2026/02/04 13:25 1/75

DOF203 - Gestion du Réseau avec Docker

Version : 2022.01

Derniere mise-a-jour : 2022/04/29 07:57

DOF203 - Gestion du Réseau avec Docker

Contenu du Module

* DOF203 - Gestion du Réseau avec Docker
o Contenu du Module
o L'Approche Réseau Docker
o LAB #1 - Les Réseaux Docker ayant un Scope Local
» 1.1 - Bridge
e Liens
= 1.2 - Host
»= 1.3 - None
= 1.4 - Lancer Wordpress dans un container
» 1.5 - Gestion d'une Architecture de Microservices
o LAB #2 - Gestion du Réseau overlay
= 2.1 - Création d'un Réseau overlay
= 2.2 - Création d'un Service
= 2.3 - Déplacer le Service vers un autre Réseau overlay
= 2.4 - DNS container discovery
» 2.5 - Création d'un Réseau overlay Personnalisé
o LAB #3 - Gestion de I'Architecture des Microservices
= 3.1 - Mise en Place avec Docker Swarm avec des réseaux Overlay

L'Approche Réseau Docker

L'approche réseau de Docker est libnetwork qui implémente le Container Network Model (CNM). Dans ce modele on trouve trois composants :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 2/75 DOF203 - Gestion du Réseau avec Docker

e Sandbox,

o contient la configuration réseau du conteneur a savoir, la gestion des interfaces, la table de routage et le DNS,
e Endpoint,

o relie un sandbox a un network,

e Network,
o un groupe d'endpoints qui communiquent directement.

Docker Container Docker Container Docker Container
i] i
Network Sandbox Network Sandbox Network Sandbox
| Endpoint [Endpnim] [Endpcint] Endpoint |
i A 1 I A L A

[BackEnd Network | | Front End Network |

LAB #1 - Les Réseaux Docker ayant un Scope Local

Docker fournit trois réseaux par défaut :

root@debian9:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE
495b3db75b0od bridge bridge local
eled4de2f947 host host local
6bdad60c97c6 none null local

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 3/75 DOF203 - Gestion du Réseau avec Docker

1.1 - Bridge

Ce type de réseau est limité aux conteneurs d'un hote unique exécutant Docker. Les conteneurs ne peuvent communiquer qu'entre eux et ils ne sont
pas accessibles depuis I'extérieur. Pour que les conteneurs sur le réseau puissent communiquer ou étre accessibles du monde extérieur, il faut
configurer le mappage de port.

Par défaut Docker fonctionne en mode Pont ou (Bridge) et crée une interface intermédiaire a cet effet appelé dockerO :

root@debian9:~# ip addr show docker0
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qgdisc noqueue state DOWN group default
link/ether 02:42:38:fl:e7:ee brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
valid lft forever preferred lft forever

Démarrez un conteneur dénommé resotest a partir d'une image de CentOS :

root@debian9:~# docker run -itd --name=resotest centos
2169360fcbfdbd6e68a969a95edeb6fc42603c23ee42f03ceec286276519855

Lancez ensuite la commande docker network inspect bridge a partir de la machine virtuelle héte de Debian 9 :

root@debian9:~# docker network inspect bridge
[
{
"Name": "bridge",
"Id": "495b3db75b0d4bfcfcb6da7c3e2af5fbaddcdc227aa8b69b1e59a998be1819d12",
"Created": "2017-09-07T07:44:49.942615596+01:00",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25

4/75

DOF203 - Gestion du Réseau avec Docker

"Config": [
{
"Subnet":
"Gateway":
}

]
b
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""
b
"ConfigOnly": false,
"Containers": {

"2169360fcbfdbd6e68ea969a95edeb6fc42603c23ee42f03ceec286276519855":

“172.17.0.0/16",

"172.17.

"Name": "resotest",
"fc74e519d69b9%9a2112be959c92cda22b67671b52efbbd36fadf66097ccbbl271",
"02:42:ac:11:00:03",

"EndpointID":

"MacAddress":

"IPv4Address":

"IPvbAddress":
by

}
“Options": {

"172.17.

"com.docker.network.bridge.
"com.docker.network.bridge.
"com.docker.network.bridge.

com.docker.network.bridge.

"com.docker.network.bridge.
"com.docker.network.driver.

}l
"Labels": {}

0.1"

0.3/16",

default bridge": "true",
enable icc": "true",
enable ip masquerade": "true",
host binding ipv4": "0.0.0.0",
name": "docker0",

mtu": "1500"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 5/75 DOF203 - Gestion du Réseau avec Docker

| Important : Notez ici que le conteneur resotest ne dispose pas de la méme adresse que l'interface docker0 de la machine hote.
Cependant les adresses se trouvent dans le méme segment - 172.17.0.0/16 indiqué par la sortie “Subnet”: “172.17.0.0/16".

Vous pouvez déconnecter un conteneur du réseau en utilisant la commande suivante :

root@debian9:~# docker network disconnect bridge resotest
root@debian9:~# docker network inspect bridge
[
{
"Name": "bridge",
"Id": "495b3db75b0d4bfcfcbda7c3e2af5f6addcdc227aa8b69b1e59a998be1819d12"
"Created": "2017-09-07T07:44:49.942615596+01:00",

"Scope": "local",
"“Driver": "bridge",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

“Subnet": "172.17.0.0/16",
“Gateway": "172.17.0.1"

]
I
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""

}'

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25

6/75

DOF203 - Gestion du Réseau avec Docker

"ConfigOnly": false,
“Containers":

}'

"Options": {

}'

com.docker.
com.docker.
com.docker.
com.docker.
com.docker.
com.docker.

"Labels": {}

]

network
network
network
network
network
network

.bridge.
.bridge.
.bridge.
.bridge.
.bridge.
.driver.

default bridge": "true",

enable icc": "true",

enable ip masquerade": "true",
host binding ipv4": "0.0.0.0",

name": "docker0Q",
mtu": "1500"

Créez maintenant votre propre réseau ponté appelé my-bridged-network :

root@debian9:~# docker network create -d bridge --subnet 172.25.0.0/16 --gateway 172.25.0.1 my-bridged-network
ceb7ba7493933¢c55d181bc92b1f799cal7bfe84b168d52a6ac648c1a906093f3
root@debian9:~# docker network 1s

NETWORK ID

495b3db75b0d
eled4de2f947
ceb7ba749393
6bdad460c97c6

NAME
brid
host

ge

my-bridged-network

none

Bien évidement, ce réseau est actuellement vide :

DRIVER
bridge
host
bridge
null

root@debian9:~# docker network inspect my-bridged-network

[
{

"Name" :

IIIdII :

"Created":

"my-bridged-network",
"ceb7ba7493933¢c55d181bc92b1f799ca@7bfe84b168d52a6ac648c1a906093f3",
"2017-09-07T10:03:17.063730665+01:00",

SCOPE
local
local
local
local

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 7/75

DOF203 - Gestion du Réseau avec Docker

"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": {},

"Config": [

{

“Subnet": "172.25.0.0/16",
"Gateway": "172.25.0.1"

]
b
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
b,
“ConfigOnly": false,
"Containers": {},
"Options": {},
"Labels": {}

]

Lancez maintenant deux conteneurs et consultez les informations concernant le réseau :

root@debian9:~# docker run -itd --name=centosl centos
9f36a628c72b383edfd4dcl3eededb2eaf5be0078d780T0334fch8be0d977d0e

root@debian9:~# docker run -itd --name=centos2 centos
aaed3bc8e404eelbccd6c87b39de32332940b5391514691fc70188edb17cld7c

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 8/75 DOF203 - Gestion du Réseau avec Docker

root@debian9:~# docker inspect --format='{{json .NetworkSettings.Networks}}' centosl

{"bridge": {"IPAMConfig":null, "Links":null, "Aliases":null, "NetworkID":"495b3db75b0d4bfcfc6da7c3e2af5f6addcdc227aa8
b69b1e59a998be1819d12", "EndpointID":"d7b87875688b45258fc867b6bb8b0a0592f5c5fal6857fel36e55b87bh6698219", "Gateway" :
"172.17.0.1","IPAddress":"172.17.0.3","IPPrefixLen":16, "IPv6Gateway":"", "GlobalIPv6Address":"", "GlobalIPv6PrefixL
en":0,"MacAddress":"02:42:ac:11:00:03","DriverOpts":null}}

root@debian9:~# docker inspect --format='{{json .NetworkSettings.Networks}}' centos2

{"bridge": {"IPAMConfig":null, "Links":null, "Aliases":null, "NetworkID":"495b3db75b0d4bfcfcb6da7c3e2af5f6addcdc227aa8
b69b1e59a998be1819d12", "EndpointID":"2bfe090dccef89495d437d8deba5765996a917544ab7fde28ef5199f4e907ebl", "Gateway" :
"172.17.0.1","IPAddress":"172.17.0.4" ,"IPPrefixLen":16, "IPv6Gateway":"", "GlobalIPv6Address":"", "GlobalIPv6PrefixL
en":0,"MacAddress":"02:42:ac:11:00:04","DriverOpts":null}}

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centosl
172.17.0.3

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4

Mettez le conteneur centosl dans le réseau my-bridged-network :
root@debian9:~# docker network connect my-bridged-network centosl

root@debian9:~# docker network inspect my-bridged-network

[
{

“Name": "my-bridged-network",
"Id": "ceb7ba7493933c55d181bc92b1f799cal7bfe84b168d52a6ac648c1a906093f3",
"Created": "2017-09-07T10:03:17.063730665+01:00",
"Scope": "local",
"“Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": {},

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 9/75 DOF203 - Gestion du Réseau avec Docker

"Config": [
{
"Subnet": "172.25.0.0/16",
"Gateway": "172.25.0.1"

]
b
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""
b
"ConfigOnly": false,
"Containers": {
"9f36a628c72b383edfd4dcl3eededb2eaf5be0078d780f0334fcb8bed®d977d0e" : {
"Name": "centosl",
"EndpointID": "71lelOede34ce8c42ef029e302f6ed372357f6fde8fd87fc2cbclbldc2bdfobb5”,
"MacAddress": "02:42:ac:19:00:02",
"IPv4Address": "172.25.0.2/16",

"IPvbAddress": ""
}
b
"Options": {},
"Labels": {}

]

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centosl
172.17.0.3172.25.0.2

Important : Notez que le conteneur centosl se trouve dans deux réseaux.

