
2026/02/04 09:26 1/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

Version : 2023.01

Dernière mise-à-jour : 2023/12/17 05:39

DOF603 - Gérer et Stocker les Images Docker

Contenu du Module

DOF603 - Gérer et Stocker les Images Docker
Contenu du Module
LAB #1 - Re-créer une image officielle docker

1.1 - Utilisation d'un Dockerfile
1.2 - FROM
1.3 - RUN
1.4 - ENV
1.5 - VOLUME
1.6 - COPY
1.7 - ENTRYPOINT
1.8 - EXPOSE
1.9 - CMD
1.10 - Autres Commandes

LAB #2 - Créer un Dockerfile
2.1 - Création et test du script
2.2 - Bonnes Pratiques liées au Cache

LAB #3 - Installer un Registre Privé
3.1 - Créer un Registre local,
3.2 - Créer un Serveur de Registre Dédié

Configurer le Client

2026/02/04 09:26 2/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

LAB #1 - Re-créer une image officielle docker

1.1 - Utilisation d'un Dockerfile

Bien que la compilation des images soient assuré par Docker Hub, il est tout à fait possible de compiler une image “officielle” à partir d'un Dockerfile :

root@debian11:~# mkdir mongodb
root@debian11:~# cd mongodb/
root@debian11:~/mongodb# touch Dockerfile docker-entrypoint.sh

Le Docker file contient les instructions nécessaires pour la contruction de l'image :

root@debian11:~/mongodb# vi Dockerfile
root@debian11:~/mongodb# cat Dockerfile
FROM ubuntu:bionic

add our user and group first to make sure their IDs get assigned consistently, regardless of whatever
dependencies get added
RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

RUN set -eux; \
 apt-get update; \
 apt-get install -y --no-install-recommends \
 ca-certificates \
 jq \
 numactl \
 ; \
 if ! command -v ps > /dev/null; then \
 apt-get install -y --no-install-recommends procps; \
 fi; \
 rm -rf /var/lib/apt/lists/*

2026/02/04 09:26 3/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

grab gosu for easy step-down from root (https://github.com/tianon/gosu/releases)
ENV GOSU_VERSION 1.11
grab "js-yaml" for parsing mongod's YAML config files (https://github.com/nodeca/js-yaml/releases)
ENV JSYAML_VERSION 3.13.0

RUN set -ex; \
 \
 apt-get update; \
 apt-get install -y --no-install-recommends \
 wget \
 ; \
 if ! command -v gpg > /dev/null; then \
 apt-get install -y --no-install-recommends gnupg dirmngr; \
 fi; \
 rm -rf /var/lib/apt/lists/*; \
 \
 dpkgArch="$(dpkg --print-architecture | awk -F- '{ print $NF }')"; \
 wget -O /usr/local/bin/gosu
"https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-$dpkgArch"; \
 wget -O /usr/local/bin/gosu.asc
"https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-$dpkgArch.asc"; \
 export GNUPGHOME="$(mktemp -d)"; \
 gpg --batch --keyserver pgp.mit.edu --recv-keys B42F6819007F00F88E364FD4036A9C25BF357DD4; \
 # gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu; \
 command -v gpgconf && gpgconf --kill all || :; \
 rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc; \
 chmod +x /usr/local/bin/gosu; \
 gosu --version; \
 gosu nobody true; \
 \
 wget -O /js-yaml.js "https://github.com/nodeca/js-yaml/raw/${JSYAML_VERSION}/dist/js-yaml.js"; \
TODO some sort of download verification here
 \
 apt-get purge -y --auto-remove wget

2026/02/04 09:26 4/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

RUN mkdir /docker-entrypoint-initdb.d

ENV GPG_KEYS E162F504A20CDF15827F718D4B7C549A058F8B6B
RUN set -ex; \
 export GNUPGHOME="$(mktemp -d)"; \
 for key in $GPG_KEYS; do \
 gpg --batch --keyserver pgp.mit.edu --recv-keys "$key"; \
 done; \
 gpg --batch --export $GPG_KEYS > /etc/apt/trusted.gpg.d/mongodb.gpg; \
 command -v gpgconf && gpgconf --kill all || :; \
 rm -r "$GNUPGHOME"; \
 apt-key list

Allow build-time overrides (eg. to build image with MongoDB Enterprise version)
Options for MONGO_PACKAGE: mongodb-org OR mongodb-enterprise
Options for MONGO_REPO: repo.mongodb.org OR repo.mongodb.com
Example: docker build --build-arg MONGO_PACKAGE=mongodb-enterprise --build-arg MONGO_REPO=repo.mongodb.com .
ARG MONGO_PACKAGE=mongodb-org-unstable
ARG MONGO_REPO=repo.mongodb.org
ENV MONGO_PACKAGE=${MONGO_PACKAGE} MONGO_REPO=${MONGO_REPO}

ENV MONGO_MAJOR 4.1
ENV MONGO_VERSION 4.1.9
bashbrew-architectures:amd64 arm64v8 s390x
RUN echo "deb http://$MONGO_REPO/apt/ubuntu bionic/${MONGO_PACKAGE%-unstable}/$MONGO_MAJOR multiverse" | tee
"/etc/apt/sources.list.d/${MONGO_PACKAGE%-unstable}.list"

RUN set -x \
 && apt-get update \
 && apt-get install -y \
 ${MONGO_PACKAGE}=$MONGO_VERSION \
 ${MONGO_PACKAGE}-server=$MONGO_VERSION \
 ${MONGO_PACKAGE}-shell=$MONGO_VERSION \
 ${MONGO_PACKAGE}-mongos=$MONGO_VERSION \

2026/02/04 09:26 5/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 ${MONGO_PACKAGE}-tools=$MONGO_VERSION \
 && rm -rf /var/lib/apt/lists/* \
 && rm -rf /var/lib/mongodb \
 && mv /etc/mongod.conf /etc/mongod.conf.orig

RUN mkdir -p /data/db /data/configdb \
 && chown -R mongodb:mongodb /data/db /data/configdb
VOLUME /data/db /data/configdb

COPY docker-entrypoint.sh /usr/local/bin/
ENTRYPOINT ["docker-entrypoint.sh"]

EXPOSE 27017
CMD ["mongod"]

Le fichier docker-entrypoint.sh sert à lancer le serveur mongodb dans le conteneur :

root@debian11:~/mongodb# vi docker-entrypoint.sh
root@debian11:~/mongodb# cat docker-entrypoint.sh
#!/bin/bash
set -Eeuo pipefail

if ["${1:0:1}" = '-']; then
 set -- mongod "$@"
fi

originalArgOne="$1"

allow the container to be started with `--user`
all mongo* commands should be dropped to the correct user
if [["$originalArgOne" == mongo*]] && ["$(id -u)" = '0']; then
 if ["$originalArgOne" = 'mongod']; then
 find /data/configdb /data/db \! -user mongodb -exec chown mongodb '{}' +
 fi

2026/02/04 09:26 6/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 # make sure we can write to stdout and stderr as "mongodb"
 # (for our "initdb" code later; see "--logpath" below)
 chown --dereference mongodb "/proc/$$/fd/1" "/proc/$$/fd/2" || :
 # ignore errors thanks to https://github.com/docker-library/mongo/issues/149

 exec gosu mongodb "$BASH_SOURCE" "$@"
fi

you should use numactl to start your mongod instances, including the config servers, mongos instances, and any
clients.
https://docs.mongodb.com/manual/administration/production-notes/#configuring-numa-on-linux
if [["$originalArgOne" == mongo*]]; then
 numa='numactl --interleave=all'
 if $numa true &> /dev/null; then
 set -- $numa "$@"
 fi
fi

usage: file_env VAR [DEFAULT]
ie: file_env 'XYZ_DB_PASSWORD' 'example'
(will allow for "$XYZ_DB_PASSWORD_FILE" to fill in the value of
"$XYZ_DB_PASSWORD" from a file, especially for Docker's secrets feature)
file_env() {
 local var="$1"
 local fileVar="${var}_FILE"
 local def="${2:-}"
 if ["${!var:-}"] && ["${!fileVar:-}"]; then
 echo >&2 "error: both $var and $fileVar are set (but are exclusive)"
 exit 1
 fi
 local val="$def"
 if ["${!var:-}"]; then
 val="${!var}"
 elif ["${!fileVar:-}"]; then

