
2026/02/04 13:25 1/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Version : 2022.01

Dernière mise-à-jour : 2022/04/29 07:57

DOF203 - Gestion du Réseau avec Docker

Contenu du Module

DOF203 - Gestion du Réseau avec Docker
Contenu du Module
L'Approche Réseau Docker
LAB #1 - Les Réseaux Docker ayant un Scope Local

1.1 - Bridge
Liens

1.2 - Host
1.3 - None
1.4 - Lancer Wordpress dans un container
1.5 - Gestion d'une Architecture de Microservices

LAB #2 - Gestion du Réseau overlay
2.1 - Création d'un Réseau overlay
2.2 - Création d'un Service
2.3 - Déplacer le Service vers un autre Réseau overlay
2.4 - DNS container discovery
2.5 - Création d'un Réseau overlay Personnalisé

LAB #3 - Gestion de l'Architecture des Microservices
3.1 - Mise en Place avec Docker Swarm avec des réseaux Overlay

L'Approche Réseau Docker

L'approche réseau de Docker est libnetwork qui implémente le Container Network Model (CNM). Dans ce modèle on trouve trois composants :

2026/02/04 13:25 2/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Sandbox,
contient la configuration réseau du conteneur à savoir, la gestion des interfaces, la table de routage et le DNS,

Endpoint,
relie un sandbox à un network,

Network,
un groupe d'endpoints qui communiquent directement.

LAB #1 - Les Réseaux Docker ayant un Scope Local

Docker fournit trois réseaux par défaut :

root@debian9:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
495b3db75b0d bridge bridge local
e1ed4de2f947 host host local
6bda460c97c6 none null local

2026/02/04 13:25 3/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

1.1 - Bridge

Ce type de réseau est limité aux conteneurs d'un hôte unique exécutant Docker. Les conteneurs ne peuvent communiquer qu'entre eux et ils ne sont
pas accessibles depuis l'extérieur. Pour que les conteneurs sur le réseau puissent communiquer ou être accessibles du monde extérieur, il faut
configurer le mappage de port.

Par défaut Docker fonctionne en mode Pont ou (Bridge) et crée une interface intermédiaire à cet effet appelé docker0 :

root@debian9:~# ip addr show docker0
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
 link/ether 02:42:38:f1:e7:ee brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever

Démarrez un conteneur dénommé resotest à partir d'une image de CentOS :

root@debian9:~# docker run -itd --name=resotest centos
2169360fcbfdbd6e68ea969a95edeb6fc42603c23ee42f03ceec286276519855

Lancez ensuite la commande docker network inspect bridge à partir de la machine virtuelle hôte de Debian_9 :

root@debian9:~# docker network inspect bridge
[
 {
 "Name": "bridge",
 "Id": "495b3db75b0d4bfcfc6da7c3e2af5f6addcdc227aa8b69b1e59a998be1819d12",
 "Created": "2017-09-07T07:44:49.942615596+01:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,

2026/02/04 13:25 4/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Config": [
 {
 "Subnet": "172.17.0.0/16",
 "Gateway": "172.17.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "2169360fcbfdbd6e68ea969a95edeb6fc42603c23ee42f03ceec286276519855": {
 "Name": "resotest",
 "EndpointID": "fc74e519d69b9a2112be959c92cda22b67671b52efbbd36fadf66097ccbb1271",
 "MacAddress": "02:42:ac:11:00:03",
 "IPv4Address": "172.17.0.3/16",
 "IPv6Address": ""
 },
 },
 "Options": {
 "com.docker.network.bridge.default_bridge": "true",
 "com.docker.network.bridge.enable_icc": "true",
 "com.docker.network.bridge.enable_ip_masquerade": "true",
 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
 "com.docker.network.bridge.name": "docker0",
 "com.docker.network.driver.mtu": "1500"
 },
 "Labels": {}
 }
]

2026/02/04 13:25 5/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Important : Notez ici que le conteneur resotest ne dispose pas de la même adresse que l'interface docker0 de la machine hôte.
Cependant les adresses se trouvent dans le même segment - 172.17.0.0/16 indiqué par la sortie “Subnet”: “172.17.0.0/16”.

Vous pouvez déconnecter un conteneur du réseau en utilisant la commande suivante :

root@debian9:~# docker network disconnect bridge resotest
root@debian9:~# docker network inspect bridge
[
 {
 "Name": "bridge",
 "Id": "495b3db75b0d4bfcfc6da7c3e2af5f6addcdc227aa8b69b1e59a998be1819d12",
 "Created": "2017-09-07T07:44:49.942615596+01:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "172.17.0.0/16",
 "Gateway": "172.17.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },

2026/02/04 13:25 6/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "ConfigOnly": false,
 "Containers":
 },
 "Options": {
 "com.docker.network.bridge.default_bridge": "true",
 "com.docker.network.bridge.enable_icc": "true",
 "com.docker.network.bridge.enable_ip_masquerade": "true",
 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
 "com.docker.network.bridge.name": "docker0",
 "com.docker.network.driver.mtu": "1500"
 },
 "Labels": {}
 }
]

Créez maintenant votre propre réseau ponté appelé my-bridged-network :

root@debian9:~# docker network create -d bridge --subnet 172.25.0.0/16 --gateway 172.25.0.1 my-bridged-network
ceb7ba7493933c55d181bc92b1f799ca07bfe84b168d52a6ac648c1a906093f3
root@debian9:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
495b3db75b0d bridge bridge local
e1ed4de2f947 host host local
ceb7ba749393 my-bridged-network bridge local
6bda460c97c6 none null local

Bien évidement, ce réseau est actuellement vide :

root@debian9:~# docker network inspect my-bridged-network
[
 {
 "Name": "my-bridged-network",
 "Id": "ceb7ba7493933c55d181bc92b1f799ca07bfe84b168d52a6ac648c1a906093f3",
 "Created": "2017-09-07T10:03:17.063730665+01:00",

2026/02/04 13:25 7/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.25.0.0/16",
 "Gateway": "172.25.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {},
 "Options": {},
 "Labels": {}
 }
]

Lancez maintenant deux conteneurs et consultez les informations concernant le réseau :

root@debian9:~# docker run -itd --name=centos1 centos
9f36a628c72b383edfd4dc13ee4e4b2eaf5be0078d780f0334fcb8be0d977d0e

root@debian9:~# docker run -itd --name=centos2 centos
aaed3bc8e404ee1bccd6c87b39de32332940b5391514691fc70188edb17c1d7c

2026/02/04 13:25 8/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

root@debian9:~# docker inspect --format='{{json .NetworkSettings.Networks}}' centos1
{"bridge":{"IPAMConfig":null,"Links":null,"Aliases":null,"NetworkID":"495b3db75b0d4bfcfc6da7c3e2af5f6addcdc227aa8
b69b1e59a998be1819d12","EndpointID":"d7b87875688b45258fc867b6bb8b0a0592f5c5fa16857fe136e55b87b6698219","Gateway":
"172.17.0.1","IPAddress":"172.17.0.3","IPPrefixLen":16,"IPv6Gateway":"","GlobalIPv6Address":"","GlobalIPv6PrefixL
en":0,"MacAddress":"02:42:ac:11:00:03","DriverOpts":null}}

root@debian9:~# docker inspect --format='{{json .NetworkSettings.Networks}}' centos2
{"bridge":{"IPAMConfig":null,"Links":null,"Aliases":null,"NetworkID":"495b3db75b0d4bfcfc6da7c3e2af5f6addcdc227aa8
b69b1e59a998be1819d12","EndpointID":"2bfe090dccef89495d437d8deba5765996a917544ab7fde28ef5199f4e907eb1","Gateway":
"172.17.0.1","IPAddress":"172.17.0.4","IPPrefixLen":16,"IPv6Gateway":"","GlobalIPv6Address":"","GlobalIPv6PrefixL
en":0,"MacAddress":"02:42:ac:11:00:04","DriverOpts":null}}

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos1
172.17.0.3

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4

Mettez le conteneur centos1 dans le réseau my-bridged-network :

root@debian9:~# docker network connect my-bridged-network centos1

root@debian9:~# docker network inspect my-bridged-network
[
 {
 "Name": "my-bridged-network",
 "Id": "ceb7ba7493933c55d181bc92b1f799ca07bfe84b168d52a6ac648c1a906093f3",
 "Created": "2017-09-07T10:03:17.063730665+01:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},

2026/02/04 13:25 9/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Config": [
 {
 "Subnet": "172.25.0.0/16",
 "Gateway": "172.25.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "9f36a628c72b383edfd4dc13ee4e4b2eaf5be0078d780f0334fcb8be0d977d0e": {
 "Name": "centos1",
 "EndpointID": "71e10e4e34ce8c42ef029e302f6ed372357f6fde8fd87fc2cbc1b14c2bdf6bb5",
 "MacAddress": "02:42:ac:19:00:02",
 "IPv4Address": "172.25.0.2/16",
 "IPv6Address": ""
 }
 },
 "Options": {},
 "Labels": {}
 }
]

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos1
172.17.0.3172.25.0.2

Important : Notez que le conteneur centos1 se trouve dans deux réseaux.