P

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 10/75

DOF203 - Gestion du Réseau avec Docker

Faites la méme chose pour le conteneur centos?2 :

root@debian9:~# docker network connect my-bridged-network centos2

root@debian9:~# docker network inspect my-bridged-network

[

{

“Name": "my-bridged-network",

"Id": "ceb7ba7493933¢c55d181bc92b1f799ca®@7bfe84b168d52a6ac648c1a906093f3"
"Created": "2017-09-07T10:03:17.063730665+01:00",

"Scope": "local",
"“Driver": "bridge",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": {},

"Config": [

{

“Subnet": "172.25.0.0/16",
“Gateway": "172.25.0.1"

]
I
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""
I
"ConfigOnly": false,
"Containers": {

"9f36a628c72b383edfd4dcl3eededb2eat5be0078d780T0334fch8bed0d977d0e" :

"Name": "centosl",

{

"EndpointID": "71lel0ed4e34ce8c42ef029e302f6ed372357f6fde8fd87fc2cbclbl4c2bdfebb5”,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 11/75 DOF203 - Gestion du Réseau avec Docker

"MacAddress": "02:42:ac:19:00:02",
"IPv4Address": "172.25.0.2/16",
"IPvbAddress": ""

b
"aaed3bc8e404eelbccd6c87b39de32332940b5391514691Fc70188edbl7cld7c": {

"Name": "centos2",
"EndpointID": "34f533622f134b995097f1d3e6ce935158c1e5644201f896b42336738a81819c",

"MacAddress": "02:42:ac:19:00:03",
"TPv4Address": "172.25.0.3/16",
"IPvbAddress": ""

}

b
"Options": {},
"Labels": {}

]

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4172.25.0.3

Connectez-vous au conteneur centosl en langant bash :
root@debian9:~# docker exec -it centosl bash
Vérifiez que la connectivité fonctionne :

[root@9f36a628c72b /]# ping 172.25.0.3

PING 172.25.0.3 (172.25.0.3) 56(84) bytes of data.

64 bytes from 172.25.0.3: icmp seg=1 ttl=64 time=0.100 ms

64 bytes from 172.25.0.3: icmp seq=2 ttl=64 time=0.050 ms

64 bytes from 172.25.0.3: icmp seq=3 ttl=64 time=0.050 ms

~C

---172.25.0.3 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1998ms

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 12/75 DOF203 - Gestion du Réseau avec Docker

rtt min/avg/max/mdev = 0.050/0.066/0.100/0.025 ms

Les options possibles au niveau de la gestion du réseau sont vaste. Voici deux exemples supplémentaires.

Il est possible d'ajouter une adresse d'un serveur DNS au lancement d'un conteneur :

[root@9f36a628c72b /]# exit

exit

root@debian9:~# docker stop resotest
mongo2

root@debian9:~# docker rm resotest
mongo2

root@debian9:~# docker run -it --name=resotest --dns 8.8.8.8 centos bash
root@735599480b45: /# cat /etc/resolv.conf

search home

nameserver 8.8.8.8

root@735599480b45: /#

ou de passer une entrée pour le fichier /etc/hosts :

root@735599480b45: /# exit

exit

root@debian9:~# docker stop resotest
mongo2

root@debian9:~# docker rm resotest
mongo2

root@debian9:~# docker run -it --name=resotest --add-host mickeymouse:127.0.0.1 centos bash
root@718e7eab814f:/# cat /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25

13/75

DOF203 - Gestion du Réseau avec Docker

127.0.0.1

mickeymouse

172.17.0.2 718e7eab814f

Liens

Le mécanisme des liens entre conteneurs est tres puissant et permet d'atteindre un autre conteneur facilement a condition que les deux conteneurs
soient dans le méme réseau. Créez donc un conteneur dénommé centos3 qui est lié au conteneur centos2 qu'il connait aussi sous l'alias alias :

root@332aa9930f30: /# exit

exit

root@debian9:~# docker run -itd --name centos3 --link centos2:alias centos

6a315259b2946c3bf2bb69f608cbe910d87edaadedb4f805e7a4dbf6afleb916

root@debian9:~# docker ps -a

CONTAINER ID
PORTS
6a315259b294
centos3
332aa9930f30
mongo2
aaed3bc8e404
centos?2
9f36a628c72b
centosl
2169360fcbfd
resotest
€a239635e141
testl
21b0490a93dd
myDocker
bdb4bcOf81de
27017 /tcp

IMAGE

NAMES

centos
i2tch/mongodb2
centos

centos

centos
testcache

i2tch/mydocker

i2tch/mongodbl
mongol

COMMAND

"/bin/bash"

"docker-entrypoint...

"/bin/bash"
"/bin/bash"
"/bin/bash"

“more /tmp/moment"

"/entrypoint.sh my...

"docker-entrypoint...

CREATED

33 seconds ago
3 minutes ago
16 minutes ago
16 minutes ago
20 minutes ago
7 hours ago

7 hours ago

18 hours ago

STATUS

Up 32 seconds

Exited (127) 39 seconds ago

Up 16 minutes
Up 16 minutes

Up 20 minutes

Exited (@) 7 hours ago

Exited (137) 6 hours ago

Created

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 14/75

DOF203 - Gestion du Réseau avec Docker

f5b45072b831 i2tch/mongodb "bash"

mongo

9731a48f126a nginx “nginx -g 'daemon ..."
cocky gates

eacd70596e23 nginx "nginx -g ‘'daemon ..."
adoring yonath

cffb4456e9c4 ubuntu "/bin/bash"

i2tch

root@debian9:~# docker exec -it centos3 bash

[root@6a315259b294 /]# ping centos2

PING alias (172.17.0.4) 56(84) bytes of data.

64 bytes from alias (172.17.0.4): icmp seqg=1 ttl=64 time=0.116
64 bytes from alias (172.17.0.4): icmp seq=2 ttl=64 time=0.069
64 bytes from alias (172.17.0.4): icmp seqg=3 ttl=64 time=0.068
64 bytes from alias (172.17.0.4): icmp seq=4 ttl=64 time=0.070
~C

--- alias ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.068/0.080/0.116/0.023 ms

[root@6a315259b294 /]# cat /etc/hosts
127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet

ffe0::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.4 alias aaed3bc8e404 centos2
172.17.0.2 6a315259b294

[root@6a315259b294 /]# exit
exit

ms
ms
ms
ms

19 hours

19 hours

19 hours

20 hours

ago

ago

ago

ago

Exited (137) 6 hours ago
Exited (@) 6 hours ago
Exited (0) 19 hours ago

Exited (@) 20 hours ago

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 15/75 DOF203 - Gestion du Réseau avec Docker

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos3
172.17.0.2

Notez cependant qu le lien est unidirectionnel :
root@debian9:~# docker exec -it centos2 bash

[root@aaed3bc8e404 /]# ping centos3
ping: centos3: Name or service not known

[root@aaed3bc8e404 /1# ping 172.17.0.2

PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.

64 bytes from 172.17.0.2: icmp seg=1 ttl=64 time=0.054 ms

64 bytes from 172.17.0.2: icmp seqg=2 ttl=64 time=0.035 ms

64 bytes from 172.17.0.2: icmp seqg=3 ttl=64 time=0.051 ms

64 bytes from 172.17.0.2: icmp seq=4 ttl=64 time=0.071 ms

~C

--- 172.17.0.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.035/0.052/0.071/0.015 ms

[root@aaed3bc8e404 /1#

Dans le cas ci-dessus, centos2 peut atteindre centos3 en utilisant I'adresse IP 172.17.0.2 car centos2 se trouve dans les deux réseaux avec les
adresses IP 172.17.0.4 et 172.25.0.3 :

[root@aaed3bc8e404 /]# exit

exit

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4172.25.0.3

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 16/75 DOF203 - Gestion du Réseau avec Docker

1.2 - Host

Ce type de réseau est utilisé dans le cas ou le réseau ne doit pas étre isolé de I'hote tout en isolant les autres aspects du conteneur. Les conteneurs
utilisent la méme interface que I'h6te en prenant la méme adresse IP que la machine hote.

Dans le cas de la machine virtuelle, I'adresse IP de |'interface connectée au réseau local est 10.0.2.60 :

root@debian9:~# ip addr show ensl8
2: ensl8: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP group default glen 1000
link/ether 08:00:27:2e:77:01 brd ff:ff:ff:ff:ff:ff
inet 10.0.2.60/24 brd 10.0.2.255 scope global dynamic ensl8
valid 1ft 83772sec preferred 1ft 83772sec
inet6 fe80::a00:27ff:fe2e:7701/64 scope link
valid lft forever preferred lft forever

Démarrez un conteneur a partir de I'image centos dans un réseau de type host :

root@debian9:~# docker run -it --rm --network host --name centos3 centos bash
[root@debian9 /]# ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default qglen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid lft forever preferred lft forever
inet6 ::1/128 scope host
valid 1ft forever preferred 1ft forever
2: ensl8: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP group default glen 1000
link/ether 08:00:27:2e:77:01 brd ff:ff:ff:ff.ff:ff
inet 10.0.2.60/24 brd 10.0.2.255 scope global dynamic ens18
valid Lft 82102sec preferred lft 82102sec
inet6 fe80::a00:27ff:fe2e:7701/64 scope link
valid 1ft forever preferred 1ft forever
3: docker®: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
link/ether 02:42:38:fl:e7:ee brd ff:ff:ff:ff.ff:.ff

www.ittraining.team - https://www.ittraining.team/

17/75 DOF203 - Gestion du Réseau avec Docker

2026/02/04 13:25
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
valid lft forever preferred lft forever
inet6 fe80::42:38ff:fefl:e7ee/64 scope link
valid lft forever preferred 1ft forever
[root@debian9 /]# hostname

debian9
[root@debian9 /]# exit

Le but de ce type de réseau est de permettre I'acces a des services dans le conteneur directement a partir de I'adresse IP de I'h6te Docker. Par
exemple, un nginx dans le conteneur pourrait étre joint directement sur 10.0.2.60:80 sans avoir besoin de passer par I'exposition du port.

Pour cette raison, dans le cas de I'option -p utilisé dans la cas du réseau host, cette option n'est pas prise en compte et produit I'avertissement
WARNING: Published ports are discarded when using host network mode. L'utilité majeure donc du réseau host se trouve dans le cas ou de

multiples ports dans le conteneur doivent étre joignables.