2026/02/04 09:26 7/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 val="$(< "${!fileVar}")"
 fi
 export "$var"="$val"
 unset "$fileVar"
}

see https://github.com/docker-library/mongo/issues/147 (mongod is picky about duplicated arguments)
_mongod_hack_have_arg() {
 local checkArg="$1"; shift
 local arg
 for arg; do
 case "$arg" in
 "$checkArg"|"$checkArg"=*)
 return 0
 ;;
 esac
 done
 return 1
}
_mongod_hack_get_arg_val '--some-arg' "$@"
_mongod_hack_get_arg_val() {
 local checkArg="$1"; shift
 while ["$#" -gt 0]; do
 local arg="$1"; shift
 case "$arg" in
 "$checkArg")
 echo "$1"
 return 0
 ;;
 "$checkArg"=*)
 echo "${arg#$checkArg=}"
 return 0
 ;;
 esac

2026/02/04 09:26 8/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 done
 return 1
}
declare -a mongodHackedArgs
_mongod_hack_ensure_arg '--some-arg' "$@"
set -- "${mongodHackedArgs[@]}"
_mongod_hack_ensure_arg() {
 local ensureArg="$1"; shift
 mongodHackedArgs=("$@")
 if ! _mongod_hack_have_arg "$ensureArg" "$@"; then
 mongodHackedArgs+=("$ensureArg")
 fi
}
_mongod_hack_ensure_no_arg '--some-unwanted-arg' "$@"
set -- "${mongodHackedArgs[@]}"
_mongod_hack_ensure_no_arg() {
 local ensureNoArg="$1"; shift
 mongodHackedArgs=()
 while ["$#" -gt 0]; do
 local arg="$1"; shift
 if ["$arg" = "$ensureNoArg"]; then
 continue
 fi
 mongodHackedArgs+=("$arg")
 done
}
_mongod_hack_ensure_no_arg '--some-unwanted-arg' "$@"
set -- "${mongodHackedArgs[@]}"
_mongod_hack_ensure_no_arg_val() {
 local ensureNoArg="$1"; shift
 mongodHackedArgs=()
 while ["$#" -gt 0]; do
 local arg="$1"; shift
 case "$arg" in

2026/02/04 09:26 9/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 "$ensureNoArg")
 shift # also skip the value
 continue
 ;;
 "$ensureNoArg"=*)
 # value is already included
 continue
 ;;
 esac
 mongodHackedArgs+=("$arg")
 done
}
_mongod_hack_ensure_arg_val '--some-arg' 'some-val' "$@"
set -- "${mongodHackedArgs[@]}"
_mongod_hack_ensure_arg_val() {
 local ensureArg="$1"; shift
 local ensureVal="$1"; shift
 _mongod_hack_ensure_no_arg_val "$ensureArg" "$@"
 mongodHackedArgs+=("$ensureArg" "$ensureVal")
}

_js_escape 'some "string" value'
_js_escape() {
 jq --null-input --arg 'str' "$1" '$str'
}

jsonConfigFile="${TMPDIR:-/tmp}/docker-entrypoint-config.json"
tempConfigFile="${TMPDIR:-/tmp}/docker-entrypoint-temp-config.json"
_parse_config() {
 if [-s "$tempConfigFile"]; then
 return 0
 fi

 local configPath

2026/02/04 09:26 10/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 if configPath="$(_mongod_hack_get_arg_val --config "$@")"; then
 # if --config is specified, parse it into a JSON file so we can remove a few problematic keys
(especially SSL-related keys)
 # see https://docs.mongodb.com/manual/reference/configuration-options/
 mongo --norc --nodb --quiet --eval "load('/js-yaml.js'); printjson(jsyaml.load(cat($(_js_escape
"$configPath"))))" > "$jsonConfigFile"
 jq 'del(.systemLog, .processManagement, .net, .security)' "$jsonConfigFile" > "$tempConfigFile"
 return 0
 fi

 return 1
}
dbPath=
_dbPath() {
 if [-n "$dbPath"]; then
 echo "$dbPath"
 return
 fi

 if ! dbPath="$(_mongod_hack_get_arg_val --dbpath "$@")"; then
 if _parse_config "$@"; then
 dbPath="$(jq -r '.storage.dbPath // empty' "$jsonConfigFile")"
 fi
 fi

 if [-z "$dbPath"]; then
 if _mongod_hack_have_arg --configsvr "$@" || {
 _parse_config "$@" \
 && clusterRole="$(jq -r '.sharding.clusterRole // empty' "$jsonConfigFile")" \
 && ["$clusterRole" = 'configsvr']
 }; then
 # if running as config server, then the default dbpath is /data/configdb
 # https://docs.mongodb.com/manual/reference/program/mongod/#cmdoption-mongod-configsvr
 dbPath=/data/configdb

2026/02/04 09:26 11/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 fi
 fi

 : "${dbPath:=/data/db}"

 echo "$dbPath"
}

if ["$originalArgOne" = 'mongod']; then
 file_env 'MONGO_INITDB_ROOT_USERNAME'
 file_env 'MONGO_INITDB_ROOT_PASSWORD'
 # pre-check a few factors to see if it's even worth bothering with initdb
 shouldPerformInitdb=
 if ["$MONGO_INITDB_ROOT_USERNAME"] && ["$MONGO_INITDB_ROOT_PASSWORD"]; then
 # if we have a username/password, let's set "--auth"
 _mongod_hack_ensure_arg '--auth' "$@"
 set -- "${mongodHackedArgs[@]}"
 shouldPerformInitdb='true'
 elif ["$MONGO_INITDB_ROOT_USERNAME"] || ["$MONGO_INITDB_ROOT_PASSWORD"]; then
 cat >&2 <<-'EOF'
 error: missing 'MONGO_INITDB_ROOT_USERNAME' or 'MONGO_INITDB_ROOT_PASSWORD'
 both must be specified for a user to be created
 EOF
 exit 1
 fi

 if [-z "$shouldPerformInitdb"]; then
 # if we've got any /docker-entrypoint-initdb.d/* files to parse later, we should initdb
 for f in /docker-entrypoint-initdb.d/*; do
 case "$f" in
 .sh|.js) # this should match the set of files we check for below
 shouldPerformInitdb="$f"
 break
 ;;

2026/02/04 09:26 12/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 esac
 done
 fi

 # check for a few known paths (to determine whether we've already initialized and should thus skip our
initdb scripts)
 if [-n "$shouldPerformInitdb"]; then
 dbPath="$(_dbPath "$@")"
 for path in \
 "$dbPath/WiredTiger" \
 "$dbPath/journal" \
 "$dbPath/local.0" \
 "$dbPath/storage.bson" \
 ; do
 if [-e "$path"]; then
 shouldPerformInitdb=
 break
 fi
 done
 fi

 if [-n "$shouldPerformInitdb"]; then
 mongodHackedArgs=("$@")
 if _parse_config "$@"; then
 _mongod_hack_ensure_arg_val --config "$tempConfigFile" "${mongodHackedArgs[@]}"
 fi
 _mongod_hack_ensure_arg_val --bind_ip 127.0.0.1 "${mongodHackedArgs[@]}"
 _mongod_hack_ensure_arg_val --port 27017 "${mongodHackedArgs[@]}"
 _mongod_hack_ensure_no_arg --bind_ip_all "${mongodHackedArgs[@]}"

 # remove "--auth" and "--replSet" for our initial startup (see
https://docs.mongodb.com/manual/tutorial/enable-authentication/#start-mongodb-without-access-control)
 # https://github.com/docker-library/mongo/issues/211
 _mongod_hack_ensure_no_arg --auth "${mongodHackedArgs[@]}"