2026/02/04 13:25 10/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Faites la même chose pour le conteneur centos2 :

root@debian9:~# docker network connect my-bridged-network centos2

root@debian9:~# docker network inspect my-bridged-network
[
 {
 "Name": "my-bridged-network",
 "Id": "ceb7ba7493933c55d181bc92b1f799ca07bfe84b168d52a6ac648c1a906093f3",
 "Created": "2017-09-07T10:03:17.063730665+01:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.25.0.0/16",
 "Gateway": "172.25.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "9f36a628c72b383edfd4dc13ee4e4b2eaf5be0078d780f0334fcb8be0d977d0e": {
 "Name": "centos1",
 "EndpointID": "71e10e4e34ce8c42ef029e302f6ed372357f6fde8fd87fc2cbc1b14c2bdf6bb5",

2026/02/04 13:25 11/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "MacAddress": "02:42:ac:19:00:02",
 "IPv4Address": "172.25.0.2/16",
 "IPv6Address": ""
 },
 "aaed3bc8e404ee1bccd6c87b39de32332940b5391514691fc70188edb17c1d7c": {
 "Name": "centos2",
 "EndpointID": "34f533622f134b995097f1d3e6ce935158c1e5644201f896b42336738a81819c",
 "MacAddress": "02:42:ac:19:00:03",
 "IPv4Address": "172.25.0.3/16",
 "IPv6Address": ""
 }
 },
 "Options": {},
 "Labels": {}
 }
]

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4172.25.0.3

Connectez-vous au conteneur centos1 en lançant bash :

root@debian9:~# docker exec -it centos1 bash

Vérifiez que la connectivité fonctionne :

[root@9f36a628c72b /]# ping 172.25.0.3
PING 172.25.0.3 (172.25.0.3) 56(84) bytes of data.
64 bytes from 172.25.0.3: icmp_seq=1 ttl=64 time=0.100 ms
64 bytes from 172.25.0.3: icmp_seq=2 ttl=64 time=0.050 ms
64 bytes from 172.25.0.3: icmp_seq=3 ttl=64 time=0.050 ms
^C
--- 172.25.0.3 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms

2026/02/04 13:25 12/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

rtt min/avg/max/mdev = 0.050/0.066/0.100/0.025 ms

Les options possibles au niveau de la gestion du réseau sont vaste. Voici deux exemples supplémentaires.

Il est possible d'ajouter une adresse d'un serveur DNS au lancement d'un conteneur :

[root@9f36a628c72b /]# exit
exit
root@debian9:~# docker stop resotest
mongo2
root@debian9:~# docker rm resotest
mongo2
root@debian9:~# docker run -it --name=resotest --dns 8.8.8.8 centos bash
root@735599480b45:/# cat /etc/resolv.conf
search home
nameserver 8.8.8.8
root@735599480b45:/#

ou de passer une entrée pour le fichier /etc/hosts :

root@735599480b45:/# exit
exit
root@debian9:~# docker stop resotest
mongo2
root@debian9:~# docker rm resotest
mongo2
root@debian9:~# docker run -it --name=resotest --add-host mickeymouse:127.0.0.1 centos bash
root@718e7eab814f:/# cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

2026/02/04 13:25 13/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

127.0.0.1 mickeymouse
172.17.0.2 718e7eab814f

Liens

Le mécanisme des liens entre conteneurs est très puissant et permet d'atteindre un autre conteneur facilement à condition que les deux conteneurs
soient dans le même réseau. Créez donc un conteneur dénommé centos3 qui est lié au conteneur centos2 qu'il connait aussi sous l'alias alias :

root@332aa9930f30:/# exit
exit

root@debian9:~# docker run -itd --name centos3 --link centos2:alias centos
6a315259b2946c3bf2bb69f608cbe910d87edaadedb4f805e7a4dbf6af1eb916

root@debian9:~# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
6a315259b294 centos "/bin/bash" 33 seconds ago Up 32 seconds
centos3
332aa9930f30 i2tch/mongodb2 "docker-entrypoint..." 3 minutes ago Exited (127) 39 seconds ago
mongo2
aaed3bc8e404 centos "/bin/bash" 16 minutes ago Up 16 minutes
centos2
9f36a628c72b centos "/bin/bash" 16 minutes ago Up 16 minutes
centos1
2169360fcbfd centos "/bin/bash" 20 minutes ago Up 20 minutes
resotest
ea239635e141 testcache "more /tmp/moment" 7 hours ago Exited (0) 7 hours ago
test1
21b0490a93dd i2tch/mydocker "/entrypoint.sh my..." 7 hours ago Exited (137) 6 hours ago
myDocker
bdb4bc0f81de i2tch/mongodb1 "docker-entrypoint..." 18 hours ago Created
27017/tcp mongo1

2026/02/04 13:25 14/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

f5b45072b831 i2tch/mongodb "bash" 19 hours ago Exited (137) 6 hours ago
mongo
9731a48f126a nginx "nginx -g 'daemon ..." 19 hours ago Exited (0) 6 hours ago
cocky_gates
eacd70596e23 nginx "nginx -g 'daemon ..." 19 hours ago Exited (0) 19 hours ago
adoring_yonath
cffb4456e9c4 ubuntu "/bin/bash" 20 hours ago Exited (0) 20 hours ago
i2tch

root@debian9:~# docker exec -it centos3 bash

[root@6a315259b294 /]# ping centos2
PING alias (172.17.0.4) 56(84) bytes of data.
64 bytes from alias (172.17.0.4): icmp_seq=1 ttl=64 time=0.116 ms
64 bytes from alias (172.17.0.4): icmp_seq=2 ttl=64 time=0.069 ms
64 bytes from alias (172.17.0.4): icmp_seq=3 ttl=64 time=0.068 ms
64 bytes from alias (172.17.0.4): icmp_seq=4 ttl=64 time=0.070 ms
^C
--- alias ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.068/0.080/0.116/0.023 ms

[root@6a315259b294 /]# cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.17.0.4 alias aaed3bc8e404 centos2
172.17.0.2 6a315259b294

[root@6a315259b294 /]# exit
exit

2026/02/04 13:25 15/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos3
172.17.0.2

Notez cependant qu le lien est unidirectionnel :

root@debian9:~# docker exec -it centos2 bash

[root@aaed3bc8e404 /]# ping centos3
ping: centos3: Name or service not known

[root@aaed3bc8e404 /]# ping 172.17.0.2
PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.054 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.035 ms
64 bytes from 172.17.0.2: icmp_seq=3 ttl=64 time=0.051 ms
64 bytes from 172.17.0.2: icmp_seq=4 ttl=64 time=0.071 ms
^C
--- 172.17.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.035/0.052/0.071/0.015 ms

[root@aaed3bc8e404 /]#

Dans le cas ci-dessus, centos2 peut atteindre centos3 en utilisant l'adresse IP 172.17.0.2 car centos2 se trouve dans les deux réseaux avec les
adresses IP 172.17.0.4 et 172.25.0.3 :

[root@aaed3bc8e404 /]# exit
exit
root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4172.25.0.3

2026/02/04 13:25 16/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

1.2 - Host

Ce type de réseau est utilisé dans le cas où le réseau ne doit pas être isolé de l'hôte tout en isolant les autres aspects du conteneur. Les conteneurs
utilisent la même interface que l'hôte en prenant la même adresse IP que la machine hôte.

Dans le cas de la machine virtuelle, l'adresse IP de l'interface connectée au réseau local est 10.0.2.60 :

root@debian9:~# ip addr show ens18
2: ens18: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether 08:00:27:2e:77:01 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.60/24 brd 10.0.2.255 scope global dynamic ens18
 valid_lft 83772sec preferred_lft 83772sec
 inet6 fe80::a00:27ff:fe2e:7701/64 scope link
 valid_lft forever preferred_lft forever

Démarrez un conteneur à partir de l'image centos dans un réseau de type host :

root@debian9:~# docker run -it --rm --network host --name centos3 centos bash
[root@debian9 /]# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: ens18: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether 08:00:27:2e:77:01 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.60/24 brd 10.0.2.255 scope global dynamic ens18
 valid_lft 82102sec preferred_lft 82102sec
 inet6 fe80::a00:27ff:fe2e:7701/64 scope link
 valid_lft forever preferred_lft forever
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
 link/ether 02:42:38:f1:e7:ee brd ff:ff:ff:ff:ff:ff

2026/02/04 13:25 17/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:38ff:fef1:e7ee/64 scope link
 valid_lft forever preferred_lft forever
[root@debian9 /]# hostname
debian9
[root@debian9 /]# exit

Le but de ce type de réseau est de permettre l'accès à des services dans le conteneur directement à partir de l'adresse IP de l'hôte Docker. Par
exemple, un nginx dans le conteneur pourrait être joint directement sur 10.0.2.60:80 sans avoir besoin de passer par l'exposition du port.

