.114s
CGroup: /system.slice/foo.service
L 997 /usr/bin/shalsum /dev/zero

Jul 06 11:41:18 debianll systemd[1]: Started The foo service that does nothing useful.
Use the ps command to see the percentage of CPU used by this service :

root@debianll:~# ps -p 997 -o pid,comm,cputime,%cpu
PID COMMAND TIME %CPU

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 25/47

DOEG601 - Virtualisation by Isolation

997 shalsum 00:01:33 100
Now create another service called bar :
root@debianll:~# vi /lib/systemd/system/bar.service
root@debianll:~# cat /lib/systemd/system/bar.service
[Unit]
Description=The bar service that does nothing useful
After=remote-fs.target nss-lookup.target
[Service]
ExecStart=/usr/bin/md5sum /dev/zero

ExecStop=/bin/kill -WINCH ${MAINPID}

[Install]
WantedBy=multi-user.target

Start and enable the service:
root@debianll:~# systemctl start bar.service

root@debianll:~# systemctl enable bar.service

Created symlink /etc/systemd/system/multi-user.target.wants/bar.service - /lib/systemd/system/bar.service.

root@debianll:~# systemctl status bar.service

® bar.service - The bar service that does nothing useful
Loaded: loaded (/lib/systemd/system/bar.service; enabled; vendor preset: enabled)
Active: active (running) since Wed 2022-07-06 11:45:24 CEST; 15s ago

Main PID: 1020 (md5sum)
Tasks: 1 (limit: 19155)
Memory: 236.0K
CPU: 15.079s
CGroup: /system.slice/bar.service

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 26/47 DOEG601 - Virtualisation by Isolation

L1020 /usr/bin/md5sum /dev/zero
Jul 06 11:45:24 debianll systemd[1]: Started The bar service that does nothing useful.
Use the ps command to see the percentage of CPU used by this service :
root@debianll:~# ps -p 1020 -o pid,comm,cputime,S%cpu
PID COMMAND TIME %CPU
1020 md5sum 00:01:03 99.4

Now check for the presence of the cpuset and cpu controllers in the root cgroup tree, which is mounted at /sys/fs/cgroup/ :

root@debianll:~# cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma

Now enable the two controllers cpuset and cpu :

root@debianll:~# cat /sys/fs/cgroup/cgroup.subtree control
memory pids

root@debianll:~# echo "+cpu" >> /sys/fs/cgroup/cgroup.subtree control
root@debianll:~# echo "+cpuset" >> /sys/fs/cgroup/cgroup.subtree control

root@debianll:~# cat /sys/fs/cgroup/cgroup.subtree control
cpuset cpu memory pids

Create the child cgroup called FooBar :
root@debianll:~# mkdir /sys/fs/cgroup/FooBar/
root@debianll:~# ls -1 /sys/fs/cgroup/FooBar/

total ©
-r--r--r-- 1 root root 0@ Jul 6 12:18 cgroup.controllers

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

27/47

DOEG601 - Virtualisation by Isolation

-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

[cNoN o]

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

(o)) Bi(e) o) B o) Bie) B o) lie) o) Bie) B e) o) o) I e) lie) o) le) B e) lie) Be) B e) B o) le) o) B e) B o) I o) o) B e) Bife) o) B o) B e) o)

12:
12:

12

12

12

12

12

12

12

18
18

:18
12:
12:
12:

18
18
18

:18
12:
12:
12:
:18
12:
12:

18
18
18

18
18

:18
12:
12:
12:

18
18
18

:18
12:
12:
12:
12:
12:
12:

18
18
18
18
18
18

:18
12:
12:
12:

18
18
18

:18
12:
12:
12:
12:
12:

18
18
18
18
18

cgroup.events
cgroup.freeze
cgroup.max.depth
cgroup.max.descendants
cgroup.procs
cgroup.stat
cgroup.subtree control
cgroup.threads
cgroup.type

Cpu.max

Ccpu.pressure
cpuset.cpus
cpuset.cpus.effective
cpuset.cpus.partition
cpuset.mems
cpuset.mems.effective
cpu.stat

cpu.weight
cpu.weight.nice
io.pressure
memory.current
memory.events
memory.events.local
memory.high
memory . low

memory .max

memory.min
memory.numa_stat
memory.oom.group
memory.pressure
memory.stat
memory.swap.current
memory.swap.events
memory.swap.high