2026/02/04 09:26 13/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 if ["$MONGO_INITDB_ROOT_USERNAME"] && ["$MONGO_INITDB_ROOT_PASSWORD"]; then
 _mongod_hack_ensure_no_arg_val --replSet "${mongodHackedArgs[@]}"
 fi

 sslMode="$(_mongod_hack_have_arg '--sslPEMKeyFile' "$@" && echo 'allowSSL' || echo 'disabled')" #
"BadValue: need sslPEMKeyFile when SSL is enabled" vs "BadValue: need to enable SSL via the sslMode flag when
using SSL configuration parameters"
 _mongod_hack_ensure_arg_val --sslMode "$sslMode" "${mongodHackedArgs[@]}"

 if stat "/proc/$$/fd/1" > /dev/null && [-w "/proc/$$/fd/1"]; then
 #
https://github.com/mongodb/mongo/blob/38c0eb538d0fd390c6cb9ce9ae9894153f6e8ef5/src/mongo/db/initialize_server_glo
bal_state.cpp#L237-L251
 # https://github.com/docker-library/mongo/issues/164#issuecomment-293965668
 _mongod_hack_ensure_arg_val --logpath "/proc/$$/fd/1" "${mongodHackedArgs[@]}"
 else
 initdbLogPath="$(_dbPath "$@")/docker-initdb.log"
 echo >&2 "warning: initdb logs cannot write to '/proc/$$/fd/1', so they are in
'$initdbLogPath' instead"
 _mongod_hack_ensure_arg_val --logpath "$initdbLogPath" "${mongodHackedArgs[@]}"
 fi
 _mongod_hack_ensure_arg --logappend "${mongodHackedArgs[@]}"

 pidfile="${TMPDIR:-/tmp}/docker-entrypoint-temp-mongod.pid"
 rm -f "$pidfile"
 _mongod_hack_ensure_arg_val --pidfilepath "$pidfile" "${mongodHackedArgs[@]}"

 "${mongodHackedArgs[@]}" --fork

 mongo=(mongo --host 127.0.0.1 --port 27017 --quiet)

 # check to see that our "mongod" actually did start up (catches "--help", "--version", MongoDB
3.2 being silly, slow prealloc, etc)
 # https://jira.mongodb.org/browse/SERVER-16292

2026/02/04 09:26 14/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 tries=30
 while true; do
 if ! { [-s "$pidfile"] && ps "$(< "$pidfile")" &> /dev/null; }; then
 # bail ASAP if "mongod" isn't even running
 echo >&2
 echo >&2 "error: $originalArgOne does not appear to have stayed running --
perhaps it had an error?"
 echo >&2
 exit 1
 fi
 if "${mongo[@]}" 'admin' --eval 'quit(0)' &> /dev/null; then
 # success!
 break
 fi
 ((tries--))
 if ["$tries" -le 0]; then
 echo >&2
 echo >&2 "error: $originalArgOne does not appear to have accepted connections
quickly enough -- perhaps it had an error?"
 echo >&2
 exit 1
 fi
 sleep 1
 done

 if ["$MONGO_INITDB_ROOT_USERNAME"] && ["$MONGO_INITDB_ROOT_PASSWORD"]; then
 rootAuthDatabase='admin'

 "${mongo[@]}" "$rootAuthDatabase" <<-EOJS
 db.createUser({
 user: $(_js_escape "$MONGO_INITDB_ROOT_USERNAME"),
 pwd: $(_js_escape "$MONGO_INITDB_ROOT_PASSWORD"),
 roles: [{ role: 'root', db: $(_js_escape "$rootAuthDatabase") }]
 })

2026/02/04 09:26 15/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 EOJS
 fi

 export MONGO_INITDB_DATABASE="${MONGO_INITDB_DATABASE:-test}"

 echo
 for f in /docker-entrypoint-initdb.d/*; do
 case "$f" in
 *.sh) echo "$0: running $f"; . "$f" ;;
 *.js) echo "$0: running $f"; "${mongo[@]}" "$MONGO_INITDB_DATABASE" "$f"; echo ;;
 *) echo "$0: ignoring $f" ;;
 esac
 echo
 done

 "${mongodHackedArgs[@]}" --shutdown
 rm -f "$pidfile"

 echo
 echo 'MongoDB init process complete; ready for start up.'
 echo
 fi

 # MongoDB 3.6+ defaults to localhost-only binding
 if mongod --help 2>&1 | grep -q -- --bind_ip_all; then # TODO remove this conditional when 3.4 is no
longer supported
 haveBindIp=
 if _mongod_hack_have_arg --bind_ip "$@" || _mongod_hack_have_arg --bind_ip_all "$@"; then
 haveBindIp=1
 elif _parse_config "$@" && jq --exit-status '.net.bindIp // .net.bindIpAll' "$jsonConfigFile" >
/dev/null; then
 haveBindIp=1
 fi
 if [-z "$haveBindIp"]; then

2026/02/04 09:26 16/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 # so if no "--bind_ip" is specified, let's add "--bind_ip_all"
 set -- "$@" --bind_ip_all
 fi
 fi

 unset "${!MONGO_INITDB_@}"
fi

rm -f "$jsonConfigFile" "$tempConfigFile"

exec "$@"

Examinons chaque commande dans le Dockerfile :

1.2 - FROM

FROM ubuntu:bionic

Cette ligne définit l'image à partir de laquelle sera construite notre image. Quand l'image n'est construite à partir d'une autre image, la valeur de
FROM est scratch.

1.3 - RUN

...

RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

RUN set -eux; \
 apt-get update; \
 apt-get install -y --no-install-recommends \
 ca-certificates \

2026/02/04 09:26 17/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 jq \
 numactl \
 ; \
 if ! command -v ps > /dev/null; then \
 apt-get install -y --no-install-recommends procps; \
 fi; \
 rm -rf /var/lib/apt/lists/*
...
RUN set -ex; \
 \
 apt-get update; \
 apt-get install -y --no-install-recommends \
 wget \
 ; \
 if ! command -v gpg > /dev/null; then \
 apt-get install -y --no-install-recommends gnupg dirmngr; \
 fi; \
 rm -rf /var/lib/apt/lists/*; \
 \
 dpkgArch="$(dpkg --print-architecture | awk -F- '{ print $NF }')"; \
 wget -O /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-$dpkgArch";
\
 wget -O /usr/local/bin/gosu.asc
"https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-$dpkgArch.asc"; \
 export GNUPGHOME="$(mktemp -d)"; \
 gpg --batch --keyserver pgp.mit.edu --recv-keys B42F6819007F00F88E364FD4036A9C25BF357DD4; \
 gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu; \
 command -v gpgconf && gpgconf --kill all || :; \
 rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc; \
 chmod +x /usr/local/bin/gosu; \
 gosu --version; \
 gosu nobody true; \
 \
 wget -O /js-yaml.js "https://github.com/nodeca/js-yaml/raw/${JSYAML_VERSION}/dist/js-yaml.js"; \

2026/02/04 09:26 18/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

TODO some sort of download verification here
 \
 apt-get purge -y --auto-remove wget

RUN mkdir /docker-entrypoint-initdb.d
...

RUN set -ex; \
 export GNUPGHOME="$(mktemp -d)"; \
 for key in $GPG_KEYS; do \
 gpg --batch --keyserver pgp.mit.edu --recv-keys "$key"; \
 done; \
 gpg --batch --export $GPG_KEYS > /etc/apt/trusted.gpg.d/mongodb.gpg; \
 command -v gpgconf && gpgconf --kill all || :; \
 rm -r "$GNUPGHOME"; \
 apt-key list
...
RUN set -x \
 && apt-get update \
 && apt-get install -y \
 ${MONGO_PACKAGE}=$MONGO_VERSION \
 ${MONGO_PACKAGE}-server=$MONGO_VERSION \
 ${MONGO_PACKAGE}-shell=$MONGO_VERSION \
 ${MONGO_PACKAGE}-mongos=$MONGO_VERSION \
 ${MONGO_PACKAGE}-tools=$MONGO_VERSION \
 && rm -rf /var/lib/apt/lists/* \
 && rm -rf /var/lib/mongodb \
 && mv /etc/mongod.conf /etc/mongod.conf.orig

RUN mkdir -p /data/db /data/configdb \
 && chown -R mongodb:mongodb /data/db /data/configdb
...

Cette commande lance un processus dans la construction de l'image. Dans les cas ci-dessus, chaque chaîne correspond à la commande passée au shell

2026/02/04 09:26 19/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

/bin/sh.

Il existe un autre syntaxe de la commande RUN appelé le format exec, à savoir :

RUN ["/bin/bash", "-c", "commande"]

Important : La commande RUN est utilisée pour exécuter une commande
passée en argument lors de la compilation de l'image seulement. Cette
commande ne doit pas donc être utilisée pour exécuter une commande lors
du lancement du conteneur. La commande utilisée pour accomplir ce
dernier est ENTRYPOINT.