Pour cette raison, dans le cas de l'option -p utilisé dans la cas du réseau host, cette option n'est pas prise en compte et produit l'avertissement
WARNING: Published ports are discarded when using host network mode. L'utilité majeure donc du réseau host se trouve dans le cas où de
multiples ports dans le conteneur doivent être joignables.

Important : Notez que le réseau de type host ne fonctionne que sous
Linux. Il est donc incompatible avec Docker Desktop pour Mac, Docker
Desktop pour Windows et Docker EE pour Windows Server.

1.3 - None

Ce type de réseau est utilisé principalement dans le cas de l'utilisation d'un plugin réseau disponible dans le Docker Hub.

Il est donc possible de lancer un conteneur totalement étanche grâce au réseau none :

root@718e7eab814f:/# exit
exit
root@debian9:~# docker stop mongo2
mongo2
root@debian9:~# docker rm mongo2

https://hub.docker.com/search/?category=network&q=&type=plugin

2026/02/04 13:25 18/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

mongo2
root@debian9:~# docker run -it --name mongo2 --network none i2tch/mongodb2 bash
root@332aa9930f30:/#

1.4 - Lancer Wordpress dans un container

Créez le répertoire ~/wordpress et placez-vous dedans :

root@debian9:~# mkdir ~/wordpress && cd ~/wordpress

Créez un conteneur dénommé wordpressdb à partir de l'image mariadb:latest :

root@debian9:~/wordpress# docker run -e MYSQL_ROOT_PASSWORD=fenestros -e MYSQL_DATABASE=wordpress --name
wordpressdb -v "$PWD/database":/var/lib/mysql -d mariadb:latest
Unable to find image 'mariadb:latest' locally
latest: Pulling from library/mariadb
f2b6b4884fc8: Pull complete
26d8bdca4f3e: Pull complete
74f09e820cce: Pull complete
5390f1fe4554: Pull complete
3d3f1706a741: Pull complete
2942f66426ea: Pull complete
97ee11d39c75: Pull complete
590c46ef722b: Pull complete
32eb4b9666e5: Pull complete
fc883f98a064: Pull complete
bb8bee61bc1e: Pull complete
Digest: sha256:6135f5b851e7fe263dcf0edf3480cdab1ab28c4287e867c5d83fbe967412ea14
Status: Downloaded newer image for mariadb:latest
67831dacf002bdc21dc79b0e8483f538235d00ddd2e8aae175ef3ebf189ae14d

Vérifiez que le conteneur fonctionne :

2026/02/04 13:25 19/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

root@debian9:~/wordpress# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
67831dacf002 mariadb:latest "docker-entrypoint.s…" About a minute ago Up 45 seconds
3306/tcp wordpressdb

Créez un conteneur appellé wordpress lié au conteneur wordpressdb :

root@debian9:~/wordpress# docker run -e WORDPRESS_DB_USER=root -e WORDPRESS_DB_PASSWORD=fenestros --name
wordpress --link wordpressdb:mysql -p 10.0.2.60:80:80 -v "$PWD/html":/var/www/html -d wordpress
Unable to find image 'wordpress:latest' locally
latest: Pulling from library/wordpress
2a72cbf407d6: Pull complete
273cd543cb15: Pull complete
ec5ac8875de7: Pull complete
9106e19b56c1: Pull complete
ee2f70ac7c7d: Pull complete
7257ad6985e8: Pull complete
18f5c2055da2: Pull complete
85293a6fdd80: Pull complete
9e797eeb0c14: Pull complete
f16178842884: Pull complete
13899c06d3f8: Pull complete
70c27fe4c3c5: Pull complete
d32c8ad2d9d7: Pull complete
07fe445494e6: Pull complete
63b8de7b32fe: Pull complete
e4b721952e22: Pull complete
d9ede6dd6f74: Pull complete
0af4f74bfd92: Pull complete
e4e7c47b969f: Pull complete
69aff47f3112: Pull complete
Digest: sha256:201d004f55669dd2c0884f00fc44145fb0da8cafa465bf22cbaacecaf81138d4
Status: Downloaded newer image for wordpress:latest

2026/02/04 13:25 20/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

9eb2f7fbfbd25307ed2f463c7eb3bef40bfa556174e68750bb76b8d032546129

Vérifiez que le conteneur fonctionne :

root@debian9:~/wordpress# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
9eb2f7fbfbd2 wordpress "docker-entrypoint.s…" 2 minutes ago Up About a minute
10.0.2.60:80->80/tcp wordpress
67831dacf002 mariadb:latest "docker-entrypoint.s…" 9 minutes ago Up 8 minutes 3306/tcp
wordpressdb

Vérifiez que le Wordpress fonctionne :

root@debian9:~/wordpress# lynx --dump http://10.0.2.60
 [1]WordPress
 Select a default language [English (United States)________]

 Continue

References

 1. https://wordpress.org/

root@debian9:~/wordpress# docker inspect wordpress | grep IPAddress
 "SecondaryIPAddresses": null,
 "IPAddress": "172.17.0.3",
 "IPAddress": "172.17.0.3",
root@debian9:~/wordpress# lynx --dump http://172.17.0.3
 [1]WordPress
 Select a default language [English (United States)________]

 Continue

2026/02/04 13:25 21/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

References

 1. https://wordpress.org/

1.5 - Gestion d'une Architecture de Microservices

Vous allez mettre en place une application simple sous forme de microservices, développé par Docker et appelé demo-voting-app, :

Dans cette application le conteneur voting-app permet de voter pour des chats ou des chiens. Cette application tourne sous Python et fournit une
interface HTML :

2026/02/04 13:25 22/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Lors de la vote, le résultat de celle-ci est stocké dans Redis dans une base de données en mémoire. Le résultat est ensuite passé au conteneur
Worker qui tourne sous .NET et qui met à jour la base de données persistante dans le conteneur db qui tourne sous PostgreSQL.

L'application result-app qui tourne sous NodeJS lit ensuite la table dans la base de données PostgreSQL et affiche le résultat sous forme HTML :

2026/02/04 13:25 23/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Cette application peut être mise en place sous docker avec les commandes suivantes :

docker run -d --name=redis redis
docker run -d --name=db -e POSTGRES_PASSWORD=postgres -e POSTGRES_USER=postgres postgres:9.4
docker run -d --name=vote -p 5000:80 --link redis:redis dockersamples/examplevotingapp_vote
docker run -d --name=result -p 5001:80 --link db:db dockersamples/examplevotingapp_result
docker run -d --name=worker --link db:db --link redis:redis dockersamples/examplevotingapp_worker

Cette solution utilise un réseau de type Bridge. Ce type de réseau est limité aux conteneurs d'un hôte unique exécutant Docker. Les conteneurs ne
peuvent communiquer qu'entre eux et ils ne sont pas accessibles depuis l'extérieur. Pour que les conteneurs sur le réseau puissent communiquer ou
être accessibles du monde extérieur, il faut configurer le mappage de port.

2026/02/04 13:25 24/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Ouvrez le navigateur web Firefox ou Chrome dans votre machine et saisissez l'URL selon le tableau ci-dessous :

ID URL (Notez http: et non https:)
Trainee10 http://compute01.ittraining.network
Trainee11 http://compute02.ittraining.network
Trainee12 http://compute03.ittraining.network
Trainee13 http://compute04.ittraining.network
Trainee14 http://compute05.ittraining.network
Trainee15 http://compute06.ittraining.network
Trainee16 http://compute07.ittraining.network
Trainee17 http://compute08.ittraining.network
Trainee18 http://compute09.ittraining.network
Trainee19 http://compute10.ittraining.network
Trainee20 http://compute01.ittraining.network
Trainee21 http://compute02.ittraining.network
Trainee22 http://compute03.ittraining.network
Trainee23 http://compute04.ittraining.network
Trainee24 http://compute05.ittraining.network
Trainee25 http://compute06.ittraining.network
Trainee26 http://compute07.ittraining.network
Trainee27 http://compute08.ittraining.network
Trainee28 http://compute09.ittraining.network
Trainee29 http://compute10.ittraining.network

Dans la boîte de connexion d'Apache Guacamole, entrez votre ID traineeXX et le mot de passe qui vous a été fourni par votre formateur.