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

28/47

DOEG601 - Virtualisation by Isolation

-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root

0 Jul
0 Jul
0 Jul
0 Jul

6 12:18 memory.swap.max
6 12:18 pids.current

6 12:18 pids.events

6 12:18 pids.max

Enable the cpuset and cpu controllers for the FooBar cgroup:

root@debianll:~# echo "+cpu" >> /sys/fs/cgroup/FooBar/cgroup.subtree control

root@debianll:~# echo "+cpuset" >> /sys/fs/cgroup/FooBar/cgroup.subtree control

root@debianll:~# cat /sys/fs/cgroup/cgroup.subtree control /sys/fs/cgroup/FooBar/cgroup.subtree control
cpuset cpu memory pids

cpuset cpu

[]
-

Important - Note that it is not possible to enable controllers for a child
cgroup if those same controllers are not already enabled for the parent
cgroup. Also note that in the FooBar cgroup, the memory and pids

controllers are not enabled.

Now create the /sys/fs/cgroup/FooBar/tasks directory:

root@debianll:~# mkdir

root@debianll:~# 1s -1

total 0

-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root

/sys/fs/cgroup/FooBar/tasks
/sys/fs/cgroup/FooBar/tasks

Jul
Jul
Jul
Jul
Jul
Jul

[cNoNoNoNoNO)

(o)) Be) Iie) o) BNe)]

12:
12:
12:
120
12:
12:

12

20
20
20

20
20

cgroup.
cgroup.
cgroup.
cgroup.
cgroup.
cgroup.

controllers
events

freeze
max.depth
max.descendants
procs

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

29/47

DOEG601 - Virtualisation by Isolation

-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo)

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

[©2) I« o) I e) B e) lie) o) o) B e) I o) o) o) Bie) I o) o))

12:
12:

12

12

12

12

20
20

120
12:
12:
12:
120
12:
12:
12:
120
12:
12:

20
20
20

20
20
20

20
20

120
12:
12:

20
20

cgroup.stat
cgroup.subtree control
cgroup.threads
cgroup.type

Cpu.max

Ccpu.pressure
cpuset.cpus
cpuset.cpus.effective
cpuset.cpus.partition
cpuset.mems
cpuset.mems.effective
cpu.stat

cpu.weight
cpu.weight.nice
io.pressure
memory.pressure

Important - The /sys/fs/cgroup/FooBar/tasks directory defines a child

group of the FooBar cgroup that only affects the cpuset and cpu
controllers.

So that the two processes from the foo and bar services compete on the same CPU, inject the value of 1 into the
/sys/fs/cgroup/FooBar/tasks/cpuset.cpus file:

root@debianll:~# echo "1" > /sys/fs/cgroup/FooBar/tasks/cpuset.cpus

root@debianll:~# cat /sys/fs/cgroup/FooBar/tasks/cpuset.cpus

1

Set up CPU resource limit with the following command:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 30/47 DOEG601 - Virtualisation by Isolation

root@debianll:~# echo "200000 1000000" > /sys/fs/cgroup/FooBar/tasks/cpu.max

Important - In the above command, the first number is a quota in
microseconds for which processes in the cgroup can run in a given period
of time. The second number, also in microseconds, is the period. In other
words, processes in the cgroup will be limited to running 200,000 /
1,000,000 = 0.2 seconds during each second.

A 0
— J

Now add the foo and bar service processes to the FooBar cgroup:

echo "997" > /sys/fs/cgroup/FooBar/tasks/cgroup.procs

echo "1020" > /sys/fs/cgroup/FooBar/tasks/cgroup.procs
Check that the previous command has been taken into account by the system:
root@debianll:~# cat /proc/997/cgroup /proc/1020/cgroup

0::/FooBar/tasks
0::/FooBar/tasks

Lastly, use the top command to see that CPU consumption and limited to 20% on all processes in the FooBar cgroup and that this 20% is divided
equally between the two foo and bar processes :

top - 12:36:33 up 1:37, 2 users, load average: 0.01, 0.70, 1.39
Tasks: 154 total, 3 running, 151 sleeping, 0 stopped, 0 zombie