1.4 - ENV

Cette commande permet de fixer la valeur d'une variable d'environnement disponible dans la suite du Dockerfile :

...
ENV GOSU_VERSION 1.11
grab "js-yaml" for parsing mongod's YAML config files (https://github.com/nodeca/js-yaml/releases)
ENV JSYAML_VERSION 3.13.0
...

ENV GPG_KEYS E162F504A20CDF15827F718D4B7C549A058F8B6B
...

ENV MONGO_PACKAGE=${MONGO_PACKAGE} MONGO_REPO=${MONGO_REPO}

ENV MONGO_MAJOR 4.1
ENV MONGO_VERSION 4.1.95

2026/02/04 09:26 20/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

...

et dans les conteneurs générés à partir de l'image construite.

1.5 - VOLUME

...
VOLUME /data/db /data/configdb
...

Cette commande expose les répertoires passés en argument afin qu'ils puissent être mappés vers des répertoires sur la machine hôte ou ailleurs, tel
que nous avons vu avec l'exemple nginx.

1.6 - COPY

...
COPY docker-entrypoint.sh /usr/local/bin/
...

Cette commande permet de récupérer les fichiers dans le contexte et de les copier dans l'image.

Attention : tous les fichiers dans le contexte sont inclus dans l'image finale, même ceux qui sont inutiles.

Il est possible d'exclure des fichiers présents dans le contexte en les mettant dans un fichier appelé .dockerignore placé dans le contexte.

Important - Il existe une autre commande similaire à COPY : ADD. ADD est
une commande qui n'est plus recommendé sauf dans le cas de cas
spécifiques. Notez que dans le cas de l'utilisation de la commande ADD, si
le fichier source est une archive de type TAR, son contenu sera désarchivé
et copier vers la destination tandis que si le fichier source est référencé par

2026/02/04 09:26 21/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

un URL, le contenu sera téléchargé puis déposé dans la destination.

1.7 - ENTRYPOINT

...
ENTRYPOINT ["docker-entrypoint.sh"]
...

Cette commande stipule la commande qui sera exécutée lors du démarrage du conteneur.

Deux cas de figure se présentent :

ENTRYPOINT suivi d'une chaîne - un shell est démarré pour exécuter la chaîne,
ENTRYPOINT suivi d'une table JSON (comme ci-dessus) au format ENTRYPOINT [“commande à exécuter”, “paramètres de la commande”].

Dans le fichier docker-entrypoint.sh :

...
originalArgOne="$1"

allow the container to be started with `--user`
all mongo* commands should be dropped to the correct user
if [["$originalArgOne" == mongo*]] && ["$(id -u)" = '0']; then
 if ["$originalArgOne" = 'mongod']; then
 find /data/configdb /data/db \! -user mongodb -exec chown mongodb '{}' +
 fi

 # make sure we can write to stdout and stderr as "mongodb"
 # (for our "initdb" code later; see "--logpath" below)
 chown --dereference mongodb "/proc/$$/fd/1" "/proc/$$/fd/2" || :
 # ignore errors thanks to https://github.com/docker-library/mongo/issues/149

2026/02/04 09:26 22/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 exec gosu mongodb "$BASH_SOURCE" "$@"
fi

you should use numactl to start your mongod instances, including the config servers, mongos instances, and any
clients.
https://docs.mongodb.com/manual/administration/production-notes/#configuring-numa-on-linux
if [["$originalArgOne" == mongo*]]; then
 numa='numactl --interleave=all'
 if $numa true &> /dev/null; then
 set -- $numa "$@"
 fi
fi
...
exec "$@"

si la valeur du paramètre passé à entrypoint.sh est mongod, le script affecte l'utilisateur mongodb aux répertoires /data/configdb et /data/db puis
lance mongo sous l'utilisateur mongodb avec des droits réduits (gosu).

Ce fichier finit par “$@” qui indique que si aucune condition n'ait été remplie, la commande est exécutée avec la valeur passée en argument.

Important - Notez que la compilation d'une image se fait à l'intérieur d'un
contexte. Le contexte est le répertoire de build. Dernièrement, notez qu'il
peut y avoir plusieurs ENTRYPOINT dans le fichier Dockerfile mais
uniquement le dernier est pris en compte.

1.8 - EXPOSE

...
EXPOSE 27017

2026/02/04 09:26 23/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

...

Cette commande permet d'exposer un port à l'extérieur du conteneur.

1.9 - CMD

...
CMD ["mongod"]
...

Ceci représente la valeur du paramètre par défaut si aucun paramètre n'est spécifié à la fin de la commande docker run.

1.10 - Autres Commandes

Le Dockerfile peut aussi contenir les commandes suivantes :

WORKDIR,
Cette commande fixe le répertoire de travil lors de la compilation d'une image. Elle peut apparaître plusieurs fois dans le Dockerfile
permettant ainsi l'évolution du répertoire de travail,

LABEL,
Cette commande permet de définir des couples clef/valeur à inclure dans les méta-données décrivant l'image lors de sa distribution, par
exemple, la version, la description ou un readme.

Lancez maintenant la compilation de l'image :

root@debian11:~/mongodb# docker build .
[+] Building 56.9s (15/15) FINISHED
docker:default
 => [internal] load .dockerignore
0.0s
 => => transferring context: 2B
0.0s

2026/02/04 09:26 24/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 => [internal] load build definition from Dockerfile
0.1s
 => => transferring dockerfile: 3.55kB
0.0s
 => [internal] load metadata for docker.io/library/ubuntu:bionic
0.3s
 => [internal] load build context
0.0s
 => => transferring context: 42B
0.0s
 => [1/10] FROM
docker.io/library/ubuntu:bionic@sha256:152dc042452c496007f07ca9127571cb9c29697f42acbfad72324b2bb2e43c98
0.0s
 => CACHED [2/10] RUN groupadd -r mongodb && useradd -r -g mongodb mongodb
0.0s
 => CACHED [3/10] RUN set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates
jq numactl ; if ! command -v ps > /dev/null; then ap 0.0s
 => [4/10] RUN set -ex; apt-get update; apt-get install -y --no-install-recommends wget ; if ! command -v
gpg > /dev/null; then apt-get install -y --no-install-r 20.6s
 => [5/10] RUN mkdir /docker-entrypoint-initdb.d
0.5s
 => [6/10] RUN set -ex; export GNUPGHOME="$(mktemp -d)"; for key in E162F504A20CDF15827F718D4B7C549A058F8B6B;
do gpg --batch --keyserver pgp.mit.edu --recv-keys "$key 10.4s
 => [7/10] RUN echo "deb http://$MONGO_REPO/apt/ubuntu bionic/${MONGO_PACKAGE%-unstable}/$MONGO_MAJOR
multiverse" | tee "/etc/apt/sources.list.d/${MONGO_PACKAGE%-unstable} 0.5s
 => [8/10] RUN set -x && apt-get update && apt-get install -y mongodb-org-unstable=4.1.9 mongodb-org-
unstable-server=4.1.9 mongodb-org-unstable-shell=4.1.9 mong 21.1s
 => [9/10] RUN mkdir -p /data/db /data/configdb && chown -R mongodb:mongodb /data/db /data/configdb
0.5s
 => [10/10] COPY docker-entrypoint.sh /usr/local/bin/
0.1s
 => exporting to image
2.6s
 => => exporting layers

2026/02/04 09:26 25/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

2.6s
 => => writing image sha256:72fad0b7e0c2206f31a12b7d49f0812c0a594a51e17a8c0e36687f5f626bc735
0.0s

Consultez la liste de images :

root@debian11:~/mongodb# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 72fad0b7e0c2 About a minute ago 352MB
ittraining/mongodb latest fb3c6d5d186a 7 hours ago 1.11GB
ubuntu latest b6548eacb063 9 days ago 77.8MB
nginx latest a6bd71f48f68 2 weeks ago 187MB
hello-world latest 9c7a54a9a43c 7 months ago 13.3kB
centos latest 5d0da3dc9764 2 years ago 231MB