Important : Notez que le réseau de type host ne fonctionne que sous
Linux. Il est donc incompatible avec Docker Desktop pour Mac, Docker

Desktop pour Windows et Docker EE pour Windows Server.

1.3 - None

Ce type de réseau est utilisé principalement dans le cas de I'utilisation d'un plugin réseau disponible dans le Docker Hub.

Il est donc possible de lancer un conteneur totalement étanche grace au réseau none :

root@718e7eab814f:/# exit
exit
root@debian9:~# docker stop mongo2

mongo2
root@debian9:~# docker rm mongo2

www.ittraining.team - https://www.ittraining.team/

https://hub.docker.com/search/?category=network&q=&type=plugin

2026/02/04 13:25

18/75

DOF203 - Gestion du Réseau avec Docker

mongo2

root@debian9:~# docker run -it --name mongo2 --network none i2tch/mongodb2 bash

root@332aa9930f30: /#

1.4 - Lancer Wordpress dans un container

Créez le répertoire ~/wordpress et placez-vous dedans :
root@debian9:~# mkdir ~/wordpress && cd ~/wordpress

Créez un conteneur dénommé wordpressdb a partir de I'image mariadb:latest :

root@debian9:~/wordpress# docker run -e MYSQL ROOT PASSWORD=fenestros -e MYSQL DATABASE=wordpress --name

wordpressdb -v "$PwWD/database":/var/lib/mysql -d mariadb:latest
Unable to find image 'mariadb:latest' locally

latest: Pulling from library/mariadb

f2b6b4884fc8:
26d8bdcadf3e:
74109e820cce:
5390f1fe4554:
3d3f1706a741:
2942f66426ea:
97eel11d39c75:
590c46ef722b:
32eb4b9666e5:
fc883198a064:
bb8beeblbcle:
Digest: sha256:6135f5b851e7fe263dcfOedf3480cdablab28c4287e867c5d83fbe967412eald
Status: Downloaded newer image for mariadb:latest
67831dacf002bdc21dc79b0e84831538235d00ddd2e8aael75ef3ebf189ael4d

Vérifiez que le conteneur fonctionne :

Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull

complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 19/75 DOF203 - Gestion du Réseau avec Docker

root@debian9:~/wordpress# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

67831dacf002 mariadb:latest "docker-entrypoint.s.." About a minute ago Up 45 seconds

3306/tcp wordpressdb

Créez un conteneur appellé wordpress lié au conteneur wordpressdb :

root@debian9:~/wordpress# docker run -e WORDPRESS DB USER=root -e WORDPRESS DB PASSWORD=fenestros --name
wordpress --link wordpressdb:mysql -p 10.0.2.60:80:80 -v "$PWD/html":/var/www/html -d wordpress
Unable to find image 'wordpress:latest' locally

latest: Pulling from library/wordpress

2a72cbf407d6: Pull complete

273cd543cb15: Pull complete

ec5ac8875de7: Pull complete

9106e19b56c1l: Pull complete

ee2f70ac7c7d: Pull complete

7257ad6985e8: Pull complete

18f5c2055da2: Pull complete

85293a6fdd80: Pull complete

9e797eeb0cl4: Pull complete

£16178842884: Pull complete

13899c06d3f8: Pull complete

70c27fed4c3c5: Pull complete

d32c8ad2d9d7: Pull complete

07fed445494e6: Pull complete

63b8de7b32fe: Pull complete

e4b721952e22: Pull complete

d9ede6dd6f74: Pull complete

0af4f74bfd92: Pull complete

ed4e7c47b969f: Pull complete

69aff47f3112: Pull complete

Digest: sha256:201d004f55669dd2c0884f00fc44145fb0da8cafadb65bf22cbaacecat81138d4
Status: Downloaded newer image for wordpress:latest

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 20/75 DOF203 - Gestion du Réseau avec Docker

9eb2f7fbfbd25307ed2f463c7eb3bef40bfa556174e68750bb76b8d032546129

Vérifiez que le conteneur fonctionne :

root@debian9:~/wordpress# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

9eb2f7fbfbd2 wordpress "docker-entrypoint.s.." 2 minutes ago Up About a minute
10.0.2.60:80->80/tcp wordpress

67831dacf002 mariadb:latest "docker-entrypoint.s.." 9 minutes ago Up 8 minutes 3306/tcp
wordpressdb

Vérifiez que le Wordpress fonctionne :

root@debian9:~/wordpress# lynx --dump http://10.0.2.60

[1]WordPress
Select a default language [English (United States) 1

Continue
References

1. https://wordpress.org/

root@debian9:~/wordpress# docker inspect wordpress | grep IPAddress
"SecondaryIPAddresses": null,
"IPAddress": "172.17.0.3",
"IPAddress": "172.17.0.3",
root@debian9:~/wordpress# lynx --dump http://172.17.0.3

[1]WordPress
Select a default language [English (United States) |

Continue

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 21/75 DOF203 - Gestion du Réseau avec Docker

References

1. https://wordpress.org/

1.5 - Gestion d'une Architecture de Microservices

Vous allez mettre en place une application simple sous forme de microservices, développé par Docker et appelé demo-voting-app, :

voting-app resulf-app
Python Nodels
n-memory DB db
Redis PostgressSQL

]

Worker
NET

Dans cette application le conteneur voting-app permet de voter pour des chats ou des chiens. Cette application tourne sous Python et fournit une
interface HTML :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 22/75 DOF203 - Gestion du Réseau avec Docker

[4 Cats s Dogs! x [4 cCatsvsDogs - Result ® | [4 Catswvs Dogs! ¥ | [CatsvsDogs - Result W + -

“ ['D D Mon sécurisé i & 0 M B M . (/) ﬂ

it applcations [HowtoCreate an & Telafriend W ifach Europe (8L NS Mes ressources EMD 2 Suggested Namir E simple-Help Senw & VirtualEowes - Fre & virtualfoo virtual -

Cats vs Dogs!

Lors de la vote, le résultat de celle-ci est stocké dans Redis dans une base de données en mémoire. Le résultat est ensuite passé au conteneur
Worker qui tourne sous .NET et qui met a jour la base de données persistante dans le conteneur db qui tourne sous PostgreSQL.

L'application result-app qui tourne sous Node)S lit ensuite la table dans la base de données PostgreSQL et affiche le résultat sous forme HTML :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 23/75 DOF203 - Gestion du Réseau avec Docker
[4 Cats w5 Dogs! ® [0 Cats vs Dogs - Result W [4 Cats ws Dogs! *® [0 Cats vs Dogs - Result ® o+ - ¢ D
€ 2 C ft @ Honsécurisé i &« pEmBEBDO M
it applcations [HowtoCreate an & Tellafriend W iwchEwope (@2 [f§ Mesressources ENI 2 Suggested Naomins § simple-Help Serve 4 WirtuaBowes - Fre: o wirtualfox Virtual =

CATS DOGS

100.0% 0.0%

Cette application peut étre mise en place sous docker avec les commandes suivantes :

docker
docker
docker
docker
docker

run
run
run
run
run

-d --name=redis redis

-d --name=db -e POSTGRES PASSWORD=postgres -e POSTGRES USER=postgres postgres:9.4

-d --name=vote -p 5000:80 --link redis:redis dockersamples/examplevotingapp vote

-d --name=result -p 5001:80 --link db:db dockersamples/examplevotingapp result

-d --name=worker --link db:db --link redis:redis dockersamples/examplevotingapp worker

Cette solution utilise un réseau de type Bridge. Ce type de réseau est limité aux conteneurs d'un héte unique exécutant Docker. Les conteneurs ne
peuvent communiquer qu'entre eux et ils ne sont pas accessibles depuis I'extérieur. Pour que les conteneurs sur le réseau puissent communiquer ou
étre accessibles du monde extérieur, il faut configurer le mappage de port.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25

Ouvrez le navigateur web Firefox ou Chrome dans votre machine et saisissez I'URL selon le tableau ci-dessous :

ID

URL (Notez http: et non https:)

TraineelO

http://compute0l.ittraining.network

Traineell

http://compute02.ittraining.network

Traineel?2

http://compute03.ittraining.network

Traineel3

http://compute04.ittraining.network

Traineel4

http://compute05.ittraining.network

Traineel5

http://compute06.ittraining.network

Traineel6

http://compute07.ittraining.network

Traineel?

http://compute08.ittraining.network

Traineel8

http://compute09.ittraining.network

Traineel9

http://computel0.ittraining.network

Trainee20

http://compute01l.ittraining.network

Trainee2l

http://compute02.ittraining.network

Trainee22

http://compute03.ittraining.network

Trainee23

http://compute04.ittraining.network

Trainee24

http://compute05.ittraining.network

Trainee25

http://compute06.ittraining.network

Trainee26

http://compute07.ittraining.network

Trainee27

http://compute08.ittraining.network

Trainee28

http://compute09.ittraining.network

Trainee29

http://computel0.ittraining.network

24[75 DOF203 - Gestion du Réseau avec Docker

Dans la boite de connexion d'Apache Guacamole, entrez votre ID traineeXX et le mot de passe qui vous a été fourni par votre formateur.

Cliquez sur la connexion TraineeXX_VNC et testez ensuite votre application en utilisant le navigateur web de la machine virtuelle.

LAB #2 - Gestion du Réseau overlay

www.ittraining.team - https://www.ittraining.team/

http://compute01.ittraining.network
http://compute02.ittraining.network
http://compute03.ittraining.network
http://compute04.ittraining.network
http://compute05.ittraining.network
http://compute06.ittraining.network
http://compute07.ittraining.network
http://compute08.ittraining.network
http://compute09.ittraining.network
http://compute10.ittraining.network
http://compute01.ittraining.network
http://compute02.ittraining.network
http://compute03.ittraining.network
http://compute04.ittraining.network
http://compute05.ittraining.network
http://compute06.ittraining.network
http://compute07.ittraining.network
http://compute08.ittraining.network
http://compute09.ittraining.network
http://compute10.ittraining.network

2026/02/04 13:25 25/75 DOF203 - Gestion du Réseau avec Docker

En plus des réseaux bridge, host et none, Docker propose deux autres types de réseaux, a savoir overlay et macvlan. Ce module concerne overlay.
Pour plus d'informations concernant le type macvlan, consultez le site de la documentation de Docker ici.