Cliquez sur la connexion TraineeXX_VNC et testez ensuite votre application en utilisant le navigateur web de la machine virtuelle.

LAB #2 - Gestion du Réseau overlay

http://compute01.ittraining.network
http://compute02.ittraining.network
http://compute03.ittraining.network
http://compute04.ittraining.network
http://compute05.ittraining.network
http://compute06.ittraining.network
http://compute07.ittraining.network
http://compute08.ittraining.network
http://compute09.ittraining.network
http://compute10.ittraining.network
http://compute01.ittraining.network
http://compute02.ittraining.network
http://compute03.ittraining.network
http://compute04.ittraining.network
http://compute05.ittraining.network
http://compute06.ittraining.network
http://compute07.ittraining.network
http://compute08.ittraining.network
http://compute09.ittraining.network
http://compute10.ittraining.network

2026/02/04 13:25 25/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

En plus des réseaux bridge, host et none, Docker propose deux autres types de réseaux, à savoir overlay et macvlan. Ce module concerne overlay.
Pour plus d'informations concernant le type macvlan, consultez le site de la documentation de Docker ici.

Comme son nom indique, un réseau overlay est un réseau qui se positionne au-dessus du réseau des hôtes. Lors de la création d'un réseau overlay,
celui-ci n'est disponible par défaut qu'aux services swarm. Par contre il est possible de connecter des conteneurs autonomes au réseau overlay si
l'option –attachable est spécifiée lors de sa création. Ce type d'utilisation du réseau overlay n'est pas recommandé par Docker qui dit que le support
de cette fonctionnalité pourrait être retiré.

Le trafic lié à la gestion des services swarm est crypté par défaut avec l’algorithme AES en mode GCM. Afin de crypter le trafic des données liées aux
applications il est possible d'utiliser l'option –opt encrypted lors de la création du réseau overlay. Dans ce cas, Docker crée des tunnels IPSEC entre
chaque nœud qui utilise le même algorithme que le trafic des services swarm. Il y a donc une dégradation des performances à évaluer avant la mise en
production. Dans les deux cas les clefs sont modifiées toutes les 12 heures (voir https://www.vaultproject.io/docs/internals/rotation.html)

ATTENTION : Le cryptage des données liées aux applications n'est pas compatible avec
Windows™. Lors de la connexion du nœud Windows™ à un réseau overlay crypté, aucune
erreur ne sera rapportée. Par contre le nœud sera incapable de communiquer.

Commencez par re-créer un swarm en utilisant les machines virtuelles manager, worker1 et worker2 :

trainee@traineeXX:~$ ssh -l trainee 10.0.2.62
...
root@manager:~# docker swarm leave
Node left the swarm.
root@manager:~# docker swarm init --advertise-addr 10.0.2.62
Swarm initialized: current node (tpn1zsk20sfsfafmk2cvefqjc) is now a manager.

To add a worker to this swarm, run the following command:

 docker swarm join --token SWMTKN-1-23d7n1fkkk9rvlhty106q9390bfpf9daljjguq3s807le6c5qs-
e0s1yqsajvmi7s8t9l9mw48ao 10.0.2.62:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

https://docs.docker.com/network/network-tutorial-macvlan/
https://www.vaultproject.io/docs/internals/rotation.html

2026/02/04 13:25 26/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

root@manager:~# exit
trainee@manager:~# exit

Connectez-vous au worker1 :

trainee@traineeXX:~$ ssh -l trainee 10.0.2.63
...
root@worker1:~# docker swarm leave
Node left the swarm.
root@worker1:~# docker swarm join --token SWMTKN-1-23d7n1fkkk9rvlhty106q9390bfpf9daljjguq3s807le6c5qs-
e0s1yqsajvmi7s8t9l9mw48ao 10.0.2.62:2377
This node joined a swarm as a worker.
root@worker1:~# exit
trainee@worker1:~# exit

Connectez-vous au worker2 :

trainee@traineeXX:~$ ssh -l trainee 10.0.2.64
...
root@worker2:~# docker swarm leave
Node left the swarm.
root@worker2:~# docker swarm join --token SWMTKN-1-23d7n1fkkk9rvlhty106q9390bfpf9daljjguq3s807le6c5qs-
e0s1yqsajvmi7s8t9l9mw48ao 10.0.2.62:2377
This node joined a swarm as a worker.
root@worker2:~# exit
trainee@worker2:~# exit

Vérifiez l'état du swarm :

trainee@traineeXX:~$ ssh -l trainee 10.0.2.62
...
root@manager:~# docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ENGINE VERSION

2026/02/04 13:25 27/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

b85hxlixbr1mh1txd1hrfe4us * manager.i2tch.loc Ready Active Leader
19.03.4
4sui75vvdhmet4qvt0zbvzlzl worker1.i2tch.loc Ready Active
19.03.4
lbjtg5o9kw3x6xg7frm07jfuw worker2.i2tch.loc Ready Active
19.03.4
root@manager:~# docker node ls --filter role=manager
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ENGINE VERSION
b85hxlixbr1mh1txd1hrfe4us * manager.i2tch.loc Ready Active Leader
19.03.4
root@manager:~# docker node ls --filter role=worker
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ENGINE VERSION
4sui75vvdhmet4qvt0zbvzlzl worker1.i2tch.loc Ready Active
19.03.4
lbjtg5o9kw3x6xg7frm07jfuw worker2.i2tch.loc Ready Active
19.03.4

Vérifiez la présence du réseau overlay ingress ainsi que le réseau ponté docker_gwbridge :

root@manager:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
4edb7186dcc9 bridge bridge local
d4c9b0c9437a docker_gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
de563e30d473 none null local

Info : Le réseau docker_gwbridge relie le réseau ingress à l'adaptateur réseau de l'hôte
et par conséquent relie le démon Docker aux autres démons Docker qui participent dans
swarm.

2026/02/04 13:25 28/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Best Practice : Docker recommande l'utilisation de réseaux de type overlay différents
pour chaque application ou groupe d'applications.

2.2 - Création d'un Réseau overlay

A partir du Manager, créez un réseau de type overlay appelé nginx-net :

root@manager:~# docker network create -d overlay nginx-net
j57jhtug4kjxp22ai1y664lqr
root@manager:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
dde514eea83f bridge bridge local
d4c9b0c9437a docker_gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
j57jhtug4kjx nginx-net overlay swarm
de563e30d473 none null local

2.2 - Création d'un Service

Créez un service nginx qui utilise le réseau nginx-net :

root@manager:~# docker service create --name my-nginx --publish target=80,published=80 --replicas=5 --network
nginx-net nginx
fpydgix3e1rc1qum72gvwcb7f
overall progress: 5 out of 5 tasks
1/5: running [==>]
2/5: running [==>]

2026/02/04 13:25 29/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

3/5: running [==>]
4/5: running [==>]
5/5: running [==>]
verify: Service converged

Info : Le service publie le port 80 qui est visible de l'extérieur. Les conteneurs
communiquent entre eux sans ouvrir de ports supplémentaires.

Vérifiez que le service fonctionne avant de poursuivre :

root@manager:~# docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
fpydgix3e1rc my-nginx replicated 5/5 nginx:latest *:80->80/tcp

Consultez maintenant les détails du service :

root@manager:~# docker service inspect my-nginx
[
 {
 "ID": "fpydgix3e1rc1qum72gvwcb7f",
 "Version": {
 "Index": 40
 },
 "CreatedAt": "2019-10-28T06:23:29.17883246Z",
 "UpdatedAt": "2019-10-28T06:23:29.183438696Z",
 "Spec": {
 "Name": "my-nginx",
 "Labels": {},
 "TaskTemplate": {
 "ContainerSpec": {
 "Image":

2026/02/04 13:25 30/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

"nginx:latest@sha256:922c815aa4df050d4df476e92daed4231f466acc8ee90e0e774951b0fd7195a4",
 "Init": false,
 "StopGracePeriod": 10000000000,
 "DNSConfig": {},
 "Isolation": "default"
 },
 "Resources": {
 "Limits": {},
 "Reservations": {}
 },
 "RestartPolicy": {
 "Condition": "any",
 "Delay": 5000000000,
 "MaxAttempts": 0
 },
 "Placement": {
 "Platforms": [
 {
 "Architecture": "amd64",
 "OS": "linux"
 },
 {
 "OS": "linux"
 },
 {
 "Architecture": "arm64",
 "OS": "linux"
 },
 {
 "Architecture": "386",
 "OS": "linux"
 },
 {
 "Architecture": "ppc64le",