Notez que l'image n'a ni REPOSITORY, ni TAG. Créez donc un TAG :

root@debian11:~/mongodb# docker tag 72f i2tch/mongodb1

root@debian11:~/mongodb# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
i2tch/mongodb1 latest 72fad0b7e0c2 2 minutes ago 352MB
ittraining/mongodb latest fb3c6d5d186a 7 hours ago 1.11GB
ubuntu latest b6548eacb063 9 days ago 77.8MB
nginx latest a6bd71f48f68 2 weeks ago 187MB
hello-world latest 9c7a54a9a43c 7 months ago 13.3kB
centos latest 5d0da3dc9764 2 years ago 231MB

Démarrez un conteneur à partir de l'image i2tch/mongodb1 :

root@debian11:~/mongodb# docker run -d --name mongo1 i2tch/mongodb1
3c578ea2a0428a07b60dac3b63d806351dffa2bb05224bcf7d12f1189766f38e
docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime
create failed: runc create failed: unable to start container process: exec: "docker-entrypoint.sh": executable

2026/02/04 09:26 26/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

file not found in $PATH: unknown.

root@debian11:~/mongodb# ls -l
total 16
-rw-r--r-- 1 root root 10971 Dec 10 16:57 docker-entrypoint.sh
-rw-r--r-- 1 root root 3514 Dec 10 17:09 Dockerfile

Important - Notez que le fichier docker-entrypoint.sh n'est pas exécutable
!

Recompilez donc l'image :

root@debian11:~/mongodb# docker rm mongo1
mongo1

root@debian11:~/mongodb# chmod +x docker-entrypoint.sh

root@debian11:~/mongodb# docker build .
[+] Building 0.8s (15/15) FINISHED
docker:default
 => [internal] load build definition from Dockerfile
0.1s
 => => transferring dockerfile: 3.55kB
0.0s
 => [internal] load .dockerignore
0.1s
 => => transferring context: 2B
0.0s
 => [internal] load metadata for docker.io/library/ubuntu:bionic
0.3s
 => [1/10] FROM

2026/02/04 09:26 27/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

docker.io/library/ubuntu:bionic@sha256:152dc042452c496007f07ca9127571cb9c29697f42acbfad72324b2bb2e43c98
0.0s
 => [internal] load build context
0.0s
 => => transferring context: 11.02kB
0.0s
 => CACHED [2/10] RUN groupadd -r mongodb && useradd -r -g mongodb mongodb
0.0s
 => CACHED [3/10] RUN set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates
jq numactl ; if ! command -v ps > /dev/null; then ap 0.0s
 => CACHED [4/10] RUN set -ex; apt-get update; apt-get install -y --no-install-recommends wget ; if !
command -v gpg > /dev/null; then apt-get install -y --no-ins 0.0s
 => CACHED [5/10] RUN mkdir /docker-entrypoint-initdb.d
0.0s
 => CACHED [6/10] RUN set -ex; export GNUPGHOME="$(mktemp -d)"; for key in
E162F504A20CDF15827F718D4B7C549A058F8B6B; do gpg --batch --keyserver pgp.mit.edu --recv-keys 0.0s
 => CACHED [7/10] RUN echo "deb http://$MONGO_REPO/apt/ubuntu bionic/${MONGO_PACKAGE%-unstable}/$MONGO_MAJOR
multiverse" | tee "/etc/apt/sources.list.d/${MONGO_PACKAGE%-un 0.0s
 => CACHED [8/10] RUN set -x && apt-get update && apt-get install -y mongodb-org-unstable=4.1.9 mongodb-
org-unstable-server=4.1.9 mongodb-org-unstable-shell=4.1.9 0.0s
 => CACHED [9/10] RUN mkdir -p /data/db /data/configdb && chown -R mongodb:mongodb /data/db /data/configdb
0.0s
 => [10/10] COPY docker-entrypoint.sh /usr/local/bin/
0.2s
 => exporting to image
0.1s
 => => exporting layers
0.1s
 => => writing image sha256:56e5b1fb4284e2474392238ee5f91a5d27d9a4a43fa15f655136ae0283d269c2
0.0s

Important - Notez ici les lignes CACHED. Il est cependant possible de ne
pas utiliser le cache en stipulant –no-cache. Notez aussi l'utilisation de

2026/02/04 09:26 28/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

conteneurs temporaires par étape nouvelle avec un commit vers une image
et une suppression dudit conteneur. Dernièrement, notez que la
compilation d'une image se fait à l'intérieur d'un contexte. Le contexte
est le répertoire de build. Attention : tous les fichiers dans le contexte
sont inclus dans l'image finale, même ceux qui sont inutiles.

Consultez la liste des images de nouveau et renommez votre dernière image :

root@debian11:~/mongodb# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 56e5b1fb4284 About a minute ago 352MB
i2tch/mongodb1 latest 72fad0b7e0c2 5 minutes ago 352MB
ittraining/mongodb latest fb3c6d5d186a 7 hours ago 1.11GB
ubuntu latest b6548eacb063 9 days ago 77.8MB
nginx latest a6bd71f48f68 2 weeks ago 187MB
hello-world latest 9c7a54a9a43c 7 months ago 13.3kB
centos latest 5d0da3dc9764 2 years ago 231MB

root@debian11:~/mongodb# docker tag 56e i2tch/mongodb2

root@debian11:~/mongodb# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
i2tch/mongodb2 latest 56e5b1fb4284 About a minute ago 352MB
i2tch/mongodb1 latest 72fad0b7e0c2 5 minutes ago 352MB
ittraining/mongodb latest fb3c6d5d186a 7 hours ago 1.11GB
ubuntu latest b6548eacb063 9 days ago 77.8MB
nginx latest a6bd71f48f68 2 weeks ago 187MB
hello-world latest 9c7a54a9a43c 7 months ago 13.3kB
centos latest 5d0da3dc9764 2 years ago 231MB

Lancez un conteneur à partir de la dernière image :

root@debian11:~/mongodb# docker run -d --name mongo2 i2tch/mongodb2

2026/02/04 09:26 29/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

880733c6bdc33a9a8fa6ae171e977cf745ea9a1b9cfc914992a2d0d3f8cd9d39

Utilisez la commande docker ps pour visualiser si le processus mongodb est bien démarré :

root@debian11:~/mongodb# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s…" 15 seconds ago Up 13 seconds 27017/tcp
mongo2
885f75b6aa57 ittraining/mongodb "bash" 7 hours ago Up 7 hours
mongo
04d910a3c93d nginx "/docker-entrypoint.…" 7 hours ago Up 7 hours 0.0.0.0:81->80/tcp,
:::81->80/tcp quirky_moore

Connectez-vous à mongodb à partir de votre machine hôte :

root@debian11:~/mongodb# docker inspect mongo2 | grep IP
 "LinkLocalIPv6Address": "",
 "LinkLocalIPv6PrefixLen": 0,
 "SecondaryIPAddresses": null,
 "SecondaryIPv6Addresses": null,
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "IPAddress": "172.17.0.4",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "IPAMConfig": null,
 "IPAddress": "172.17.0.4",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,

root@debian11:~/mongodb# mongo --host 172.17.0.4

2026/02/04 09:26 30/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

MongoDB shell version v4.0.28
connecting to: mongodb://172.17.0.4:27017/?gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("057eacfe-5b02-4653-9b20-a2a2044cbe6a") }
MongoDB server version: 4.1.9
WARNING: shell and server versions do not match
Server has startup warnings:
2023-12-10T16:16:13.395+0000 I STORAGE [initandlisten]
2023-12-10T16:16:13.395+0000 I STORAGE [initandlisten] ** WARNING: Using the XFS filesystem is strongly
recommended with the WiredTiger storage engine
2023-12-10T16:16:13.395+0000 I STORAGE [initandlisten] ** See
http://dochub.mongodb.org/core/prodnotes-filesystem
2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten]
2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten] ** NOTE: This is a development version (4.1.9) of
MongoDB.
2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten] ** Not recommended for production.
2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten]
2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten] ** WARNING: Access control is not enabled for the
database.
2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten] ** Read and write access to data and
configuration is unrestricted.
2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten]
2023-12-10T16:16:14.256+0000 I CONTROL [initandlisten]
2023-12-10T16:16:14.256+0000 I CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent_hugepage/enabled
is 'always'.
2023-12-10T16:16:14.256+0000 I CONTROL [initandlisten] ** We suggest setting it to 'never'
2023-12-10T16:16:14.256+0000 I CONTROL [initandlisten]

Enable MongoDB's free cloud-based monitoring service, which will then receive and display
metrics about your deployment (disk utilization, CPU, operation statistics, etc).