Comme son nom indique, un réseau overlay est un réseau qui se positionne au-dessus du réseau des hotes. Lors de la création d'un réseau overlay,
celui-ci n'est disponible par défaut qu'aux services swarm. Par contre il est possible de connecter des conteneurs autonomes au réseau overlay si
I'option -attachable est spécifiée lors de sa création. Ce type d'utilisation du réseau overlay n'est pas recommandé par Docker qui dit que le support
de cette fonctionnalité pourrait étre retiré.

Le trafic lié a la gestion des services swarm est crypté par défaut avec I'algorithme AES en mode GCM. Afin de crypter le trafic des données liées aux
applications il est possible d'utiliser I'option -opt encrypted lors de la création du réseau overlay. Dans ce cas, Docker crée des tunnels IPSEC entre
chaque nceud qui utilise le méme algorithme que le trafic des services swarm. Il y a donc une dégradation des performances a évaluer avant la mise en
production. Dans les deux cas les clefs sont modifiées toutes les 12 heures (voir https://www.vaultproject.io/docs/internals/rotation.html)

/. ATTENTION : Le cryptage des donnees liées aux applications n'est pas compatible avec
! " Windows™. Lors de la connexion du nceud Windows™ a un réseau overlay crypté, aucune
erreur ne sera rapportée. Par contre le nceud sera incapable de communiquer.

Commencez par re-créer un swarm en utilisant les machines virtuelles manager, workerl et worker2 :
trainee@traineeXX:~$ ssh -1 trainee 10.0.2.62

root@manager:~# docker swarm leave

Node left the swarm.

root@manager:~# docker swarm init --advertise-addr 10.0.2.62

Swarm initialized: current node (tpnlzsk20sfsfafmk2cvefqjc) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-1-23d7n1fkkk9rvihtyl106q9390bfpf9daljjguq3s8071leb6c5qs-
eO0slygsajvmi7s8t919mw48ao0 10.0.2.62:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

www.ittraining.team - https://www.ittraining.team/

https://docs.docker.com/network/network-tutorial-macvlan/
https://www.vaultproject.io/docs/internals/rotation.html

2026/02/04 13:25 26/75 DOF203 - Gestion du Réseau avec Docker

root@manager:~# exit
trainee@manager:~# exit

Connectez-vous au workerl :
trainee@traineexXX:~$ ssh -1 trainee 10.0.2.63

root@workerl:~# docker swarm leave

Node left the swarm.

root@workerl:~# docker swarm join --token SWMTKN-1-23d7nlfkkk9rvlhtyl06q9390bfpf9daljjguq3s8071e6c5qs-
eOslygsajvmi7s8t919mw48ao 10.0.2.62:2377

This node joined a swarm as a worker.

root@workerl:~# exit

trainee@workerl:~# exit

Connectez-vous au worker?2 :
trainee@traineeXX:~$ ssh -1 trainee 10.0.2.64

root@worker2:~# docker swarm leave

Node left the swarm.

root@worker2:~# docker swarm join --token SWMTKN-1-23d7nlfkkk9rvlhtyl06q9390bfpf9daljjguq3s8071e6c5qs-
eOslygsajvmi7s8t919mw48ao0 10.0.2.62:2377

This node joined a swarm as a worker.

root@worker2:~# exit

trainee@worker2:~# exit

Vérifiez I'état du swarm :
trainee@traineeXX:~$ ssh -1 trainee 10.0.2.62
root@manager:~# docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ENGINE VERSION

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 27/75

DOF203 - Gestion du Réseau avec Docker

b85hxlixbrilmhltxdlhrfe4us * manager.i2tch.loc Ready

19.03.4

4sui75vvdhmet4qvtOzbvzlzl workerl.i2tch.loc Ready
19.03.4

1bjtg509kw3x6xg7frm07j fuw worker2.i2tch.loc Ready
19.03.4

root@manager:~# docker node ls --filter role=manager

ID HOSTNAME STATUS

ENGINE VERSION

b85hx1lixbrlmhltxdlhrfe4us * manager.i2tch.loc Ready

19.03.4
root@manager:~# docker node ls --filter role=worker
ID HOSTNAME STATUS

ENGINE VERSION
4sui75vvdhmet4qvtOzbvzlzl
19.03.4
1bjtg509kw3x6xg7frm07j fuw
19.03.4

workerl.i2tch.loc Ready

worker2.i2tch.loc Ready

Active

Active

Active

AVAILABILITY

Active

AVAILABILITY

Active

Active

Vérifiez la présence du réseau overlay ingress ainsi que le réseau ponté docker_gwbridge :

root@manager:~# docker network 1ls

NETWORK ID NAME DRIVER
4edb7186dcc9 bridge bridge
d4c9b0c9437a docker gwbridge bridge
f3cb3bc3c581 host host
r8htcvc8oxmz ingress overlay
de563e30d473 none null

SCOPE
local
local
local
swarm
local

Leader

MANAGER STATUS

Leader

MANAGER STATUS

et par conséquent relie le démon Docker aux autres démons Docker qui participent dans

i i Info : Le réseau docker_gwbridge relie le réseau ingress a I'adaptateur réseau de I'hote

swarm.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 28/75

DOF203 - Gestion du Réseau avec Docker

Best Practice : Docker recommande |'utilisation de réseaux de type overlay différents
& pour chaque application ou groupe d'applications.

2.2 - Création d'un Réseau overlay

A partir du Manager, créez un réseau de type overlay appelé nginx-net :

root@manager:~# docker network create -d overlay nginx-net
j57jhtugdkjxp22aily6641lqr
root@manager:~# docker network 1ls

NETWORK ID NAME DRIVER
dde514eea83f bridge bridge
d4c9b0c9437a docker gwbridge bridge
f3cb3bc3c581 host host
r8htcvc8oxmz ingress overlay
j57jhtugdkijx nginx-net overlay
de563e30d473 none null

2.2 - Création d'un Service

Créez un service nginx qui utilise le réseau nginx-net :

SCOPE
local
local
local
swarm
swarm
local

root@manager:~# docker service create --name my-nginx --publish target=80,published=80 --replicas=5 --network

nginx-net nginx
fpydgix3elrclqum72gvwcb7f
overall progress: 5 out of 5 tasks

1/5: running [

2/5: running [

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 29/75 DOF203 - Gestion du Réseau avec Docker

3/5: running [>]
4/5: running [>]
5/5: running [>]

verify: Service converged

Info : Le service publie le port 80 qui est visible de I'extérieur. Les conteneurs
communiquent entre eux sans ouvrir de ports supplémentaires.

Vérifiez que le service fonctionne avant de poursuivre :

root@manager:~# docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
fpydgix3elrc my -nginx replicated 5/5 nginx: latest *:80->80/tcp

Consultez maintenant les détails du service :

root@manager:~# docker service inspect my-nginx
[
{
“ID": "fpydgix3elrclqum72gvwcb7f",
"Version": {
"Index": 40

}
"CreatedAt": "2019-10-28T06:23:29.17883246Z2",
"UpdatedAt": "2019-10-28T06:23:29.1834386967",

“Spec": {
"Name": "my-nginx",
"Labels": {},

"TaskTemplate": {
“"ContainerSpec": {
“Image":

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 30/75 DOF203 - Gestion du Réseau avec Docker

"nginx:latest@sha256:922c815aa4df050d4df476e92daed4231f466acc8ee90e0e774951b0fd7195a4",
"Init": false,
"StopGracePeriod": 10000000000,
"DNSConfig": {},

"Isolation": "default"
b
"Resources": {
"Limits": {},
"Reservations": {}
b
"RestartPolicy": {
“Condition": "any",
"Delay": 5000000000,
"MaxAttempts": 0
b

"Placement": {
"Platforms": [

{
"Architecture": "amd64",
"0S": "linux"

b

{
"0S": "linux"

b

{
"Architecture": "armé64",
"0S": "linux"

b

{
"Architecture": "386",
"0S": "linux"

b

{

"Architecture": "ppc64le",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 31/75

DOF203 - Gestion du Réseau avec Docker

"0S": "linux"
}
{
"Architecture": "s390x",
"0S": "linux"
}
]
b
"Networks": [
{
"Target": "j57jhtugd4kjxp22aily664lqr"
}
1,
"ForceUpdate": 0,
"Runtime": "container"
Iz
"Mode": {
"Replicated": {
"Replicas": 5
}
b

"UpdateConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,
"Order": "stop-first"

b

"RollbackConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0O,
"Order": "stop-first"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 32/75

DOF203 - Gestion du Réseau avec Docker

5,
"EndpointSpec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
“TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
]
}
},
"Endpoint": {
"Spec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
"TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
]
b
"Ports": [
{
"Protocol": "tcp",
“TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}

1,
"VirtualIPs": [

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 33/75 DOF203 - Gestion du Réseau avec Docker

{
"NetworkID": "r8htcvc8oxmzy896xvwvv87k5",
“Addr": "10.255.0.5/16"

},

{
"NetworkID": "j57jhtugd4kjxp22aily664lqr",
"Addr": "10.0.0.2/24"

}

| Important : Notez ici les informations concernant les ports et les Endpoints utilisés par le
service.