%Cpu(s): 2.5 us, 0.0 sy, 0.0 ni, 97.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 16007.9 total, 15503.7 free, 203.6 used, 300.6 buff/cache
MiB Swap: 975.0 total, 975.0 free, 0.0 used. 15536.4 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
997 root 20 0 5312 572 508 R 10.0 0.0 50:12.26 shalsum

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

31/47

DOEG601 - Virtualisation by Isolation

1020 root

20

0

5308

508 444 R 10.0 0.0 47:00.56 md5sum

2.4 - The systemctl set-property Command

As already seen, systemd organizes processes into slices, for example users are grouped into /sys/fs/cgroup/user.slice :

root@debianll:~# 1s -1

total O

-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

/sys/fs/cgroup/user.slice

[cNo)

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

(o)1) Bi(e) I o) i) Ie) Bie) lie) o) lie) Bie) B o) o) B o) B o) o) B o) B e) Ie) o) B e) o) o) o) BN e)]

16:
10:
16:
16:
16:
16:
16:
15:
16:
16:
16:
16:
16:
16:
16:
16:
16:
10:
16:
16:
16:
16:
16:
16:
10:

13
58
13
13
13
13
13
05
13
13
13
13
13
13
13
13
13
58
13
13
13
13
13
13
58

cgroup.controllers
cgroup.events
cgroup.freeze
cgroup.max.depth
cgroup.max.descendants
cgroup.procs
cgroup.stat
cgroup.subtree control
cgroup.threads
cgroup.type

Cpu.max

Ccpu.pressure
cpuset.cpus
cpuset.cpus.effective
cpuset.cpus.partition
cpuset.mems
cpuset.mems.effective
cpu.stat

cpu.weight
cpu.weight.nice
io.pressure
memory.current
memory.events
memory.events. local
memory.high

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46

32/47

DOEG601 - Virtualisation by Isolation

-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
drwxr-xr-x 8 root
drwxr-xr-x 5 root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo)

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

[©2) I« o) I e) B e) lie) o) o) B e) I o) o) o) Bie) I o) o))

10:
10:
10:
16:
10:
16:
16:
16:
16:
16:
10:
16:
16:
10:
15:
141

11

58
58
58
13
58
13
13
13
13
13
58
13
13
58
22

memory . Low

memory .max
memory.min
memory.numa_stat
memory.oom.group
memory.pressure
memory.stat
memory.swap.current
memory.swap.events
memory.swap.high
memory.swap.max
pids.current
pids.events
pids.max
user-1000.slice
user-113.slice

and the processes of a specific user in a slice named user-UID.slice :

root@debianll:~# 1ls -1 /sys/fs/cgroup/user.slice/user-1000.slice

total 0

-r--r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-r--r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root
root
root
root
root

[cloNoNoNoNoNoNoNoNoNoNoNOo)

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

(o)) o) I o) o) o) lNe) lie) Be) I e) o) B o) o))

16:14 cgroup.controllers
11:30 cgroup.events

16:14 cgroup.freeze

16:14 cgroup.max.depth

16:14 cgroup.max.descendants
16:14 cgroup.procs

16:14 cgroup.stat

15:05 cgroup.subtree control
16:14 cgroup.threads

16:14 cgroup.type

16:14 cpu.pressure

11:30 cpu.stat

16:14 io.pressure

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 33/47 DOEG601 - Virtualisation by Isolation
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.current
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.events
-r--r--r-- 1 root root O Jul 6 16:14 memory.events.local
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.high
-rw-r--r-- 1 root root O Jul 6 11:30 memory.low
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.max
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.min
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.oom.group
-rw-r--r-- 1 root root O Jul 6 16:14 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.stat
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.swap.current
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.swap.events
-rw-r--r-- 1 root root 0 Jul 6 16:14 memory.swap.high
-rw-r--r-- 1 root root O Jul 6 11:30 memory.swap.max
-r--r--r-- 1 root root O Jul 6 16:14 pids.current
-r--r--r-- 1 root root 0 Jul 6 16:14 pids.events
-rw-r--r-- 1 root root 0 Jul 6 11:30 pids.max

drwxr-xr-x 2 root root 0 Jul 6 14:56 session-13.scope
drwxr-xr-x 2 root root 0 Jul 6 15:22 session-15.scope
drwxr-xr-x 2 root root © Jul 6 11:30 session-4.scope
drwxr-xr-x 2 root root O Jul 6 12:12 session-6.scope
drwxr-xr-x 4 trainee trainee 0 Jul 6 11:30 user@l@00.service
drwxr-xr-x 2 root root 0 Jul 6 11:41 user-runtime-dir@l000.service