The monitoring data will be available on a MongoDB website with a unique URL accessible to you
and anyone you share the URL with. MongoDB may use this information to make product
improvements and to suggest MongoDB products and deployment options to you.

2026/02/04 09:26 31/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

To enable free monitoring, run the following command: db.enableFreeMonitoring()
To permanently disable this reminder, run the following command: db.disableFreeMonitoring()

> exit
bye
root@debian11:~/mongodb#

LAB #2 - Créer un Dockerfile

2.1 - Création et test du script

Créez un répertoire nommé myDocker :

root@debian11:~/mongodb# mkdir ~/myDocker
root@debian11:~/mongodb# cd ~/myDocker
root@debian11:~/myDocker#

Créez le fichier myEntrypoint.sh :

root@debian11:~/myDocker# vi myEntrypoint.sh

root@debian11:~/myDocker# cat myEntrypoint.sh
#!/bin/bash
if [-z "$myVariable"]; then
 echo "The variable myVariable must have a value"
 return 1
fi

while true;
do

2026/02/04 09:26 32/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

 echo $1 \($(date +%H:%M:%S)\);
 sleep "$myVariable";
done

Testez ce script :

root@debian11:~/myDocker# myVariable=3 . ./myEntrypoint.sh Hello!
Hello! (18:01:54)
Hello! (18:01:57)
Hello! (18:02:00)
Hello! (18:02:03)
Hello! (18:02:06)
^C
root@debian11:~/myDocker#

Rendez ce script exécutable :

root@debian11:~/myDocker# chmod u+x myEntrypoint.sh

Créez maintenant le fichier Dockerfile dans le répertoire ~/myDocker :

root@debian11:~/myDocker# vi Dockerfile

root@debian11:~/myDocker# cat Dockerfile
FROM centos:latest
MAINTAINER Team IT Training "infos@ittraining.team"
COPY myEntrypoint.sh /entrypoint.sh
ENV myVariable 3
ENTRYPOINT ["/entrypoint.sh"]
CMD ["mycommand"]

Générez maintenant l'image :

root@debian11:~/myDocker# docker build -t i2tch/mydocker .

2026/02/04 09:26 33/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

[+] Building 0.8s (7/7) FINISHED
docker:default
 => [internal] load .dockerignore
0.2s
 => => transferring context: 2B
0.0s
 => [internal] load build definition from Dockerfile
0.1s
 => => transferring dockerfile: 211B
0.0s
 => [internal] load metadata for docker.io/library/centos:latest
0.0s
 => [internal] load build context
0.1s
 => => transferring context: 224B
0.0s
 => [1/2] FROM docker.io/library/centos:latest
0.1s
 => [2/2] COPY myEntrypoint.sh /entrypoint.sh
0.2s
 => exporting to image
0.1s
 => => exporting layers
0.1s
 => => writing image sha256:c5a41438d278439fac2cd65d53d87cabc5c771dd9b99be1913ce049024eba961
0.0s
 => => naming to docker.io/i2tch/mydocker
0.0s

Lancez le conteneur :

root@debian11:~/myDocker# docker run -it --name myDocker i2tch/mydocker
mycommand (17:05:57)
mycommand (17:06:00)

2026/02/04 09:26 34/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

mycommand (17:06:03)
^Cmycommand (17:06:06)
mycommand (17:06:09)
mycommand (17:06:12)
^P^Q
root@debian11:~/myDocker#

Important - Notez que ^C n'a aucun effet. Pour se détacher du conteneur
il convient d'utiliser ^P^Q.

Constatez que le conteneur est toujours en cours de fonctionnement :

root@debian11:~/myDocker# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
97fe360bb1d6 i2tch/mydocker "/entrypoint.sh myco…" 4 minutes ago Up 4 minutes
myDocker
880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s…" 54 minutes ago Up 54 minutes 27017/tcp
mongo2
885f75b6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours
mongo
04d910a3c93d nginx "/docker-entrypoint.…" 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,
:::81->80/tcp quirky_moore

root@debian11:~/myDocker# docker logs myDocker | tail
mycommand (17:10:30)
mycommand (17:10:33)
mycommand (17:10:36)
mycommand (17:10:39)
mycommand (17:10:42)
mycommand (17:10:45)

2026/02/04 09:26 35/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

mycommand (17:10:48)
mycommand (17:10:51)
mycommand (17:10:54)
mycommand (17:10:57)

Arrêtez le conteneur :

root@debian11:~/myDocker# docker stop -t 1 myDocker
myDocker

root@debian11:~/myDocker# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s…" 55 minutes ago Up 55 minutes 27017/tcp
mongo2
885f75b6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours
mongo
04d910a3c93d nginx "/docker-entrypoint.…" 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,
:::81->80/tcp quirky_moore

Démarrez le conteneur :

root@debian11:~/myDocker# docker start myDocker
myDocker

root@debian11:~/myDocker# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
97fe360bb1d6 i2tch/mydocker "/entrypoint.sh myco…" 6 minutes ago Up 5 seconds
myDocker
880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s…" 56 minutes ago Up 56 minutes 27017/tcp
mongo2
885f75b6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours
mongo

2026/02/04 09:26 36/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

04d910a3c93d nginx "/docker-entrypoint.…" 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,
:::81->80/tcp quirky_moore

Mettez le conteneur en pause :

root@debian11:~/myDocker# docker pause myDocker
myDocker

root@debian11:~/myDocker# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
97fe360bb1d6 i2tch/mydocker "/entrypoint.sh myco…" 7 minutes ago Up 55 seconds (Paused)
myDocker
880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s…" 56 minutes ago Up 56 minutes 27017/tcp
mongo2
885f75b6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours
mongo
04d910a3c93d nginx "/docker-entrypoint.…" 8 hours ago Up 8 hours
0.0.0.0:81->80/tcp, :::81->80/tcp quirky_moore

Supprimez la pause :

root@debian11:~/myDocker# docker unpause myDocker
myDocker

root@debian11:~/myDocker# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
97fe360bb1d6 i2tch/mydocker "/entrypoint.sh myco…" 7 minutes ago Up About a minute
myDocker
880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s…" 57 minutes ago Up 57 minutes 27017/tcp
mongo2
885f75b6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours
mongo

2026/02/04 09:26 37/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

04d910a3c93d nginx "/docker-entrypoint.…" 8 hours ago Up 8 hours
0.0.0.0:81->80/tcp, :::81->80/tcp quirky_moore

Lancez maintenant le conteneur avec un paramètre :

root@debian11:~/myDocker# docker rm -fv myDocker
myDocker

root@debian11:~/myDocker# docker run -d --name myDocker i2tch/mydocker "Up and Running"
fd5ac836f674fe0bf7b5056e851cd15e4762a5e41b05e00d384bede5234e1f5f

root@debian11:~/myDocker# docker logs myDocker
Up and Running (17:14:23)
Up and Running (17:14:26)
Up and Running (17:14:29)
Up and Running (17:14:32)
Up and Running (17:14:35)
Up and Running (17:14:38)
root@debian11:~/myDocker#

Changez la valeur de la variable d'environnement myVariable :

root@debian11:~/myDocker# docker rm -fv myDocker
myDocker

root@debian11:~/myDocker# docker run -d --name myDocker --env myVariable=1 i2tch/mydocker
a9e02a8bb39df9d5c84fc1d58643bc38c228b0562731792e2356a801b50a9a14

root@debian11:~/myDocker# docker logs myDocker
mycommand (17:15:35)
mycommand (17:15:36)
mycommand (17:15:37)
mycommand (17:15:38)
mycommand (17:15:39)

2026/02/04 09:26 38/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

mycommand (17:15:40)
mycommand (17:15:41)
root@debian11:~/myDocker#

2.2 - Bonnes Pratiques liées au Cache

Opérations Non-Idempotentes

Créez un répertoire bestp ainsi que le fichier Dockerfile suivant :

root@debian11:~/myDocker# cd ..

root@debian11:~# mkdir bestp

root@debian11:~# cd bestp

root@debian11:~/bestp# vi Dockerfile

root@debian11:~/bestp# cat Dockerfile
FROM ubuntu:latest
RUN date +%N > /tmp/moment
ENTRYPOINT ["more"]
CMD ["/tmp/moment"]

Le fichier Dokerfile contient une opération non idempotente.