2.3 - Déplacer le Service vers un autre Réseau overlay

Consultez le réseau overlay nginx-net sur les trois nceuds :

root@manager:~# docker inspect nginx-net
[
{

“Name": "nginx-net",
"Id": "j57jhtugd4kjxp22aily664lqr",
“Created": "2019-10-28T07:23:29.492986337+01:00",
“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 34/75 DOF203 - Gestion du Réseau avec Docker

"Driver": "default",
"Options": null,
"Config": [

{

"Subnet": "10.0.0.0/24",
"Gateway": "10.0.0.1"

]
¥,
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""
},
"ConfigOnly": false,
"Containers": {
"b2e882e530b10f8fdOb24811f851007f864cel495bc9fdedcf51a475c0fcO3aeb": {
“Name": "my-nginx.2.bo4q3uslfémOuwxhqgtaulyg5",
"EndpointID": "f6f82bcb81ba82191f3988702b0e91f7f5f139c5c88899ad7c95e12ab189e055",
"MacAddress": "02:42:0a:00:00:04",
"IPv4Address": "10.0.0.4/24",
"IPv6Address": ""
|
"c0a76b54dad58b0faf80d2f915a10072aa7d726c46036caa3157d22¢c30dba843": {
“Name": "my-nginx.4.aqj5vafpqtkc8f4rndv04x4kn”,
"EndpointID": "813bef65edc4de42d5ec4357013f5b711cd21ce7d1alc8361c1d989d0d709071",
"MacAddress": "02:42:0a:00:00:06",
"IPv4Address": "10.0.0.6/24",
"IPv6bAddress": ""
¥,
"lb-nginx-net": {
“Name": "nginx-net-endpoint",
"EndpointID": "d087f5fe91481b12cab®b966d01584d143b25¢c746952bb517441cfadbbeba90de",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 35/75 DOF203 - Gestion du Réseau avec Docker

"MacAddress": "02:42:0a:00:00:08",
"IPv4Address": "10.0.0.8/24",

"IPv6Address": ""
}
I
"Options": {
"com.docker.network.driver.overlay.vxlanid list": "4097"
b
"Labels": {},
"Peers": [
{
“"Name": "1199cab4a6dd",
“IP": "10.0.2.62"
I
{
“Name": "69676ae46ab9",
"IP": "10.0.2.63"
b
{
“Name": "d058d363197d",
"IP": "10.0.2.64"
}
]

]

root@workerl:~# docker inspect nginx-net
[
{

“Name": "nginx-net",
"Id": "j57jhtugd4kjxp22aily664lqr",
"Created": "2019-10-28T07:23:29.561068917+01:00",
“Scope": "swarm",
"“Driver": "overlay",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 36/75 DOF203 - Gestion du Réseau avec Docker
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
“"Config": [
{
"Subnet": "10.0.0.0/24",
“Gateway": "10.0.0.1"
}

]
b
"Internal": false,
"Attachable": false,
“Ingress": false,
“ConfigFrom": {
"Network": ""
b
"ConfigOnly": false,
"Containers": {

"50b205e2ed4ccaaad5adc06c508af235557¢89¢c116c819e367a1d925e9c2b564" :
“Name": "my-nginx.1l.gcz867ezj0y46tsdgoz8j3jz2",

{

"a48a43da98acef2748f421ffa992ba302863ed3c417fa3289chd3aed0e33e97fa",

"54ed15511cdd574cb60d37d39257cbf7b30331b24bb069aadb33b457b2864789",

"EndpointID":
"MacAddress": "02:42:0a:00:00:03",
"IPv4Address": "10.0.0.3/24",
"IPvbAddress": ""

b

"lb-nginx-net": {
"Name": "nginx-net-endpoint",
"EndpointID":
"MacAddress": "02:42:0a:00:00:0a",
"IPv4Address": "10.0.0.10/24",
"IPvbAddress": ""

}

www.ittraining.team - https://www.ittraining.team/

DOF203 - Gestion du Réseau avec Docker

2026/02/04 13:25 37/75
"Options": {
"com.docker.network.driver.overlay.vxlanid list":
b
"Labels": {},
“Peers": [
{
“Name": "69676ae46ab9",
“IP": "10.0.2.63"
¥
{
"Name": "d058d363197d",
"IP": "10.0.2.64"
b
{
“Name": "1199cab4a6dd",
"IP": "10.0.2.62"
}
]

]

root@worker2:~# docker inspect nginx-net
[
{
“Name": "nginx-net",
"Id": "j57jhtugd4kjxp22aily664lqr",
“Created": "2019-10-28T07:23:29.562818383+01:00",

“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [

"4097"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 38/75 DOF203 - Gestion du Réseau avec Docker

“Subnet": "10.0.0.0/24",
“Gateway": "10.0.0.1"

]
s
"Internal": false,
“Attachable": false,
"Ingress": false,
“ConfigFrom": {
“"Network": ""
s
"ConfigOnly": false,
"Containers": {
"31bcb5e553886cd9b3ab6b8e70fe0c2bed92fe081bd0def0c94864631a940chd6" : {
"Name": "my-nginx.5.t3be85jtp2qlhpmvs14866s5m",
"EndpointID": "ffa92f5f3bb7fd2665a8be336efle4e2d786790852eb152dacla2c45f18518ba",
"MacAddress": "02:42:0a2:00:00:07",
"IPv4Address": "10.0.0.7/24",
"IPv6Address": ""
},
"8e2ced40a6e0d9fb2bc64c264b92164b6€a241a2369d8e6844d00b8952f5729a7": {
"Name": "my-nginx.3.dma616z2rkbted13zd824fyo2",
"EndpointID": "99cfb31lce34ccd9b6b15f71c87eddb5f39a84512ec76d215d54bdaaf851d5129",
"MacAddress": "02:42:0a:00:00:05",
"IPv4Address": "10.0.0.5/24",
"IPvbAddress": ""
},
"lb-nginx-net": {
“Name": "nginx-net-endpoint",
"EndpointID": "c08l6f6fle5c046acldeb8163c5a8cf40765al26bf76b6f10bflbb708a51dfal",
"MacAddress": "02:42:0a:00:00:09",
"IPv4Address": "10.0.0.9/24",
"IPv6bAddress": ""

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 39/75 DOF203 - Gestion du Réseau avec Docker

}
}
"Options": {
“com.docker.network.driver.overlay.vxlanid list": "4097"
I
"Labels": {},
"Peers": [
{
"Name": "d058d363197d",
"IP": "10.0.2.64"
b
{
“Name": "69676ae46ab9",
“IP": "10.0.2.63"
b
{
"Name": "1199cab4a6dd",
"IP": "10.0.2.62"
}

Important : Notez que le réseau nginx-net a été créé automatiquement sur les deux
e | Workers. Notez aussi le contenu de la section Peers qui liste les nceuds ainsi que la
£.% . section Containers qui liste les conteneurs sur chaque noeud qui sont connectés au
réseau overlay.

Créez maintenant un deuxieme réseau de type overlay, appelé nginx-net-2 :

root@manager:~# docker network create -d overlay nginx-net-2

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 40/75 DOF203 - Gestion du Réseau avec Docker

aez5huut9hd472qgmldzf2tsud
Déplacez le service my-nginx vers le réseau nginx-net-2 :

root@manager:~# docker service update --network-add nginx-net-2 --network-rm nginx-net my-nginx

my -nginx

overall progress: 5 out of 5 tasks

1/5: running [

2/5: running [

3/5: running [>]
[
[

4/5: running
5/5: running
verify: Service converged

Vérifiez que le service fonctionne avant de poursuivre :

root@manager:~# docker service 1ls
ID NAME MODE REPLICAS IMAGE PORTS

fpydgix3elrc my -nginx replicated 5/5 nginx:latest *:80->80/tcp
Vérifiez qu'aucun conteneur se trouve dans le réseau nginx-net :

root@manager:~# docker network inspect nginx-net

[
{

“Name": "nginx-net",

"Id": "j57jhtugdkjxp22aily664lqr",

"Created": "2019-10-28T06:21:18.337578134Z2",

“Scope": "swarm",

"Driver": "overlay",

"EnableIPv6": false,

"IPAM": {
"Driver": "default",
"Options": null,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 41/75 DOF203 - Gestion du Réseau avec Docker
"Config": [
{
"Subnet": "10.0.0.0/24",
"Gateway": "10.0.0.1"
¥

]

Vérifiez maintenant que les conteneurs se trouvent dans le réseau nginx-net-2 :

]
b
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
b
"ConfigOnly": false,
"Containers": null,
"Options": {

"com.docker.network.driver.overlay.vxlanid list":

},
"Labels": null

root@manager:~# docker network inspect nginx-net-2

[
{

“Name": "nginx-net-2",

“Id": "aez5huut9hd472gmldzf2tsud"”,
“Created": "2019-10-28T10:09:54.465105557+01:00",

"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

“4097"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 42[75 DOF203 - Gestion du Réseau avec Docker

"Driver": "default",
"Options": null,
"Config": [

{

"Subnet": "10.0.1.0/24",
"Gateway": "10.0.1.1"

]
¥,
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""
},
"ConfigOnly": false,
"Containers": {
"ObT159064e30d5e788al2baca53ee8e9504a2d7300017fb268cb9e90caaea27a": {
“Name": "my-nginx.2.8lpvegac42zesvuulpbiho7k6",
"EndpointID": "25c9587e76cfcalddl7bl0fa967186bc73cabb444cc2689e43a7243f5d1795b2",
"MacAddress": "02:42:0a:00:01:05",
"IPv4Address": "10.0.1.5/24",
"IPv6Address": ""
|
"74e656da8c670fca23270078565af164c4d42415f012ff51ccb02395¢6d121e9": {
“Name": "my-nginx.3.mjjlbsguaaewk6ldw7yxxjdlu”,
"EndpointID": "2be3c3e0286d3afb5bad7bbd903151a4d337a45743cb30c46595160223e02fbha",
"MacAddress": "02:42:0a2:00:01:07",
"IPv4Address": "10.0.1.7/24",
"IPv6bAddress": ""
¥,
"lb-nginx-net-2": {
“Name": "nginx-net-2-endpoint",
"EndpointID": "768a4cc926b5c94a20904e5db500dc62b40a063077a49769cccccOO7abecbblac”,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 43/75 DOF203 - Gestion du Réseau avec Docker

"MacAddress": "02:42:0a:00:01:06",
"IPv4Address": "10.0.1.6/24",

"IPv6Address": ""
}
},
"Options": {
"com.docker.network.driver.overlay.vxlanid list": "4098"
}
"Labels": {},
"Peers": [
{
"Name": "69676ae46ab9",
"IP": "10.0.2.63"
¥,
{
“Name": "1199cab4a6dd",
"IP": "10.0.2.62"
},
{
“Name": "d058d363197d",
"IP": "10.0.2.64"
}

]

Supprimez maintenant le service my-nginx ainsi que les deux réseaux overlay nginx-net et nginx-net-2 :

root@manager:~# docker service rm my-nginx

my -nginx

root@manager:~# docker network rm nginx-net nginx-net-2
nginx-net

nginx-net-2

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 44/75 DOF203 - Gestion du Réseau avec Docker

2.4 - DNS container discovery

Le daemon Docker exécute un server DNS embarqué a I'adresse 127.0.0.11 qui permet la résolution des noms dans un réseau personnalisé. Si ce
serveur est incapable de faire la résolution, il transfert la requéte a tout serveur externe défini dans le conteneur.