2026/02/04 13:25 31/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "OS": "linux"
 },
 {
 "Architecture": "s390x",
 "OS": "linux"
 }
]
 },
 "Networks": [
 {
 "Target": "j57jhtug4kjxp22ai1y664lqr"
 }
],
 "ForceUpdate": 0,
 "Runtime": "container"
 },
 "Mode": {
 "Replicated": {
 "Replicas": 5
 }
 },
 "UpdateConfig": {
 "Parallelism": 1,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"
 },
 "RollbackConfig": {
 "Parallelism": 1,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"

2026/02/04 13:25 32/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 },
 "EndpointSpec": {
 "Mode": "vip",
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 80,
 "PublishMode": "ingress"
 }
]
 }
 },
 "Endpoint": {
 "Spec": {
 "Mode": "vip",
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 80,
 "PublishMode": "ingress"
 }
]
 },
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 80,
 "PublishMode": "ingress"
 }
],
 "VirtualIPs": [

2026/02/04 13:25 33/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 {
 "NetworkID": "r8htcvc8oxmzy896xvwvv87k5",
 "Addr": "10.255.0.5/16"
 },
 {
 "NetworkID": "j57jhtug4kjxp22ai1y664lqr",
 "Addr": "10.0.0.2/24"
 }
]
 }
 }
]

Important : Notez ici les informations concernant les ports et les Endpoints utilisés par le
service.

2.3 - Déplacer le Service vers un autre Réseau overlay

Consultez le réseau overlay nginx-net sur les trois nœuds :

root@manager:~# docker inspect nginx-net
[
 {
 "Name": "nginx-net",
 "Id": "j57jhtug4kjxp22ai1y664lqr",
 "Created": "2019-10-28T07:23:29.492986337+01:00",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {

2026/02/04 13:25 34/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.0.0.0/24",
 "Gateway": "10.0.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "b2e882e530b10f8fd0b2481f851007f864ce1495bc9fdedcf51a475c0fc03aeb": {
 "Name": "my-nginx.2.bo4q3us1f6m0uwxhqgtau1yg5",
 "EndpointID": "f6f82bcb81ba82191f3988702b0e91f7f5f139c5c88899ad7c95e12ab189e055",
 "MacAddress": "02:42:0a:00:00:04",
 "IPv4Address": "10.0.0.4/24",
 "IPv6Address": ""
 },
 "c0a76b54dad58b0faf80d2f915a10072aa7d726c46036caa3157d22c30dba843": {
 "Name": "my-nginx.4.aqj5vafpqtkc8f4rn4v04x4kn",
 "EndpointID": "813bef65edc4de42d5ec4357013f5b711cd21ce7d1a1c8361c1d989d0d709071",
 "MacAddress": "02:42:0a:00:00:06",
 "IPv4Address": "10.0.0.6/24",
 "IPv6Address": ""
 },
 "lb-nginx-net": {
 "Name": "nginx-net-endpoint",
 "EndpointID": "d087f5fe91481b12ca0b966d01584d143b25c746952bb517441cfad6beba90de",

2026/02/04 13:25 35/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "MacAddress": "02:42:0a:00:00:08",
 "IPv4Address": "10.0.0.8/24",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4097"
 },
 "Labels": {},
 "Peers": [
 {
 "Name": "1199cab4a6dd",
 "IP": "10.0.2.62"
 },
 {
 "Name": "69676ae46ab9",
 "IP": "10.0.2.63"
 },
 {
 "Name": "d058d363197d",
 "IP": "10.0.2.64"
 }
]
 }
]

root@worker1:~# docker inspect nginx-net
[
 {
 "Name": "nginx-net",
 "Id": "j57jhtug4kjxp22ai1y664lqr",
 "Created": "2019-10-28T07:23:29.561068917+01:00",
 "Scope": "swarm",
 "Driver": "overlay",

2026/02/04 13:25 36/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.0.0.0/24",
 "Gateway": "10.0.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "50b205e2ed4ccaaad5adc06c508af235557c89c116c819e367a1d925e9c2b564": {
 "Name": "my-nginx.1.gcz867ezj0y46tsdgoz8j3jz2",
 "EndpointID": "a48a43da98acef2748f42ffa992ba302863ed3c417fa3289cbd3aed0e33e97fa",
 "MacAddress": "02:42:0a:00:00:03",
 "IPv4Address": "10.0.0.3/24",
 "IPv6Address": ""
 },
 "lb-nginx-net": {
 "Name": "nginx-net-endpoint",
 "EndpointID": "54ed15511cdd574cb60d37d39257cbf7b30331b24bb069aadb33b457b2864789",
 "MacAddress": "02:42:0a:00:00:0a",
 "IPv4Address": "10.0.0.10/24",
 "IPv6Address": ""
 }
 },

2026/02/04 13:25 37/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4097"
 },
 "Labels": {},
 "Peers": [
 {
 "Name": "69676ae46ab9",
 "IP": "10.0.2.63"
 },
 {
 "Name": "d058d363197d",
 "IP": "10.0.2.64"
 },
 {
 "Name": "1199cab4a6dd",
 "IP": "10.0.2.62"
 }
]
 }
]

root@worker2:~# docker inspect nginx-net
[
 {
 "Name": "nginx-net",
 "Id": "j57jhtug4kjxp22ai1y664lqr",
 "Created": "2019-10-28T07:23:29.562818383+01:00",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [

2026/02/04 13:25 38/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 {
 "Subnet": "10.0.0.0/24",
 "Gateway": "10.0.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "31bcb5e553886cd9b3a6b8e70fe0c2bed92fe081bd0def0c94864631a940cbd6": {
 "Name": "my-nginx.5.t3be85jtp2qlhpmvsl4866s5m",
 "EndpointID": "ffa92f5f3bb7fd2665a8be336ef1e4e2d786790852eb152dac1a2c45f18518ba",
 "MacAddress": "02:42:0a:00:00:07",
 "IPv4Address": "10.0.0.7/24",
 "IPv6Address": ""
 },
 "8e2ce40a6e0d9fb2bc64c264b92164b6ea241a2369d8e6844d00b8952f5729a7": {
 "Name": "my-nginx.3.dma616z2rkbted13zd824fyo2",
 "EndpointID": "99cfb31ce34ccd9b6b15f71c87eddb5f39a84512ec76d215d54bdaaf851d5129",
 "MacAddress": "02:42:0a:00:00:05",
 "IPv4Address": "10.0.0.5/24",
 "IPv6Address": ""
 },
 "lb-nginx-net": {
 "Name": "nginx-net-endpoint",
 "EndpointID": "c0816f6f1e5c046ac1deb8163c5a8cf40765a126bf76b6f10bf1bb708a51dfa1",
 "MacAddress": "02:42:0a:00:00:09",
 "IPv4Address": "10.0.0.9/24",
 "IPv6Address": ""

2026/02/04 13:25 39/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 }
 },
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4097"
 },
 "Labels": {},
 "Peers": [
 {
 "Name": "d058d363197d",
 "IP": "10.0.2.64"
 },
 {
 "Name": "69676ae46ab9",
 "IP": "10.0.2.63"
 },
 {
 "Name": "1199cab4a6dd",
 "IP": "10.0.2.62"
 }
]
 }
]

Important : Notez que le réseau nginx-net a été créé automatiquement sur les deux
Workers. Notez aussi le contenu de la section Peers qui liste les nœuds ainsi que la
section Containers qui liste les conteneurs sur chaque nœud qui sont connectés au
réseau overlay.