Because of this, it is possible to use systemd to set resource limits using the systemd set-property command:

CPU

root@debianll:~# systemctl set-property user-1000.slice CPUQuota=40%
root@debianll:~# cat /sys/fs/cgroup/user.slice/user-1000.slice/cpu.max

40000 100000

www.ittraining.team - https://www.ittraining.team/

34/47 DOEG601 - Virtualisation by Isolation

2026/02/04 12:46

Memory

root@debianll:~# systemctl set-property user-1000.slice MemoryMax=1G
root@debianll:~# cat /sys/fs/cgroup/user.slice/user-1000.slice/memory.max

1073741824

| Important - Note that using MemoryMax sets up a hard limit. It is also
% possible to set up a soft limit by using MemoryHigh.

Introduction to Linux Containers

LAB #3 - Working with LXC

3.1 - Installation

The essential tools for using Linux Containers under Debian are included in the Ixc package:

root@debianll:~# apt install lxc

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done

The following packages were automatically installed and are no longer required:
libopengl® linux-headers-5.10.0-15-amd64 linux-headers-5.10.0-15-common

Use 'apt autoremove' to remove them.

The following additional packages will be installed:
arch-test bridge-utils busybox-static cloud-image-utils debootstrap distro-info

fakechroot genisoimage libaiol libdistro-info-perl libfakechroot liblxcl

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 35/47

DOEG601 - Virtualisation by Isolation

libpam-cgfs 1lxc-templates lxcfs mmdebstrap gemu-utils rsync uidmap uuid-runtime

Suggested packages:

ubuntu-archive-keyring squid-deb-proxy-client shunit2 wodim cdrkit-doc btrfs-progs
lvm2 python3-1xc gemu-user-static apt-transport-tor binfmt-support perl-doc proot
gemu-user squashfs-tools-ng gemu-block-extra

The following packages will be REMOVED:
busybox
The following NEW packages will be installed:

arch-test bridge-utils busybox-static cloud-image-utils debootstrap distro-info
fakechroot genisoimage libaiol libdistro-info-perl libfakechroot liblxcl
libpam-cgfs 1xc lxc-templates lxcfs mmdebstrap gemu-utils rsync uidmap

uuid-runtime

0 upgraded, 21 newly installed, 1 to remove and 5 not upgraded.

Need to get 6,127 kB of archives.

After this operation, 33.2 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

Installing this package will create the /usr/share/lxc/config directory containing the template configuration files and the /usr/share/lxc/templates

directory containing template files for creating containers :

root@debianll:~# 1s /usr/share/1lxc

config hooks 1xc.functions 1xc-patch.py selinux

root@debianll:~# ls /usr/share/1lxc/config
alpine.common.conf gentoo.moresecure.conf
alpine.userns.conf gentoo.userns.conf
archlinux.common.conf nesting.conf
archlinux.userns.conf oci.common.conf

centos.common.conf opensuse.common.conf
centos.userns.conf opensuse.userns.conf
common . conf openwrt.common.conf
common.conf.d oracle.common.conf
common . seccomp oracle.userns.conf
debian.common.conf plamo.common.conf

templates

slackware.userns.conf

sparcl
sparcl
ubuntu
ubuntu
ubuntu

ubuntu.
ubuntu.
ubuntu.
userns.

inux.common.conf
inux.userns.conf
-cloud.common.conf
-cloud. lucid. conf
-cloud.userns.conf
common.conf
lucid.conf
userns.conf

conf

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 36/47 DOEG601 - Virtualisation by Isolation
debian.userns.conf plamo.userns.conf voidlinux.common.conf

fedora.common. conf sabayon.common.conf voidlinux.userns.conf
fedora.userns.conf sabayon.userns.conf

gentoo.common.conf slackware.common.conf

root@debianll:~# ls /usr/share/lxc/templates

lxc-alpine lxc-cirros lxc-gentoo lxc-oracle lxc-sparclinux
Ixc-altlinux lxc-debian lxc-local lxc-plamo lxc-sshd
lxc-archlinux 1xc-download lxc-oci xc-pld 1xc-ubuntu
1xc-busybox 1xc-fedora 1xc-openmandriva 1xc-sabayon 1xc-ubuntu-cloud
1xc-centos 1xc-fedora-legacy 1xc-opensuse 1xc-slackware 1xc-voidlinux

3.2 - Creating a Simple Container

Create a simple container using the following command:

root@debianll:~# lxc-create -n lxc-bb -t busybox

Important - Note the use of the -n option which allows a name to be
associated with the container as well as the -t option which indicates the
template to be used. Note also that the template is referenced by the name
of the file in the /usr/share/Ixc/templates directory without its Ixc- prefix.