Important : Une opération idempotente est une opération qui aboutit
systématiquement au même résultat quand elle est lancée dans le même
contexte.

2026/02/04 09:26 39/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

Compilez l'image :

root@debian11:~/bestp# docker build -t testcache .
[+] Building 0.9s (6/6) FINISHED
docker:default
 => [internal] load build definition from Dockerfile
0.2s
 => => transferring dockerfile: 123B
0.0s
 => [internal] load .dockerignore
0.1s
 => => transferring context: 2B
0.0s
 => [internal] load metadata for docker.io/library/ubuntu:latest
0.0s
 => [1/2] FROM docker.io/library/ubuntu:latest
0.1s
 => [2/2] RUN date +%N > /tmp/moment
0.4s
 => exporting to image
0.1s
 => => exporting layers
0.1s
 => => writing image sha256:842ab4a40890a1b5fe7a3af5a41513c6edd5fd2da503b82c375f350671b62707
0.0s
 => => naming to docker.io/library/testcache
0.0s

Exécuter maintenant un premier conteneur à partir de l'image compilée :

root@debian11:~/bestp# docker run --name test1 -it testcache
771723987

Supprimez maintenant le conteneur et relancez la compilation de l'image :

2026/02/04 09:26 40/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

root@debian11:~/bestp# docker rm test1
test1

root@debian11:~/bestp# docker build -t testcache .
[+] Building 0.3s (6/6) FINISHED
docker:default
 => [internal] load .dockerignore
0.1s
 => => transferring context: 2B
0.0s
 => [internal] load build definition from Dockerfile
0.1s
 => => transferring dockerfile: 123B
0.0s
 => [internal] load metadata for docker.io/library/ubuntu:latest
0.0s
 => [1/2] FROM docker.io/library/ubuntu:latest
0.0s
 => CACHED [2/2] RUN date +%N > /tmp/moment
0.0s
 => exporting to image
0.0s
 => => exporting layers
0.0s
 => => writing image sha256:842ab4a40890a1b5fe7a3af5a41513c6edd5fd2da503b82c375f350671b62707
0.0s
 => => naming to docker.io/library/testcache
0.0s

Lancez un conteneur à partir de l'image re-compilée :

root@debian11:~/bestp# docker run --name test1 -it testcache
771723987

2026/02/04 09:26 41/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

Important - Notez que les deux sorties des conteneurs sont identiques
malgré le fait que la valeur de la commande date aurait du modifier le
résultat obtenu lors de l'exécution du deuxième conteneur. La raison que
ceci n'est pas le cas est l'utilisation dans la deuxième compilation du cache.
Si cette commande avait été quelque chose de plus importante telle apt-
get upgrade, le résultat pourrait être génant !

Pour contourner ce problème, il est possible d'utiliser l'option –no-cache. Malheureusement ceci produirait une compilation complète à chaque fois,
même pour les opérations idempotentes. Il est donc conseillé de combiner les opérations non-idempotentes avec des opérations idempotentes dans la
même ligne de commande afin d'invalider le cache pour cette ligne de commande seulement :

root@debian11:~/bestp# vi Dockerfile

root@debian11:~/bestp# cat Dockerfile
FROM ubuntu:latest
RUN date +%N > /tmp/moment \
 && echo "V1.1" > /tmp/version
ENTRYPOINT ["more"]
CMD ["/tmp/moment"]

Supprimez maintenant le conteneur et relancez la compilation de l'image :

root@debian11:~/bestp# docker rm test1
test1

root@debian11:~/bestp# docker build -t testcache .
[+] Building 0.7s (6/6) FINISHED
docker:default
 => [internal] load .dockerignore
0.1s
 => => transferring context: 2B

2026/02/04 09:26 42/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

0.0s
 => [internal] load build definition from Dockerfile
0.1s
 => => transferring dockerfile: 159B
0.0s
 => [internal] load metadata for docker.io/library/ubuntu:latest
0.0s
 => CACHED [1/2] FROM docker.io/library/ubuntu:latest
0.0s
 => [2/2] RUN date +%N > /tmp/moment && echo "V1.1" > /tmp/version
0.4s
 => exporting to image
0.1s
 => => exporting layers
0.1s
 => => writing image sha256:5a36b1c7ec76e7bde962c41f5f5dcc11ae0ce3968e4953fbababcc8b7b282dab
0.0s
 => => naming to docker.io/library/testcache
0.0s

Lancez un conteneur à partir de l'image re-compilée :

root@debian11:~/bestp# docker run --name test1 -it testcache
063819144

LAB #3 - Installer un Registre Privé

3.1 - Installer un Registre Local

Pour installer un registre privé, il convient d'utiliser une image publique de docker :

2026/02/04 09:26 43/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

root@debian11:~/bestp# cd ..

root@debian11:~# docker run -d --name registry -p 88:5000 registry:latest
Unable to find image 'registry:latest' locally
latest: Pulling from library/registry
c926b61bad3b: Pull complete
5501dced60f8: Pull complete
e875fe5e6b9c: Pull complete
21f4bf2f86f9: Pull complete
98513cca25bb: Pull complete
Digest: sha256:0a182cb82c93939407967d6d71d6caf11dcef0e5689c6afe2d60518e3b34ab86
Status: Downloaded newer image for registry:latest
272df4a849bcbc58a70d6c8e1e74751f24e485fd8ad6817427ef180b9f28b5f8

Utilisez maintenant lynx à partir d'un terminal de votre machine hôte Docker pour vérifier que le registre est actif :

root@debian11:~# lynx --dump http://localhost:88/v2
{}root@debian11:~#

Important - Notez la réponse du serveur est {} soit une liste JSON vide.

Renommez l'image i2tch/mydocker afin de pointer vers le nouveau registre :

root@debian11:~# docker tag i2tch/mydocker localhost:88/mydocker

Envoyez votre image localhost:88/mydocker sur ce nouveau registre :

root@debian11:~# docker push localhost:88/mydocker
Using default tag: latest
The push refers to repository [localhost:88/mydocker]
f981bd64e799: Pushed

2026/02/04 09:26 44/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

74ddd0ec08fa: Pushed
latest: digest: sha256:32f7a11d8a8523bb5b4ac0986844d569ca96df4d1875e7e678a885ee3a3c61c3 size: 736

Constatez maintenant la présence de l'image dans le registre :

root@debian11:~# lynx --dump http://localhost:88/v2/mydocker/tags/list
{"name":"mydocker","tags":["latest"]}

3.2 - Créer un Serveur de Registre Dédié

Actuellement, le registre privé créé ci-dessus n'est pas accessible à partir du réseau local car il est référencé par localhost. Il convient donc maintenant
de mettre en place un serveur dédié.

Connectez-vous à la VM CentOS_10.0.3.45_SSH à partir de votre VM Debian_10.0.3.46_SSH :

root@debian11:~# ssh -l trainee 10.0.3.45
trainee@10.0.3.45's password: trainee
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Wed Nov 15 05:24:16 2023 from 10.0.3.1
[trainee@centos8 ~]$

Devenez root :

[trainee@centos8 ~]$ su -
Password: fenestros
[root@centos8 ~]#

Modifiez le nom d'hôte de la machine :

[root@centos8 ~]# nmcli general hostname myregistry.i2tch.loc
[root@centos8 ~]# hostname

2026/02/04 09:26 45/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

myregistry.i2tch.loc

Editez le fichier /etc/hosts et changez l'entrée pour l'adresse IP 10.0.3.61 :

[root@centos8 ~]# vi /etc/hosts
[root@centos8 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
10.0.3.45 myregistry.i2tch.loc
10.0.3.46 debian11.i2tch.loc

Créez maintenant un certificat auto-signé avec openssl :

[root@centos8 ~]# cd /

[root@centos8 /]# vi myconfig.cnf

[root@centos8 /]# cat myconfig.cnf
[req]
distinguished_name = dn
x509_extensions = extensions
prompt = no

[extensions]
subjectAltName = DNS:i2tch.loc,DNS:myregistry.i2tch.loc

[dn]
0.DC = loc
1.DC = i2tch
commonName = i2tch.loc

[root@centos8 ~]# mkdir certs && openssl req -config myconfig.cnf -newkey rsa:4096 -nodes -sha256 -keyout
certs/domain.key -x509 -days 365 -out certs/domain.crt
Generating a RSA private key

2026/02/04 09:26 46/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

...