Pour que le DNS container discovery fonctionne, les ports suivants doivent étre ouverts sur les nceuds :

e 2377/tcp
e 7946/tcp
e 7946/udp
e 4789/udp

Créez maintenant le réseau de type overlay test-net :

root@manager:~# docker network create --driver=overlay --attachable test-net
hrs25w41951kkickhj6262mjg

Important : Notez que le NETWORK-ID ici est hrs25w41951kkickhj6262mjg.

F. []
-

Sur le Manager, démarrez un conteneur interactif appelé alpinel et qui se connecte au réseau test-net :

root@manager:~# docker run -it --name alpinel --network test-net alpine
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine

89d9c30c1d48: Pull complete
Digest: sha256:c19173c5ada610a5989151111163d28a67368362762534d8a8121ce95cf2bd5a

Status: Downloaded newer image for alpine:latest
/ #

Listez les réseaux disponibles sur Worker1 :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25

45/75

DOF203 - Gestion du Réseau avec Docker

root@workerl:~# docker network 1ls

NETWORK ID

3fe43b514f9d
ee22b3e623ca
f3cb3bc3c581
r8htcvc8oxmz
de563e30d473

NAME

bridge

docker gwbridge
host

ingress

none

2]
_—)

DRIVER
bridge
bridge
host
overlay
null

Démarrez maintenant un conteneur alpine2 sur Worker1 :

root@workerl:~# docker run -dit --name alpine2 --network test-net alpine

Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
89d9c30c1d48: Pull complete

Digest: sha256:c19173c5ada610a5989151111163d28a67368362762534d8a8121ce95cf2bd5a
Status: Downloaded newer image for alpine:latest

SCOPE
local
local
local
swarm
local

Important : Notez que le réseau test-net n'a pas été créé.

5734e84cd460cdd33ce90970d98a96837a0305832a86fc4d86be38aect51b23b

Saisissez la commande docker network Is sur Workerl :

root@workerl:~# docker network 1s

NETWORK ID

3fe43b514f9d
ee22b3e623ca
f3cb3bc3c581
r8htcvc8oxmz
de563e30d473
hrs25w41951k

NAME

bridge

docker gwbridge
host

ingress

none

test-net

DRIVER
bridge
bridge
host
overlay
null
overlay

SCOPE
local
local
local
swarm
local
swarm

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 46/75 DOF203 - Gestion du Réseau avec Docker

| Important : Notez que le réseau test-net, ayant le méme NETWORK ID, a été
automatiquement créé lors de la création du conteneur alpine2.

Listez les réseaux disponibles sur Worker2 :

root@worker2:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE
730831060 bridge bridge local
0celd8369c29 docker gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
de563e30d473 none null local

Important : Notez que le réseau test-net n'a pas été créé.

2 []
-

Attachez vous au conteneur alpine2 sur Worker1l et essayez de contacter le conteneur alpinel :

root@workerl:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

€ce9097b864dc alpine “/bin/sh" 23 minutes ago Up 23 minutes

alpine2

root@workerl:~# docker attach alpine2

/ # ping -c 2 alpinel

PING alpinel (10.0.2.2): 56 data bytes

64 bytes from 10.0.2.2: seq=0 ttl=64 time=1.874 ms
64 bytes from 10.0.2.2: seq=1 ttl=64 time=1.669 ms

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 47775

DOF203 - Gestion du Réseau avec Docker

--- alpinel ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 1.669/1.771/1.874 ms

/ #

Retournez dans la VM Manager et essayez de contacter le conteneur alpine2 a partir du conteneur alpinel :

root@manager:~# docker attach alpinel

/ # ping -c 2 alpine2

PING alpine2 (10.0.0.4): 56 data bytes

64 bytes from 10.0.0.4: seq=0 ttl=64 time=0.666 ms
64 bytes from 10.0.0.4: seq=1 ttl=64 time=1.239 ms

--- alpine2 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.666/0.952/1.239 ms

/ #

Créez ensuite le conteneur alpine3 sur le Worker2 essayez de contacter le conteneur alpinel :

root@worker2:~# docker run -it --rm --name alpine3 --network test-net alpine
Unable to find image 'alpine:latest' locally

latest: Pulling from library/alpine

c9b1b535fdd9: Pull complete

Digest: sha256:ab00606a42621fb68f2edbad3c88be54397f981a7b70a79db3d1172b11c4367d
Status: Downloaded newer image for alpine:latest

/ # ping -c 2 alpinel

PING alpinel (10.0.2.2): 56 data bytes

64 bytes from 10.0.2.2: seq=0 ttl=64 time=0.642 ms

64 bytes from 10.0.2.2: seg=1 ttl=64 time=1.684 ms

--- alpinel ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.642/1.163/1.684 ms

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 48/75

DOF203 - Gestion du Réseau avec Docker

/ # exit
Arrétez maintenant le conteneur alpine2 sur Worker1 :

root@workerl:~# docker container stop alpine2
alpine2

Saisissez la commande docker network Is :

root@workerl:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE

3bb80f391804 bridge bridge local

ee22b3e623ca docker gwbridge bridge local

f3cb3bc3c581 host host local

r8htcvc8oxmz ingress overlay swarm

de563e30d473 none null local
! > Important : Notez que le réseau test-net a été supprimé.

Supprimez le conteneur alpine2:

root@workerl:~# docker container rm alpine2

alpine2

Arrétez le conteneur alpinel et supprimez le réseau test-net sur Manager :

/ # exit

root@manager:~# docker container stop alpinel

alpinel

root@manager:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25

49/75

DOF203 - Gestion du Réseau avec Docker

a604e7db6f95
d4c9b0c9437a
f3cb3bc3c581
jXu667wzmij2u
de563e30d473
5181091cjhsp

bridge

docker gwbridge
host

ingress

none

test-net

bridge
bridge
host
overlay
null
overlay

root@manager:~# docker network rm test-net

test-net

2.5 - Création d'un Réseau overlay Personnalisé

local
local
local
swarm
local
swarm

Il est possible de créer un réseau overlay personnalisé. Dans ce cas la, il convient de supprimer le réseau ingress déja existant :

root@manager:~# docker network rm ingress
WARNING! Before removing the routing-mesh network, make sure all the nodes in your swarm run the same docker

engine version. Otherwise,

be impaired.

Are you sure you want to continue? [y/N] y

ingress

Créez ensuite votre réseau personnalisé :

removal may not be effective and functionality of newly create ingress networks will

root@manager:~# docker network create --driver overlay --ingress --subnet=10.11.0.0/16 --gateway=10.11.0.2 --opt
com.docker.network.driver.mtu=1200 my-ingress
440zn3vtg23zkksrvloxuulcl

root@manager:~# docker network 1s

NETWORK ID

24be8a0f0ef5
d4c9b0c9437a
f3cb3bc3c581
440zn3vtg23z
de563e30d473

NAME

bridge

docker gwbridge
host

my-ingress

none

DRIVER
bridge
bridge
host
overlay
null

SCOPE
local
local
local
swarm
local

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 50/75 DOF203 - Gestion du Réseau avec Docker

Créez de nouveau le service my-nginx :

root@manager:~# docker service create --name my-nginx --publish target=80,published=80 --replicas=5 nginx
gpliozmbi25dx3skn@Om6suoz

overall progress: 5 out of 5 tasks

1/5: running [>]

2/5: running [>]

3/5: running [>]

4/5: running [>]

5/5: running [>]

verify: Service converged

root@manager:~# docker service ls

ID NAME MODE REPLICAS IMAGE PORTS
gpliozmbi25d my -nginx replicated 5/5 nginx:latest *:80->80/tcp
root@manager:~# docker service ps my-nginx

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
ERROR PORTS

upmbwmt r76cm my-nginx.1 nginx:latest workerl.i2tch.loc Running Running about
a minute ago

qz6plli7zmef my-nginx.2 nginx: latest worker2.i2tch.loc Running Running about
a minute ago

me50mkhd11yk my-nginx.3 nginx:latest manager.i2tch.loc Running Running about
a minute ago

sctjud70ihkl my-nginx.4 nginx:latest workerl.i2tch.loc Running Running about
a minute ago

kql9gx3phb73 my-nginx.5 nginx:latest worker2.i2tch.loc Running Running about

a minute ago
Consultez les informations concernant le service my-nginx :

root@manager:~# docker service inspect my-nginx

[

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25

51/75

DOF203 - Gestion du Réseau avec Docker

{

“nginx:latest@sha256:922c815aa4df050d4df476e92daed4231f466acc8ee90e0e774951b0fd7195a4",

"ID": "gpliozmbi25dx3skn@Om6suoz",
"Version": {

}'

"Index": 230

"CreatedAt": "2019-10-28T14:49:33.6719228Z",
"UpdatedAt": "2019-10-28T14:49:33.679624758Z",

“Spec": {
"Name": "my-nginx",
"Labels": {},

"TaskTemplate": {
"ContainerSpec": {
"Image":

"Init": false,
"StopGracePeriod": 10000000000,
"DNSConfig": {},

"Isolation": "default"
b
"Resources": {
"Limits": {},
"Reservations": {}
b
"RestartPolicy": {
“Condition": "any",
"Delay": 5000000000,
"MaxAttempts": 0
b

"Placement": {
"Platforms": [
{
"Architecture": "amd64",
"0S": "linux"

I

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 52/75 DOF203 - Gestion du Réseau avec Docker

{
"0S": "linux"
b
{
"Architecture": "armé64",
"0S": "linux"
b
{
"Architecture": "386",
"0S": "linux"
b
{
"Architecture": "ppc64le",
"0S": "linux"
b
{
"Architecture": "s390x",
"0S": "linux"
}
|
b
"ForceUpdate": 0,
"Runtime": "container"
b
"Mode": {
"Replicated": {
"Replicas": 5
}
b

"UpdateConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 53/75

DOF203 - Gestion du Réseau avec Docker

"Order": "stop-first"

b

"RollbackConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0O,
"Order": "stop-first"

b
"EndpointSpec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
“TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
]
}
IE
"Endpoint": {
"Spec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
“"TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
]
by
"Ports": [

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 54/75

DOF203 - Gestion du Réseau avec Docker

{
"Protocol": "tcp",
“TargetPort": 80,
"PublishedPort": 80,
"PublishMode": "ingress"
}
1,
"VirtualIPs": [
{
"NetworkID": "44o0zn3vtg23zkksrvloxuulcl",
"Addr": "10.11.0.1/16"
}