The backingstore (storage method) used by default is dir which implies that the rootfs of the container is located on disk in the /var/lib/Ixc/

directory :

root@debianll:~# ls /var/lib/1lxc/

1xc-bb

root@debianll:~# ls /var/lib/1lxc/1lxc-bb/

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 37/47 DOEG601 - Virtualisation by Isolation

config rootfs

root@debianll:~# ls /var/lib/1xc/1xc-bb/rootfs
bin dev etc home 1ib 1ib64 mnt proc root sbin selinux sys tmp wusr var

Note that LXC can also use backingstores of the following types:

e ZFS,
Brtfs,
e LVM,
e Loop,
rbd (CephFS).

3.3 - Starting a Simple Container

To start the container, the Ixc-start command should be used:

root@debian9:~# 1lxc-start --name lxc-bb
3.4 - Attaching to a Simple Container

To attach to the started container, the Ixc-attach command should be used:
root@debianll:~# 1lxc-start --name lxc-bb
root@debianll:~# lxc-attach --name lxc-bb

lxc-attach: 1xc-bb: terminal.c: lxc terminal create native: 924 No space left on device - Failed to open terminal
multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 38/47 DOEG601 - Virtualisation by Isolation

Enter 'help' for a list of built-in commands.

~ # which passwd
/bin/passwd
~ #

| Important - Note the absence of the passwd command in the container,
: which explains the error when creating it.

To exit the container, use the exit command or the <Ctrl+d> key combination:

~ # [Ctrl+d]
~ # root@debianll:~#

Exiting the container does not stop it, as can be seen by using the Ixc-Is command:
~ # root@debianll:~# [Enter]

root@debianll:~# lxc-1ls --running
lxc-bb

root@debianll:~# 1lxc-1ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
1xc-bb RUNNING 0 - 10.0.3.48 - false - - -

3.5 - Basic LXC commands

The Ixc-console Command

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 39/47 DOEG601 - Virtualisation by Isolation

To launch a console attached to a TTY in the container, the Ixc-console command should be used:
root@debianll:~# 1xc-console --name lxc-bb

Connected to tty 1
Type <Ctrl+a g> to exit the console, <Ctrl+a Ctrl+a> to enter Ctrl+a itself

lxc-bb login:
To exit the console, use the key combination <Ctrl+a> <q> :

lxc-bb login: [Ctrl+a] [q] root@debianll:~#

The Ixc-stop Command

To stop the container, use the Ixc-stop command :

root@debianll:~# 1lxc-1ls --running
1xc-bb

root@debianll:~# lxc-stop --name lxc-bb

root@debianll:~# 1lxc-1ls --running

l

root@debianll:~#

The Ixc-execute command

The Ixc-execute command starts a container (which must be created but stopped), executes the command passed as an argument using the -
characters and then stops the container :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 40/47

DOEG601 - Virtualisation by Isolation

root@debianll:~# 1xc-execute -n 1lxc-bb -- uname -a
Linux 1xc-bb 5.10.0-24-amd64 #1 SMP Debian 5.10.179-5 (2023-08-08) x86 64 GNU/Linux

root@debianll:~# 1lxc-1ls --running

root@debianll:~#

The Ixc-info command

This command gives information about a container :
root@debianll:~# 1xc-info -n lxc-bb

Name: 1xc-bb
State: STOPPED

The Ixc-freeze Command

The Ixc-freeze command pauses all processes in the container :

root@debianll:~# 1xc-start -n 1lxc-bb

root@debianll:~# 1lxc-1ls --running
1xc-bb

root@debianll:~# 1lxc-info -n lxc-bb

Name: 1xc-bb
State: RUNNING
PID: 28581

IP: 10.0.3.65
Link: vethcJ1lTVk
TX bytes: 1.22 KiB

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 41/47 DOE601 - Virtualisation by Isolation