..++++

......++++
writing new private key to 'certs/domain.key'

[root@centos8 /]# ls certs/
domain.crt domain.key

Déconnectez-vous de la VM CentOS8_10.0.3.45_SSH :

[root@centos8 /]# exit
logout
[trainee@centos8 ~]$ exit
logout
Connection to 10.0.3.45 closed.
root@debian11:~#

Re-connectez-vous à la VM CentOS8_10.0.3.45_SSH :

root@debian11:~# ssh -l trainee 10.0.3.45
trainee@10.0.3.45's password: trainee
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Fri Dec 15 01:07:37 2023 from 10.0.3.46
[trainee@centos8 ~]$

Devenez root :

[trainee@myregistry ~]$ su -
Password: fenestros
[root@myregistry ~]#

Créez un conteneur en mode sécurisé avec TLS à partir de l'image registry :

2026/02/04 09:26 47/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

[root@myregistry ~]# docker run -d -p 5000:5000 --name registry -v /certs:/certs -e
REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt -e REGISTRY_HTTP_TLS_KEY=/certs/domain.key registry:latest
Unable to find image 'registry:latest' locally
latest: Pulling from library/registry
c926b61bad3b: Pull complete
5501dced60f8: Pull complete
e875fe5e6b9c: Pull complete
21f4bf2f86f9: Pull complete
98513cca25bb: Pull complete
Digest: sha256:0a182cb82c93939407967d6d71d6caf11dcef0e5689c6afe2d60518e3b34ab86
Status: Downloaded newer image for registry:latest
bf0d4fe9fcb121f9c2d9e85b8f2bb54b01397602ef0dcefdfc71327acf832fec

[root@myregistry ~]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
bf0d4fe9fcb1 registry:latest "/entrypoint.sh /etc…" 47 seconds ago Up 44 seconds
0.0.0.0:5000->5000/tcp, :::5000->5000/tcp registry
90267aac9800 hello-world "/hello" 15 hours ago Exited (0) 15 hours ago
eloquent_chatelet

Envoyez une copie du fichier /certs/domain.crt vers le répertoire /tmp de la machine virtuelle Debian11_10.0.3.46 en le renommant ca.crt :

[root@myregistry ~]# scp /certs/domain.crt trainee@10.0.3.46:/tmp/ca.crt
The authenticity of host '10.0.3.46 (10.0.3.46)' can't be established.
ECDSA key fingerprint is SHA256:JFem/0UXFw0aDAOSfOS3vsOGsSDl1wPOza6ybTGO7/8.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '10.0.3.46' (ECDSA) to the list of known hosts.
trainee@10.0.3.46's password:
domain.crt
100% 2053 2.9MB/s 00:00

2026/02/04 09:26 48/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

Configurer le Client

Sortez de la VM CentOS8_10.0.3.45_SSH :

[root@myregistry ~]# exit
logout
[trainee@myregistry ~]$ exit
logout
Connection to 10.0.3.45 closed.
root@debian11:~#

Supprimez le conteneur registry :

root@debian11:~# docker rm -f registry
registry

ainsi que l'image du registry :

root@debian11:~# docker rmi registry:latest
Untagged: registry:latest
Untagged: registry@sha256:0a182cb82c93939407967d6d71d6caf11dcef0e5689c6afe2d60518e3b34ab86
Deleted: sha256:909c3ff012b7f9fc4b802b73f250ad45e4ffa385299b71fdd6813f70a6711792
Deleted: sha256:577c3b283118ca6108a6a8c8a0a00eff666dec82c482dd239dfed49f31553df6
Deleted: sha256:2ba6acf6ed95c86cfb2c830693135513bc019a0c0cf8f2c58990bc215995699f
Deleted: sha256:65920463e77382a5cbe8da3e814c4449fc665487c8a9fa4ac27179e809f5ba2e
Deleted: sha256:54501ccbeaec2665849d200fc4a61ab7254ff0f3bd31ab673879fe321fa2ad7f
Deleted: sha256:9fe9a137fd002363ac64f5af66146702432b638a83ee0c5b620c40a9e433e813

Renommez l'image i2tch/mydocker afin de pointer vers le serveur de registre :

root@debian11:~# docker tag i2tch/mydocker myregistry.i2tch.loc:5000/mydocker

root@debian11:~# docker images

2026/02/04 09:26 49/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

REPOSITORY TAG IMAGE ID CREATED SIZE
testcache latest 5a36b1c7ec76 4 days ago 77.8MB
<none> <none> 842ab4a40890 4 days ago 77.8MB
i2tch/mydocker latest c5a41438d278 4 days ago 231MB
localhost:88/mydocker latest c5a41438d278 4 days ago 231MB
myregistry.i2tch.loc:5000/mydocker latest c5a41438d278 4 days ago 231MB
i2tch/mongodb2 latest 56e5b1fb4284 4 days ago 352MB
i2tch/mongodb1 latest 72fad0b7e0c2 4 days ago 352MB
ittraining/mongodb latest fb3c6d5d186a 5 days ago 1.11GB
ubuntu latest b6548eacb063 2 weeks ago 77.8MB
nginx latest a6bd71f48f68 3 weeks ago 187MB
hello-world latest 9c7a54a9a43c 7 months ago 13.3kB
centos latest 5d0da3dc9764 2 years ago 231MB

Editez le fichier /etc/hosts afin de pointer le 10.0.3.45 vers le nom myregistry.i2tch.loc :

root@debian11:~# vi /etc/hosts

root@debian11:~# cat /etc/hosts
127.0.0.1 localhost
10.0.3.46 debian11.i2tch.loc debian11
10.0.3.45 myregistry.i2tch.loc myregistry

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Déplacez le fichier /tmp/ca.crt vers le répertoire /etc/docker/certs.d/myregistry:5000/ :

root@debian11:~# mkdir -p /etc/docker/certs.d/myregistry:5000

root@debian11:~# mv /tmp/ca.crt /etc/docker/certs.d/myregistry:5000/

2026/02/04 09:26 50/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

Créez le fichier /etc/docker/daemon.json pour accepter le certificat auto-signé :

root@debian11:~# vi /etc/docker/daemon.json

root@debian11:~# cat /etc/docker/daemon.json
{"insecure-registries" : ["myregistry.i2tch.loc:5000"]}

Re-démarrez le service docker :

root@debian11:~# systemctl restart docker

Testez la réponse du registre :

root@debian11:~# curl -k https://myregistry:5000/v2/
{}root@debian11:~#

Finalement, envoyez l'image au registre :

root@debian11:~# docker push myregistry.i2tch.loc:5000/mydocker
Using default tag: latest
The push refers to repository [myregistry.i2tch.loc:5000/mydocker]
f981bd64e799: Pushed
74ddd0ec08fa: Pushed
latest: digest: sha256:32f7a11d8a8523bb5b4ac0986844d569ca96df4d1875e7e678a885ee3a3c61c3 size: 736

Copyright © 2023 Hugh Norris.

2026/02/04 09:26 51/51 DOF603 - Gérer et Stocker les Images Docker

www.ittraining.team - https://www.ittraining.team/

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker3:drf10

Last update: 2023/12/17 05:39

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker3:drf10

	DOF603 - Gérer et Stocker les Images Docker
	Contenu du Module
	LAB #1 - Re-créer une image officielle docker
	1.1 - Utilisation d'un Dockerfile
	1.2 - FROM
	1.3 - RUN
	1.4 - ENV
	1.5 - VOLUME
	1.6 - COPY
	1.7 - ENTRYPOINT
	1.8 - EXPOSE
	1.9 - CMD
	1.10 - Autres Commandes

	LAB #2 - Créer un Dockerfile
	2.1 - Création et test du script
	2.2 - Bonnes Pratiques liées au Cache
	Opérations Non-Idempotentes

	LAB #3 - Installer un Registre Privé
	3.1 - Installer un Registre Local
	3.2 - Créer un Serveur de Registre Dédié
	Configurer le Client