]

Vérifiez maintenant que les conteneurs se trouvent dans le réseau my-ingress :

root@manager:~# docker inspect my-ingress
[
{
“Name": "my-ingress",
"Id": "11lucubSufjfwwz6e@umtygdqy",
"Created": "2020-03-10T11:02:38.278429829+01:00",

“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

“Subnet": "10.11.0.0/16",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 55/75 DOF203 - Gestion du Réseau avec Docker

"Gateway": "10.11.0.2"

]
s
"Internal": false,
"Attachable": false,
"Ingress": true,
“ConfigFrom": {
"Network": ""
IE
"ConfigOnly": false,
"Containers": {
"6f0168ff5153b899a131098740de34997b12417ef7c013824938edf79b2bca7f": {
“Name": "my-nginx.3.me50mkhdllykwz7aj07znlohl",
"EndpointID": "41531d43496f4723cb62cadld57c5a088faebe79c430d04a1765022e31d8ael7",
"MacAddress": "02:42:0a:0b:00:05",
"IPv4Address": "10.11.0.5/16",

"IPv6bAddress": ""
|
"my-ingress-sbox": {
“Name": "my-ingress-endpoint",
"EndpointID": "0205796eeb005ef77b3ea382fdle72c312a58fd717b5a79cabcacc7e090068e6",
"MacAddress": "02:42:0a:0b:00:0a",
"IPv4Address": "10.11.0.10/16",
"IPvbAddress": ""
}
},
"Options": {
"com.docker.network.driver.mtu": "1200",
"com.docker.network.driver.overlay.vxlanid list": "4100"
¥,
“Labels": {},
"Peers": [
{

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 56/75 DOF203 - Gestion du Réseau avec Docker

"Name": "9a00e8bc72fe",
"TP": "10.0.2.62"

b

{
"Name": "3ea669d48ca2",
"IP": "10.0.2.64"

b

{
"Name": "f30e39df1704",
"IP": "10.0.2.63"

¥

]
Supprimez maintenant le service my-nginx :

root@manager:~# docker service rm my-nginx
my -nginx

LAB #3 - Gestion d'une Architecture de Microservices

Vous allez mettre en place une application simple, appelé demo-voting-app et développé par Docker, sous forme de microservices :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 57/75 DOF203 - Gestion du Réseau avec Docker
voting-app result-app
Python MNodels
n-memaory DB db
Redis PostgressQL

Worker

]

Dans cette application le conteneur voting-app permet de voter pour des chats ou des chiens. Cette application tourne sous Python et fournit une

interface HTML :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 58/75 DOF203 - Gestion du Réseau avec Docker

[4 Cats s Dogs! x [4 cCatsvsDogs - Result ® | [4 Catswvs Dogs! ¥ | [CatsvsDogs - Result W + -

“ ['D D Mon sécurisé i & 0 M B M . (/) ﬂ

it applcations [HowtoCreate an & Telafriend W ifach Europe (8L NS Mes ressources EMD 2 Suggested Namir E simple-Help Senw & VirtualEowes - Fre & virtualfoo virtual -

Cats vs Dogs!

Lors de la vote, le résultat de celle-ci est stocké dans Redis dans une base de données en mémoire. Le résultat est ensuite passé au conteneur
Worker qui tourne sous .NET et qui met a jour la base de données persistante dans le conteneur db qui tourne sous PostgreSQL.

L'application result-app qui tourne sous Node)S lit ensuite la table dans la base de données PostgreSQL et affiche le résultat sous forme HTML :

www.ittraining.team - https://www.ittraining.team/

DOF203 - Gestion du Réseau avec Docker

2026/02/04 13:25 59/75
W [4 Cats ws Dogs! ¥ | [} CatsvsDogs - Result ® & = ¢ D

* & @ e "EA B0 M

o wirtualfox Virtual -

[4 Cats w5 Dogs! X | [} catsvsDogs - Result

€ 3 C O @ Nonsécurisé | [FREEEEIEL:

& Telafriend W ifach Europe (B3

[f§ Mes ressources ENL 32 Suggested Mamins § Simple-HelpServer 4 Virtualowes - Fres

it applications [4 HowtoCreate an

CATS DOGS

100.0% 0.0%

3.1 - Mise en Place avec Docker Swarm avec des réseaux Overlay

Cette application peut étre mise en place sous docker swarm avec avec la commande docker stack. Un stack est un groupe de services.

Premierement, vérifiez I'état du Swarm :

root@manager:~# docker node 1s
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ENGINE VERSION

Active Leader

b85hx1ixbrimhltxdlhrfed4us * manager.i2tch.loc Ready

19.03.4

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 60/75 DOF203 - Gestion du Réseau avec Docker

4sui75vvdhmet4qvtOzbvzlzl workerl.i2tch.loc Ready Active
19.03.4
1bjtg509kw3x6xg7frm07j fuw worker2.i2tch. loc Ready Active
19.03.4

Téléchargez maintenant le fichier docker-stack.yml :

root@manager:~# curl -0 https://raw.githubusercontent.com/docker/example-voting-app/master/docker-stack.yml

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 1707 100 1707 0 0 2030 O --:--1-- --1--1-- --1--1-- 2029

Consultez le fichier téléchargé :

root@manager:~# cat docker-stack.yml
version: "3"
services:

redis:
image: redis:alpine
networks:
- frontend
deploy:
replicas: 1
update config:
parallelism: 2
delay: 10s
restart policy:
condition: on-failure
db:
image: postgres:9.4
environment:
POSTGRES USER: "postgres"
POSTGRES PASSWORD: "postgres"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 61/75 DOF203 - Gestion du Réseau avec Docker

volumes:
- db-data:/var/lib/postgresql/data
networks:
- backend
deploy:
placement:
constraints: [node.role == manager]
vote:
image: dockersamples/examplevotingapp vote:before
ports:
- 5000:80
networks:
- frontend
depends _on:
- redis
deploy:
replicas: 2
update config:
parallelism: 2
restart policy:
condition: on-failure
result:
image: dockersamples/examplevotingapp result:before
ports:
- 5001:80
networks:
- backend
depends on:
- db
deploy:
replicas: 1
update config:
parallelism: 2
delay: 10s

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 62/75 DOF203 - Gestion du Réseau avec Docker

restart policy:
condition: on-failure

worker:
image: dockersamples/examplevotingapp worker
networks:
- frontend
- backend
depends _on:
- db
- redis
deploy:
mode: replicated
replicas: 1
labels: [APP=VOTING]
restart policy:
condition: on-failure
delay: 10s
max_ attempts: 3
window: 120s

placement:
constraints: [node.role == manager]
visualizer:
image: dockersamples/visualizer:stable
ports:
"8080:8080"
stop grace period: 1m30s
volumes:
"/var/run/docker.sock:/var/run/docker.sock"
deploy:
placement:
constraints: [node.role == manager]

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 63/75 DOF203 - Gestion du Réseau avec Docker

networks:
frontend:
backend:

volumes:
db-data:

Dans ce fichier on peut constater 6 services, redis, db, vote, result, worker et visualizer. Les 5 premiers services forment ensemble I'application
tandis que le service visualizer nous permettra de voir comment I'application a été mise en place.

Dans un premier temps, regardez la clef deploy du service worker :

deploy:

mode: replicated

replicas: 1

labels: [APP=VOTING]

restart policy:
condition: on-failure
delay: 10s
max_attempts: 3
window: 120s

placement:
constraints: [node.role == manager]

La clef deploy permet de spécifier des options lors du déploiement du service :

* mode - Il existe deux types de services. Replicated ol on spécifie le nombre d'instances que Docker doit mettre en place sur les hétes
disponibles en fonction de la valeur de replicas et Global qui implique que Docker démarrera une instance du service sur chaque héte chaque
fois qu'un hoéte devient disponible.

(2]

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 64/75 DOF203 - Gestion du Réseau avec Docker

« replicas - spécifie le nombre de replicas

» restart_policy spécifie ce qui se passe en cas d'arrét du service. Dans le cas ci-dessus, docker va essayer de re-démarrer le service 3 fois
(max_attempts) a des intervalles de 10 secondes (delay) en attendant chaque fois 120 secondes (window) pour constater si le service s'est
effectivement re-démarré,

» placement - spécifie ou le service doit étre démarré.

Déployez maintenant le stack :

root@manager:~# docker stack deploy -c docker-stack.yml app
Creating network app backend

Creating network app default

Creating network app_ frontend

Creating service app _worker

Creating service app visualizer

Creating service app redis

Creating service app _db

Creating service app vote

Creating service app_result

| Important - Notez que chaque réseau et chaque service a comme préfixe le nom de

£°% . 'application app.

Consultez maintenant I'état du stack :

root@manager:~# docker stack 1s

NAME SERVICES ORCHESTRATOR
app 6 Swarm

Consultez ensuite I'état des services :

root@manager:~# docker service ls

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 65/75 DOF203 - Gestion du Réseau avec Docker
ID NAME MODE REPLICAS IMAGE

PORTS

d0idac4fshw0 app_db replicated 1/1 postgres:9.4

funp5kboyipl app_redis replicated 1/1 redis:alpine

dpdkc490j671 app_result replicated 1/1

dockersamples/examplevotingapp result:before *:5001->80/tcp

vrkahv38v5mn app_visualizer replicated 1/1 dockersamples/visualizer:stable
*:8080->8080/tcp

t4ul6cpdrx21 app_vote replicated 2/2

dockersamples/examplevotingapp vote:before *:5000->80/tcp

so40eljbcviy app _worker replicated 1/1

dockersamples/examplevotingapp worker:latest

| Important : Notez que la configuration du service visualizer a exposé le port 8080. De

cette facon, ce service est disponible sur le port 8080 de chaque noeud dans la swarm.

Retournez a la fenétre d'Apache Guacamole dans le navigateur de votre ordinateur. Cliquez sur la connexion TraineeXX_VNC. Lancez ensuite un
navigateur Internet dans la machine virtuelle debian9. Naviguez a I'URL http://10.0.2.62:8080 et consultez le service visualizer :

www.ittraining.team - https://www.ittraining.team/

http://10.0.2.62:8080

2026/02/04 13:25 66/75

DOF203 - Gestion du Réseau avec Docker

Fubder Packing Ecran Estrbe Plviphdiigess

Managen (INsantaasg 1) [Bn tenctien] - O

el

i fopiicotions i Wisuaslizer - Moclls Feefox

& B e hidas

L c

fa

o [l Frales — poltigue da

il 104a.31%

‘Viusalrer - Maaills Firefas

o e Wi

i

1215 e Treenge

[P s T

Comme vous pouvez constater, conformément au fichier docker-stack.yml, les trois conteneurs db, worker et visualizer ont été démarrés sur le

noeud manager.