RX bytes: 3.88 KiB
Total bytes: 5.10 KiB

root@debianll:~# 1lxc-freeze -n lxc-bb

root@debianll:~# 1lxc-info -n 1xc-bb

Name: 1xc-bb

State: FROZEN
PID: 28581

IP: 10.0.3.65
Link: vethcJ1lTVk
TX bytes: 1.22 KiB
RX bytes: 4.06 KiB

Total bytes: 5.28 KiB

root@debianll:~#

The Ixc-unfreeze Command

The Ixc-unfreeze command cancels the effect of a previous Ixc-freeze command :
root@debianll:~# lxc-unfreeze -n lxc-bb

root@debianll:~# 1xc-info -n lxc-bb

Name: 1xc-bb

State: RUNNING
PID: 28581

IP: 10.0.3.65
Link: vethcJ1lTVk
TX bytes: 1.22 KiB
RX bytes: 4.47 KiB

Total bytes: 5.69 KiB

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 42/47

DOEG601 - Virtualisation by Isolation

Other commands

The other commands you need to know about are :

Command Description

Ixc-destroy Allows you to completely destroy a container

Ixc-autostart |Allows you to reboot, kill or stop containers whose flag Ixc.start.auto is set in the /var/lib/<container_name>/config file

Ixc-cgroup Enables hot manipulation of CGroups for a given container

Ixc-device Enables hot addition of devices to a container

Ixc-usernsexec|Allows you to execute commands as root in a non-privileged container

Ixc-wait Allows you to wait until a container has reached a certain state before continuing

3.6 - Creating an Ephemeral Container

By default, LXC containers are permanent. It is possible to create an ephemeral container, i.e. one in which all data is destroyed when the container is

shut down, using the Ixc-copy command and the -epheremal or -e option to this command.

The Ixc-copy command

Note that the original container must be stopped when using the Ixc-copy command:
root@debianll:~# 1lxc-ls -f --running

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
1xc-bb RUNNING 0O - 10.0.3.65 - false
root@debianll:~# 1lxc-copy -e -N 1lxc-bb-eph -n 1lxc-bb
root@debianll:~# lxc-1ls -f --running

root@debianll:~#

So stop the Ixc-bb container and then create the copy:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 43/47 DOE601 - Virtualisation by Isolation

root@debianll:~# lxc-stop -n lxc-bb
root@debianll:~# lxc-ls -f --running

root@debianll:~# 1lxc-copy -e -N 1lxc-bb-eph -n 1lxc-bb
Created lxc-bb-eph as clone of 1xc-bb

root@debianll:~# lxc-ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
1xc-bb-eph RUNNING 0O - 10.0.3.21 - false

Attach to the Ixc-bb-eph container:

root@debianll:~# 1lxc-ls -f --running

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED

1xc-bb-eph RUNNING 0 - 10.0.3.21 - false

root@debianll:~# lxc-attach 1xc-bb-eph

lxc-attach: 1xc-bb-eph: terminal.c: 1xc terminal create native: 924 No space left on device - Failed to open

terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ #

Create a control file called testdata :

~ # 1s -1
total 0

~ # pwd
/root

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 44/47 DOEG601 - Virtualisation by Isolation

~ # echo "test" > testdata

~ # 1s -1

total 4

-rwW-r--r-- 1 root root 5 Aug 20 09:10 testdata
~ #

Disconnect from the container and then re-attach:

~ # exit

root@debianll:~# 1lxc-attach -n 1xc-bb-eph

lxc-attach: lxc-bb-eph: terminal.c: 1xc_terminal create native: 924 No space left on device - Failed to open
terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ # 1ls -1
total 4
-rw-r--r-- 1 root root 5 Aug 20 09:10 testdata
~ #
! | Important - Note that the testdata file is still present.

Log out again and shut down the container:

~ # exit

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 45/47 DOE601 - Virtualisation by Isolation

root@debianll:~# lxc-stop -n lxc-bb-eph

root@debianll:~# 1xc-1s
1xc-bb

root@debianll:~# lxc-start -n lxc-bb-eph
lxc-start: lxc-bb-eph: tools/lxc start.c: main: 268 No container config specified

root@debianll:~#

Important - Note that the Ixc-bb-eph container has been destroyed.