Créez maintenant un deuxième réseau de type overlay, appelé nginx-net-2 :

root@manager:~# docker network create -d overlay nginx-net-2

2026/02/04 13:25 40/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

aez5huut9hd472qmldzf2tsud

Déplacez le service my-nginx vers le réseau nginx-net-2 :

root@manager:~# docker service update --network-add nginx-net-2 --network-rm nginx-net my-nginx
my-nginx
overall progress: 5 out of 5 tasks
1/5: running [==>]
2/5: running [==>]
3/5: running [==>]
4/5: running [==>]
5/5: running [==>]
verify: Service converged

Vérifiez que le service fonctionne avant de poursuivre :

root@manager:~# docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
fpydgix3e1rc my-nginx replicated 5/5 nginx:latest *:80->80/tcp

Vérifiez qu'aucun conteneur se trouve dans le réseau nginx-net :

root@manager:~# docker network inspect nginx-net
[
 {
 "Name": "nginx-net",
 "Id": "j57jhtug4kjxp22ai1y664lqr",
 "Created": "2019-10-28T06:21:18.337578134Z",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,

2026/02/04 13:25 41/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Config": [
 {
 "Subnet": "10.0.0.0/24",
 "Gateway": "10.0.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": null,
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4097"
 },
 "Labels": null
 }
]

Vérifiez maintenant que les conteneurs se trouvent dans le réseau nginx-net-2 :

root@manager:~# docker network inspect nginx-net-2
[
 {
 "Name": "nginx-net-2",
 "Id": "aez5huut9hd472qmldzf2tsud",
 "Created": "2019-10-28T10:09:54.465105557+01:00",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {

2026/02/04 13:25 42/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.0.1.0/24",
 "Gateway": "10.0.1.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "0bf159064e30d5e788a12baca53ee8e9504a2d7300017fb268cb9e90caaea27a": {
 "Name": "my-nginx.2.81pveqac42zesvuulpbiho7k6",
 "EndpointID": "25c9587e76cfca10d17b10fa967186bc73ca6b444cc2689e43a7243f5d1795b2",
 "MacAddress": "02:42:0a:00:01:05",
 "IPv4Address": "10.0.1.5/24",
 "IPv6Address": ""
 },
 "74e656da8c670fca23270078565af164c4d42415f012ff51ccb02395c6d121e9": {
 "Name": "my-nginx.3.mjj1bsguaaewk61dw7yxxjdlu",
 "EndpointID": "2be3c3e0286d3afb5ba47bbd903151a4d337a45743cb30c46595160223e02fba",
 "MacAddress": "02:42:0a:00:01:07",
 "IPv4Address": "10.0.1.7/24",
 "IPv6Address": ""
 },
 "lb-nginx-net-2": {
 "Name": "nginx-net-2-endpoint",
 "EndpointID": "768a4cc926b5c94a20904e5db500dc62b40a063077a49769ccccc007a6cb61ac",

2026/02/04 13:25 43/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "MacAddress": "02:42:0a:00:01:06",
 "IPv4Address": "10.0.1.6/24",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4098"
 },
 "Labels": {},
 "Peers": [
 {
 "Name": "69676ae46ab9",
 "IP": "10.0.2.63"
 },
 {
 "Name": "1199cab4a6dd",
 "IP": "10.0.2.62"
 },
 {
 "Name": "d058d363197d",
 "IP": "10.0.2.64"
 }
]
 }
]

Supprimez maintenant le service my-nginx ainsi que les deux réseaux overlay nginx-net et nginx-net-2 :

root@manager:~# docker service rm my-nginx
my-nginx
root@manager:~# docker network rm nginx-net nginx-net-2
nginx-net
nginx-net-2

2026/02/04 13:25 44/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

2.4 - DNS container discovery

Le daemon Docker exécute un server DNS embarqué à l'adresse 127.0.0.11 qui permet la résolution des noms dans un réseau personnalisé. Si ce
serveur est incapable de faire la résolution, il transfert la requête à tout serveur externe défini dans le conteneur.

Pour que le DNS container discovery fonctionne, les ports suivants doivent être ouverts sur les nœuds :

2377/tcp
7946/tcp
7946/udp
4789/udp

Créez maintenant le réseau de type overlay test-net :

root@manager:~# docker network create --driver=overlay --attachable test-net
hrs25w4l951kkickhj6262mjg

Important : Notez que le NETWORK-ID ici est hrs25w4l951kkickhj6262mjg.

Sur le Manager, démarrez un conteneur interactif appelé alpine1 et qui se connecte au réseau test-net :

root@manager:~# docker run -it --name alpine1 --network test-net alpine
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
89d9c30c1d48: Pull complete
Digest: sha256:c19173c5ada610a5989151111163d28a67368362762534d8a8121ce95cf2bd5a
Status: Downloaded newer image for alpine:latest
/ #

Listez les réseaux disponibles sur Worker1 :

2026/02/04 13:25 45/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

root@worker1:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
3fe43b514f9d bridge bridge local
ee22b3e623ca docker_gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
de563e30d473 none null local

Important : Notez que le réseau test-net n'a pas été créé.

Démarrez maintenant un conteneur alpine2 sur Worker1 :

root@worker1:~# docker run -dit --name alpine2 --network test-net alpine
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
89d9c30c1d48: Pull complete
Digest: sha256:c19173c5ada610a5989151111163d28a67368362762534d8a8121ce95cf2bd5a
Status: Downloaded newer image for alpine:latest
5734e84cd460cdd33ce90970d98a96837a0305832a86fc4d86be38aecf51b23b

Saisissez la commande docker network ls sur Worker1 :

root@worker1:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
3fe43b514f9d bridge bridge local
ee22b3e623ca docker_gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
de563e30d473 none null local
hrs25w4l951k test-net overlay swarm

2026/02/04 13:25 46/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Important : Notez que le réseau test-net, ayant le même NETWORK ID, a été
automatiquement créé lors de la création du conteneur alpine2.

Listez les réseaux disponibles sur Worker2 :

root@worker2:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
ff7308310f60 bridge bridge local
0ce1d8369c29 docker_gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
de563e30d473 none null local

Important : Notez que le réseau test-net n'a pas été créé.

Attachez vous au conteneur alpine2 sur Worker1 et essayez de contacter le conteneur alpine1 :

root@worker1:~# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
ce9097b864dc alpine "/bin/sh" 23 minutes ago Up 23 minutes
alpine2
root@worker1:~# docker attach alpine2
/ # ping -c 2 alpine1
PING alpine1 (10.0.2.2): 56 data bytes
64 bytes from 10.0.2.2: seq=0 ttl=64 time=1.874 ms
64 bytes from 10.0.2.2: seq=1 ttl=64 time=1.669 ms

2026/02/04 13:25 47/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

--- alpine1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 1.669/1.771/1.874 ms
/ #

Retournez dans la VM Manager et essayez de contacter le conteneur alpine2 à partir du conteneur alpine1 :

root@manager:~# docker attach alpine1
/ # ping -c 2 alpine2
PING alpine2 (10.0.0.4): 56 data bytes
64 bytes from 10.0.0.4: seq=0 ttl=64 time=0.666 ms
64 bytes from 10.0.0.4: seq=1 ttl=64 time=1.239 ms

--- alpine2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.666/0.952/1.239 ms
/ #

Créez ensuite le conteneur alpine3 sur le Worker2 essayez de contacter le conteneur alpine1 :

root@worker2:~# docker run -it --rm --name alpine3 --network test-net alpine
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
c9b1b535fdd9: Pull complete
Digest: sha256:ab00606a42621fb68f2ed6ad3c88be54397f981a7b70a79db3d1172b11c4367d
Status: Downloaded newer image for alpine:latest
/ # ping -c 2 alpine1
PING alpine1 (10.0.2.2): 56 data bytes
64 bytes from 10.0.2.2: seq=0 ttl=64 time=0.642 ms
64 bytes from 10.0.2.2: seq=1 ttl=64 time=1.684 ms

--- alpine1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.642/1.163/1.684 ms

2026/02/04 13:25 48/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

/ # exit

Arrêtez maintenant le conteneur alpine2 sur Worker1 :

root@worker1:~# docker container stop alpine2
alpine2

Saisissez la commande docker network ls :

root@worker1:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
3bb80f391804 bridge bridge local
ee22b3e623ca docker_gwbridge bridge local
f3cb3bc3c581 host host local
r8htcvc8oxmz ingress overlay swarm
de563e30d473 none null local

Important : Notez que le réseau test-net a été supprimé.