Retournez a votre connexion SSH et consultez I'état des réseaux dans les trois nceuds :

root@manager:~# docker network 1ls

NETWORK ID NAME
sw489bb290zb app backend
smuxoglyudpo app_default
1fizui950d90 app_frontend
24be8a0f0ef5 bridge
d4c9b0c9437a docker gwbridge
f3cb3bc3c581 host
x714mk41db75 my-ingress
de563e30d473 none

DRIVER
overlay
overlay
overlay
bridge
bridge
host
overlay
null

SCOPE
swarm
swarm
swarm
local
local
local
swarm
local

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25

67/75

DOF203 - Gestion du Réseau avec Docker

2 []
-

Important : Notez que les trois réseaux créés sont de type overlay.

root@workerl:~# docker network 1ls

NETWORK ID

ghysvpoolsw0
f9a69d02de3b
ee22b3e623ca
f3cb3bc3c581
x714mk41db75
de563e30d473

root@worker2
NETWORK ID

s4gbgidispli
ghysvpoolsw0
0e6c118bf3fd
0celd8369c29
f3cb3bc3c581
x714mk41db75
de563e30d473

NAME

app_frontend
bridge
docker gwbridge

host

my-ingress

none

u
(- J

Important : Notez que seul le réseau app_frontend a été créé dans workerl.

:~# docker network 1s

NAME

app_backend
app_frontend
bridge

docker gwbridge

host

my-ingress

none

DRIVER
overlay
bridge
bridge
host
overlay
null

DRIVER
overlay
overlay
bridge
bridge
host
overlay
null

SCOPE
swarm
local
local
local
swarm
local

SCOPE
swarm
swarm
local
local
local
swarm
local

Important : Notez que les deux réseaux app_frontend et app_backend ont été créés

dans worker2.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 68/75 DOF203 - Gestion du Réseau avec Docker

Consultez les informations concernant le réseau app_backend :

root@manager:~# docker inspect app backend
[
{

“Name": "app backend",
"“Id": "s4gbgidispliSwjpgnf4uciza",
"Created": "2019-11-03T17:30:56.822222239+01:00",

“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

"Subnet": "10.0.3.0/24",
"Gateway": "10.0.3.1"

]
I
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
b
"ConfigOnly": false,
"Containers": {
"7d0b28e4e1828b437afladlf322acb5cf19afc25c42303986dd2c7b4d5aea568": {
“Name": "app db.1l.s6gbwd47k532rvaeoyske8as9i”,
"EndpointID": "c26795c837f6dc736a3f9be34525ae505e9db6381a2144bb62087b3eebc7ff25",
"MacAddress": "02:42:0a2:00:03:03",
"IPv4Address": "10.0.3.3/24",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 69/75 DOF203 - Gestion du Réseau avec Docker

"IPv6Address": ""
|
"ef7227281d297b001bb0f60ac81a0c9926e8fb663a7f43eb201cced632dc5564": {
“Name": "app worker.1l.38kniuqoelvfyonwdcytlhpqo",
"EndpointID": "990065eec5062ff159e82bcle4666Td098d5597439221995af4f01040ab24599",
"MacAddress": "02:42:0a:00:03:09",
"IPv4Address": "10.0.3.9/24",

"IPv6Address": ""
|
"lb-app backend": {
“Name": "app backend-endpoint",
"EndpointID": "913845cbab9a6c301leaaal87fcc66f10268b5e11554be9f1a20b1078f7b9b8a4",
"MacAddress": "02:42:0a:00:03:04",
"IPv4Address": "10.0.3.4/24",
"IPv6Address": ""
}
}
"Options": {
“com.docker.network.driver.overlay.vxlanid list": "4101"
H
"Labels": {
"com.docker.stack.namespace": "app"
}
"Peers": [
{
"Name": "377986fb7d5a",
"IP": "10.0.2.62"
}
{
“Name": "5cc4b863da9f",
"IP": "10.0.2.64"
}

}

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 70/75

]

DOF203 - Gestion du Réseau avec Docker

Important : Notez que le réseau est 10.0.3.0/24 et la passerelle 10.0.3.1.

F u
-

Consultez les informations concernant le réseau app_frontend :

root@manager:~# docker inspect app frontend
[
{
“Name": "app_ frontend",
"Id": "ghysvpoolsw0318gsubbvd3rx",
“"Created": "2019-11-03T17:31:27.354293132+01:00",

"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

"Subnet": "10.0.2.0/24",
"Gateway": "10.0.2.1"

]
I
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""

}'

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 71/75 DOF203 - Gestion du Réseau avec Docker

“"ConfigOnly": false,
"Containers": {
"ef7227281d297b001bb0f60ac81a0c9926e8fb663a7f43eb201cced632dc5564": {
“Name": "app worker.1l.38kniuqoelvfyonwdcytlhpqo",
"EndpointID": "3fad9773920412464b6aeee59f8d9ffc5aac2e937b88dc384268591cf7d21fb9",
"MacAddress": "02:42:0a:00:02:0a",
"IPv4Address": "10.0.2.10/24",

"IPvbAddress": ""
b
"lb-app frontend": {
“Name": "app frontend-endpoint",
"EndpointID": "343887373c1f92ac08b271ee52dd160089eeed7cadl3b7924e438919254hb6442",
"MacAddress": "02:42:0a:00:02:0b",
"IPv4Address": "10.0.2.11/24",
"IPvbAddress": ""
}
I
"Options": {
"com.docker.network.driver.overlay.vxlanid list": "4100"
b
"Labels": {
"com.docker.stack.namespace": "app"
I
"Peers": [
{
"Name": "Oe2lbalbbfab",
"IP": "10.0.2.63"
|
{
"Name": "5cc4b863da9f",
"IP": "10.0.2.64"
b
{

"Name": "377986fb7d5a",

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 72/75 DOF203 - Gestion du Réseau avec Docker

“IP": "10.0.2.62"

Important : Notez que le réseau est 10.0.2.0/24 et la passerelle 10.0.2.1.

Consultez les informations concernant le réseau app_default :

root@manager:~# docker inspect app default
[

{
"Name": "app default",

"Id": "z62t49wl8wl2mrboa92tunrhq",
“Created": "2019-10-28T17:22:44.724040846+01:00",

“Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

"Subnet": "10.0.1.0/24",
"Gateway": "10.0.1.1"

]
}'

"Internal": false,
"Attachable": false,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 73/75 DOF203 - Gestion du Réseau avec Docker

"Ingress": false,
"ConfigFrom": {
"Network": ""
Iy,
"ConfigOnly": false,
"Containers": {
"2032d9eae353130e283a91bcO9b65b4a84b7e815602a466T4ealbd9c64e964dc" : {
“Name": "app visualizer.1l.nbf78cn5g37dmu@fwrxt7kbrg",
"EndpointID": "d5274ff057c9d9af0288efb7f9bfed3a5calb3e656e265ad343f52cOblcl6lf5",
"MacAddress": "02:42:0a:00:01:03",
"IPv4Address": "10.0.1.3/24",
"IPvbAddress": ""
},
“lb-app_default": {
“Name": "app default-endpoint",
"EndpointID": "6afb8909d94528633e4150054311f645790280blablc686c43e865ba97ec3df9",
"MacAddress": "02:42:0a:00:01:04",
"IPv4Address": "10.0.1.4/24",
"IPv6bAddress": ""
}
i
"Options": {
"com.docker.network.driver.overlay.vxlanid list": "4099"
},
"Labels": {
"com.docker.stack.namespace": "app"
},
"Peers": [
{
"Name": "377986fb7d5a",
"IP": "10.0.2.62"

}

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 74/75 DOF203 - Gestion du Réseau avec Docker

]

! . Important : Notez que le réseau est 10.0.1.0/24 et la passerelle 10.0.1.1.

Schématiquement, la mise en place de I'application dans le Swarm est ainsi :

manager
10.0.2.15

app-redis app-result

app-visualizer
10.0.1.3

End Paoint
10.01.4

app-vote app-vote

app_backend app-db End Point
10.0.3.0/24 10.0.3.3 10.0.3.4
gw 10.0.3.1 o
app_frontend app-worker End Point
10.0.2.024 10.0.2.10 10.02.11
gw 10.0.2.1 10.0.3.9

Dernierement, supprimez le stack :

www.ittraining.team - https://www.ittraining.team/

2026/02/04 13:25 75/75

DOF203 - Gestion du Réseau avec Docker

root@manager:~# docker stack 1s
NAME SERVICES
app 6
root@manager:~# docker stack rm app
Removing service app_db
Removing service app_redis
Removing service app_result
Removing service app visualizer
Removing service app vote
Removing service app worker
Removing network app frontend
Removing network app backend
Removing network app default
root@manager:~# docker ps -a

CONTAINER ID IMAGE
PORTS NAMES
d02c6115724c alpine
alpinel

Copyright © 2022 Hugh Norris.

From:

ORCHESTRATOR
Swarm

COMMAND

“/bin/sh"

https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:

CREATED

6 days ago

https://www.ittraining.team/doku.php?id=elearning:workbooks:docker2:drf02

Last update: 2022/04/29 07:57

STATUS

Exited (@) 6 days ago

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker2:drf02

	DOF203 - Gestion du Réseau avec Docker
	Contenu du Module
	L'Approche Réseau Docker
	LAB #1 - Les Réseaux Docker ayant un Scope Local
	1.1 - Bridge
	Liens

	1.2 - Host
	1.3 - None
	1.4 - Lancer Wordpress dans un container
	1.5 - Gestion d'une Architecture de Microservices

	LAB #2 - Gestion du Réseau overlay
	2.2 - Création d'un Réseau overlay
	2.2 - Création d'un Service
	2.3 - Déplacer le Service vers un autre Réseau overlay
	2.4 - DNS container discovery
	2.5 - Création d'un Réseau overlay Personnalisé

	LAB #3 - Gestion d'une Architecture de Microservices
	3.1 - Mise en Place avec Docker Swarm avec des réseaux Overlay