2 [
_—

3.7 - Saving Containers

An LXC container can be backed up in three different ways:

¢ use the tar or cpio command to create an archive of the rootfs directory and config file associated with the container,
¢ use the Ixc-copy command without the -e option,
¢ use the Ixc-snapshot command.

The Ixc-snapshot command

This command is used to manage container snapshots. Note that containers must be stopped before taking a snapshot:

root@debianll:~# lxc-ls -f --running

root@debianll:~# lxc-snapshot -n lxc-bb

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 46/47 DOE601 - Virtualisation by Isolation

root@debianll:~#
Snapshots are stored in the snaps subdirectory of the /var/lib/Ixc/<container_name>/ directory. The first one is called snapO :

root@debianll:~# ls -1 /var/lib/1lxc/1xc-bb

total 12

-rw-r----- 1 root root 1276 Aug 20 10:01 config
drwxr-xr-x 17 root root 4096 Aug 20 10:38 rootfs
drwxr-xr-x 3 root root 4096 Aug 20 12:35 snaps

root@debianll:~# ls -1 /var/lib/1xc/1xc-bb/snaps/
total 4
drwxrwx--- 3 root root 4096 Aug 20 12:35 snap0

root@debianll:~# ls -1 /var/lib/1xc/1xc-bb/snaps/snap0/
total 12
-rw-r----- 1 root root 1284 Aug 20 12:35 config

drwxr-xr-x 17 root root 4096 Aug 20 10:38 rootfs
-rw-r--r-- 1 root root 19 Aug 20 12:35 ts

The snapshot creation timestamp is stored in the ts file:

root@debianll:~# cat /var/lib/1xc/1xc-bb/snaps/snap0@/ts
2023:08:20 12:35:35root@debianll:~#

Comparing the size of the rootfs of the original container as well as its snapshot, we can see that both are identical:

root@debianll:~# du -sh /var/lib/lxc/1xc-bb/rootfs/
2.1M /var/lib/lxc/lxc-bb/rootfs/

root@debianll:~# du -sh /var/lib/1lxc/1lxc-bb/snaps/snap0/rootfs/
2.1M /var/lib/1xc/1xc-bb/snaps/snap@/rootfs/

To restore a container identical to the original, use the Ixc-snapshot command again:

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:46 47/47 DOE601 - Virtualisation by Isolation

root@debianll:~# 1lxc-snapshot -r snap0® -n lxc-bb -N lxc-bb-snap0®

root@debianll:~# 1xc-1s
1xc-bb 1xc-bb-snap0

root@debianll:~# lxc-start -n 1lxc-bb-snap0
root@debianll:~# lxc-attach -n lxc-bb-snap0

lxc-attach: 1xc-bb-snap0: terminal.c: lxc terminal create native: 924 No space left on device - Failed to open
terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.
~ # exit

root@debianll:~#

Copyright © 2024 Hugh Norris.

From:
https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre00

Last update: 2024/12/17 13:46

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre00

	DOE601 - Virtualisation by Isolation
	Contents
	Introduction to Virtualisation using Isolation
	History

	Namespaces presentation
	CGroups presentation
	LAB #1 - cgroups v1
	1.1 - Preparation
	1.2 - Overview
	1.3 - Memory limiting
	1.4 - The cgcreate command
	1.5 - The cgexec Command
	1.6 - The cgdelete Command
	1.7 - The /etc/cgconfig.conf file
	1.8 - The cgconfigparser command

	LAB #2 - cgroups v2
	2.1 - Preparation
	2.2 - Presentation
	2.3 - Limiting CPU Resources
	2.4 - The systemctl set-property Command
	CPU
	Memory

	Introduction to Linux Containers
	LAB #3 - Working with LXC
	3.1 - Installation
	3.2 - Creating a Simple Container
	3.3 - Starting a Simple Container
	3.4 - Attaching to a Simple Container
	3.5 - Basic LXC commands
	The lxc-console Command
	The lxc-stop Command
	The lxc-execute command
	The lxc-info command
	The lxc-freeze Command
	The lxc-unfreeze Command
	Other commands

	3.6 - Creating an Ephemeral Container
	The lxc-copy command

	3.7 - Saving Containers
	The lxc-snapshot command