Supprimez le conteneur alpine2:

root@worker1:~# docker container rm alpine2
alpine2

Arrêtez le conteneur alpine1 et supprimez le réseau test-net sur Manager :

/ # exit
root@manager:~# docker container stop alpine1
alpine1
root@manager:~# docker network ls
NETWORK ID NAME DRIVER SCOPE

2026/02/04 13:25 49/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

a604e7db6f95 bridge bridge local
d4c9b0c9437a docker_gwbridge bridge local
f3cb3bc3c581 host host local
jxu667wzmj2u ingress overlay swarm
de563e30d473 none null local
518l09lcjhsp test-net overlay swarm
root@manager:~# docker network rm test-net
test-net

2.5 - Création d'un Réseau overlay Personnalisé

Il est possible de créer un réseau overlay personnalisé. Dans ce cas là, il convient de supprimer le réseau ingress déjà existant :

root@manager:~# docker network rm ingress
WARNING! Before removing the routing-mesh network, make sure all the nodes in your swarm run the same docker
engine version. Otherwise, removal may not be effective and functionality of newly create ingress networks will
be impaired.
Are you sure you want to continue? [y/N] y
ingress

Créez ensuite votre réseau personnalisé :

root@manager:~# docker network create --driver overlay --ingress --subnet=10.11.0.0/16 --gateway=10.11.0.2 --opt
com.docker.network.driver.mtu=1200 my-ingress
44ozn3vtg23zkksrvloxuulcl
root@manager:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
24be8a0f0ef5 bridge bridge local
d4c9b0c9437a docker_gwbridge bridge local
f3cb3bc3c581 host host local
44ozn3vtg23z my-ingress overlay swarm
de563e30d473 none null local

2026/02/04 13:25 50/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Créez de nouveau le service my-nginx :

root@manager:~# docker service create --name my-nginx --publish target=80,published=80 --replicas=5 nginx
gp1iozmbi25dx3skn00m6suoz
overall progress: 5 out of 5 tasks
1/5: running [==>]
2/5: running [==>]
3/5: running [==>]
4/5: running [==>]
5/5: running [==>]
verify: Service converged

root@manager:~# docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
gp1iozmbi25d my-nginx replicated 5/5 nginx:latest *:80->80/tcp

root@manager:~# docker service ps my-nginx
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
ERROR PORTS
upmbwmtr76cm my-nginx.1 nginx:latest worker1.i2tch.loc Running Running about
a minute ago
qz6p1li7zmef my-nginx.2 nginx:latest worker2.i2tch.loc Running Running about
a minute ago
me50mkhd11yk my-nginx.3 nginx:latest manager.i2tch.loc Running Running about
a minute ago
sctjud70ihkl my-nginx.4 nginx:latest worker1.i2tch.loc Running Running about
a minute ago
kql9qx3phb73 my-nginx.5 nginx:latest worker2.i2tch.loc Running Running about
a minute ago

Consultez les informations concernant le service my-nginx :

root@manager:~# docker service inspect my-nginx
[

2026/02/04 13:25 51/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 {
 "ID": "gp1iozmbi25dx3skn00m6suoz",
 "Version": {
 "Index": 230
 },
 "CreatedAt": "2019-10-28T14:49:33.6719228Z",
 "UpdatedAt": "2019-10-28T14:49:33.679624758Z",
 "Spec": {
 "Name": "my-nginx",
 "Labels": {},
 "TaskTemplate": {
 "ContainerSpec": {
 "Image":
"nginx:latest@sha256:922c815aa4df050d4df476e92daed4231f466acc8ee90e0e774951b0fd7195a4",
 "Init": false,
 "StopGracePeriod": 10000000000,
 "DNSConfig": {},
 "Isolation": "default"
 },
 "Resources": {
 "Limits": {},
 "Reservations": {}
 },
 "RestartPolicy": {
 "Condition": "any",
 "Delay": 5000000000,
 "MaxAttempts": 0
 },
 "Placement": {
 "Platforms": [
 {
 "Architecture": "amd64",
 "OS": "linux"
 },

2026/02/04 13:25 52/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 {
 "OS": "linux"
 },
 {
 "Architecture": "arm64",
 "OS": "linux"
 },
 {
 "Architecture": "386",
 "OS": "linux"
 },
 {
 "Architecture": "ppc64le",
 "OS": "linux"
 },
 {
 "Architecture": "s390x",
 "OS": "linux"
 }
]
 },
 "ForceUpdate": 0,
 "Runtime": "container"
 },
 "Mode": {
 "Replicated": {
 "Replicas": 5
 }
 },
 "UpdateConfig": {
 "Parallelism": 1,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,

2026/02/04 13:25 53/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Order": "stop-first"
 },
 "RollbackConfig": {
 "Parallelism": 1,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"
 },
 "EndpointSpec": {
 "Mode": "vip",
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 80,
 "PublishMode": "ingress"
 }
]
 }
 },
 "Endpoint": {
 "Spec": {
 "Mode": "vip",
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 80,
 "PublishMode": "ingress"
 }
]
 },
 "Ports": [

2026/02/04 13:25 54/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 80,
 "PublishMode": "ingress"
 }
],
 "VirtualIPs": [
 {
 "NetworkID": "44ozn3vtg23zkksrvloxuulcl",
 "Addr": "10.11.0.1/16"
 }
]
 }
 }
]

Vérifiez maintenant que les conteneurs se trouvent dans le réseau my-ingress :

root@manager:~# docker inspect my-ingress
[
 {
 "Name": "my-ingress",
 "Id": "l11ucu5ufjfwwz6e0umtygdqy",
 "Created": "2020-03-10T11:02:38.278429829+01:00",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.11.0.0/16",

2026/02/04 13:25 55/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Gateway": "10.11.0.2"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": true,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "6f0168ff5153b899af31098740de34997b12417ef7c0f3824938edf79b2bca7f": {
 "Name": "my-nginx.3.me50mkhd11ykwz7aj07znloh1",
 "EndpointID": "41531d43496f4723cb62cad1d57c5a088faebe79c430d04a1765022e31d8ae17",
 "MacAddress": "02:42:0a:0b:00:05",
 "IPv4Address": "10.11.0.5/16",
 "IPv6Address": ""
 },
 "my-ingress-sbox": {
 "Name": "my-ingress-endpoint",
 "EndpointID": "0205796eeb005ef77b3ea382fd1e72c312a58fd717b5a79ca6cacc7e090068e6",
 "MacAddress": "02:42:0a:0b:00:0a",
 "IPv4Address": "10.11.0.10/16",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.driver.mtu": "1200",
 "com.docker.network.driver.overlay.vxlanid_list": "4100"
 },
 "Labels": {},
 "Peers": [
 {

2026/02/04 13:25 56/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Name": "9a00e8bc72fe",
 "IP": "10.0.2.62"
 },
 {
 "Name": "3ea669d48ca2",
 "IP": "10.0.2.64"
 },
 {
 "Name": "f30e39df1704",
 "IP": "10.0.2.63"
 }
]
 }
]

Supprimez maintenant le service my-nginx :

root@manager:~# docker service rm my-nginx
my-nginx

LAB #3 - Gestion d'une Architecture de Microservices

Vous allez mettre en place une application simple, appelé demo-voting-app et développé par Docker, sous forme de microservices :

2026/02/04 13:25 57/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Dans cette application le conteneur voting-app permet de voter pour des chats ou des chiens. Cette application tourne sous Python et fournit une
interface HTML :

2026/02/04 13:25 58/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Lors de la vote, le résultat de celle-ci est stocké dans Redis dans une base de données en mémoire. Le résultat est ensuite passé au conteneur
Worker qui tourne sous .NET et qui met à jour la base de données persistante dans le conteneur db qui tourne sous PostgreSQL.

L'application result-app qui tourne sous NodeJS lit ensuite la table dans la base de données PostgreSQL et affiche le résultat sous forme HTML :

2026/02/04 13:25 59/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

3.1 - Mise en Place avec Docker Swarm avec des réseaux Overlay

Cette application peut être mise en place sous docker swarm avec avec la commande docker stack. Un stack est un groupe de services.
Premièrement, vérifiez l'état du Swarm :

root@manager:~# docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ENGINE VERSION
b85hxlixbr1mh1txd1hrfe4us * manager.i2tch.loc Ready Active Leader
19.03.4

2026/02/04 13:25 60/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

4sui75vvdhmet4qvt0zbvzlzl worker1.i2tch.loc Ready Active
19.03.4
lbjtg5o9kw3x6xg7frm07jfuw worker2.i2tch.loc Ready Active
19.03.4

Téléchargez maintenant le fichier docker-stack.yml :

root@manager:~# curl -O https://raw.githubusercontent.com/docker/example-voting-app/master/docker-stack.yml
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1707 100 1707 0 0 2030 0 --:--:-- --:--:-- --:--:-- 2029

Consultez le fichier téléchargé :

root@manager:~# cat docker-stack.yml
version: "3"
services:

 redis:
 image: redis:alpine
 networks:
 - frontend
 deploy:
 replicas: 1
 update_config:
 parallelism: 2
 delay: 10s
 restart_policy:
 condition: on-failure
 db:
 image: postgres:9.4
 environment:
 POSTGRES_USER: "postgres"
 POSTGRES_PASSWORD: "postgres"

2026/02/04 13:25 61/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 volumes:
 - db-data:/var/lib/postgresql/data
 networks:
 - backend
 deploy:
 placement:
 constraints: [node.role == manager]
 vote:
 image: dockersamples/examplevotingapp_vote:before
 ports:
 - 5000:80
 networks:
 - frontend
 depends_on:
 - redis
 deploy:
 replicas: 2
 update_config:
 parallelism: 2
 restart_policy:
 condition: on-failure
 result:
 image: dockersamples/examplevotingapp_result:before
 ports:
 - 5001:80
 networks:
 - backend
 depends_on:
 - db
 deploy:
 replicas: 1
 update_config:
 parallelism: 2
 delay: 10s

2026/02/04 13:25 62/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 restart_policy:
 condition: on-failure

 worker:
 image: dockersamples/examplevotingapp_worker
 networks:
 - frontend
 - backend
 depends_on:
 - db
 - redis
 deploy:
 mode: replicated
 replicas: 1
 labels: [APP=VOTING]
 restart_policy:
 condition: on-failure
 delay: 10s
 max_attempts: 3
 window: 120s
 placement:
 constraints: [node.role == manager]

 visualizer:
 image: dockersamples/visualizer:stable
 ports:
 - "8080:8080"
 stop_grace_period: 1m30s
 volumes:
 - "/var/run/docker.sock:/var/run/docker.sock"
 deploy:
 placement:
 constraints: [node.role == manager]

2026/02/04 13:25 63/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

networks:
 frontend:
 backend:

volumes:
 db-data:

Dans ce fichier on peut constater 6 services, redis, db, vote, result, worker et visualizer. Les 5 premiers services forment ensemble l'application
tandis que le service visualizer nous permettra de voir comment l'application a été mise en place.

Dans un premier temps, regardez la clef deploy du service worker :

...
 deploy:
 mode: replicated
 replicas: 1
 labels: [APP=VOTING]
 restart_policy:
 condition: on-failure
 delay: 10s
 max_attempts: 3
 window: 120s
 placement:
 constraints: [node.role == manager]
...

La clef deploy permet de spécifier des options lors du déploiement du service :

mode - Il existe deux types de services. Replicated où on spécifie le nombre d'instances que Docker doit mettre en place sur les hôtes
disponibles en fonction de la valeur de replicas et Global qui implique que Docker démarrera une instance du service sur chaque hôte chaque
fois qu'un hôte devient disponible.

2026/02/04 13:25 64/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

replicas - spécifie le nombre de replicas
restart_policy spécifie ce qui se passe en cas d'arrêt du service. Dans le cas ci-dessus, docker va essayer de re-démarrer le service 3 fois
(max_attempts) à des intervalles de 10 secondes (delay) en attendant chaque fois 120 secondes (window) pour constater si le service s'est
effectivement re-démarré,
placement - spécifie où le service doit être démarré.

Déployez maintenant le stack :

root@manager:~# docker stack deploy -c docker-stack.yml app
Creating network app_backend
Creating network app_default
Creating network app_frontend
Creating service app_worker
Creating service app_visualizer
Creating service app_redis
Creating service app_db
Creating service app_vote
Creating service app_result

Important - Notez que chaque réseau et chaque service a comme préfixe le nom de
l'application app.

Consultez maintenant l'état du stack :

root@manager:~# docker stack ls
NAME SERVICES ORCHESTRATOR
app 6 Swarm

Consultez ensuite l'état des services :

root@manager:~# docker service ls

2026/02/04 13:25 65/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

ID NAME MODE REPLICAS IMAGE
PORTS
d0i4ac4fshw0 app_db replicated 1/1 postgres:9.4
funp5kboyip1 app_redis replicated 1/1 redis:alpine
dpdkc49oj671 app_result replicated 1/1
dockersamples/examplevotingapp_result:before *:5001->80/tcp
vrkahv38v5mn app_visualizer replicated 1/1 dockersamples/visualizer:stable
*:8080->8080/tcp
t4u16cpdrx21 app_vote replicated 2/2
dockersamples/examplevotingapp_vote:before *:5000->80/tcp
so40eljbcviy app_worker replicated 1/1
dockersamples/examplevotingapp_worker:latest

Important : Notez que la configuration du service visualizer a exposé le port 8080. De
cette façon, ce service est disponible sur le port 8080 de chaque nœud dans la swarm.

Retournez à la fenêtre d'Apache Guacamole dans le navigateur de votre ordinateur. Cliquez sur la connexion TraineeXX_VNC. Lancez ensuite un
navigateur Internet dans la machine virtuelle debian9. Naviguez à l'URL http://10.0.2.62:8080 et consultez le service visualizer :

http://10.0.2.62:8080

2026/02/04 13:25 66/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Comme vous pouvez constater, conformément au fichier docker-stack.yml, les trois conteneurs db, worker et visualizer ont été démarrés sur le
nœud manager.

Retournez à votre connexion SSH et consultez l'état des réseaux dans les trois nœuds :

root@manager:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
sw489bb290zb app_backend overlay swarm
smuxoglyudpo app_default overlay swarm
lfizui95od90 app_frontend overlay swarm
24be8a0f0ef5 bridge bridge local
d4c9b0c9437a docker_gwbridge bridge local
f3cb3bc3c581 host host local
x7l4mk4ldb75 my-ingress overlay swarm
de563e30d473 none null local

2026/02/04 13:25 67/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Important : Notez que les trois réseaux créés sont de type overlay.

root@worker1:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
qhysvpoolsw0 app_frontend overlay swarm
f9a69d02de3b bridge bridge local
ee22b3e623ca docker_gwbridge bridge local
f3cb3bc3c581 host host local
x7l4mk4ldb75 my-ingress overlay swarm
de563e30d473 none null local

Important : Notez que seul le réseau app_frontend a été créé dans worker1.

root@worker2:~# docker network ls
NETWORK ID NAME DRIVER SCOPE
s4gbgi4isp1i app_backend overlay swarm
qhysvpoolsw0 app_frontend overlay swarm
0e6c118bf3fd bridge bridge local
0ce1d8369c29 docker_gwbridge bridge local
f3cb3bc3c581 host host local
x7l4mk4ldb75 my-ingress overlay swarm
de563e30d473 none null local

Important : Notez que les deux réseaux app_frontend et app_backend ont été créés
dans worker2.

2026/02/04 13:25 68/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

Consultez les informations concernant le réseau app_backend :

root@manager:~# docker inspect app_backend
[
 {
 "Name": "app_backend",
 "Id": "s4gbgi4isp1i5wjpgnf4uci2a",
 "Created": "2019-11-03T17:30:56.822222239+01:00",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.0.3.0/24",
 "Gateway": "10.0.3.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "7d0b28e4e1828b437af1a41f322acb5cf19afc25c42303986dd2c7b4d5aea568": {
 "Name": "app_db.1.s6g6w47k532rvaeoyske8as9i",
 "EndpointID": "c26795c837f6dc736a3f9be34525ae505e9db6381a2144bb62087b3ee6c7ff25",
 "MacAddress": "02:42:0a:00:03:03",
 "IPv4Address": "10.0.3.3/24",

2026/02/04 13:25 69/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "IPv6Address": ""
 },
 "ef7227281d297b001bb0f60ac81a0c9926e8fb663a7f43eb201cced632dc5564": {
 "Name": "app_worker.1.38kniuqoe1vfyonwdcytlhpqo",
 "EndpointID": "990065eec5062ff159e82bc1e4666fd098d5597439221995af4f01040ab24599",
 "MacAddress": "02:42:0a:00:03:09",
 "IPv4Address": "10.0.3.9/24",
 "IPv6Address": ""
 },
 "lb-app_backend": {
 "Name": "app_backend-endpoint",
 "EndpointID": "913845cbab9a6c3011eaaa87fcc66f10268b5e11554be9f1a20b1078f7b9b8a4",
 "MacAddress": "02:42:0a:00:03:04",
 "IPv4Address": "10.0.3.4/24",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4101"
 },
 "Labels": {
 "com.docker.stack.namespace": "app"
 },
 "Peers": [
 {
 "Name": "377986fb7d5a",
 "IP": "10.0.2.62"
 },
 {
 "Name": "5cc4b863da9f",
 "IP": "10.0.2.64"
 }
]
 }

2026/02/04 13:25 70/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

]

Important : Notez que le réseau est 10.0.3.0/24 et la passerelle 10.0.3.1.

Consultez les informations concernant le réseau app_frontend :

root@manager:~# docker inspect app_frontend
[
 {
 "Name": "app_frontend",
 "Id": "qhysvpoolsw0318gsubbvd3rx",
 "Created": "2019-11-03T17:31:27.354293132+01:00",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.0.2.0/24",
 "Gateway": "10.0.2.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },

2026/02/04 13:25 71/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "ConfigOnly": false,
 "Containers": {
 "ef7227281d297b001bb0f60ac81a0c9926e8fb663a7f43eb201cced632dc5564": {
 "Name": "app_worker.1.38kniuqoe1vfyonwdcytlhpqo",
 "EndpointID": "3fad9773920412464b6aeee59f8d9ffc5aac2e937b88dc384268591cf7d21fb9",
 "MacAddress": "02:42:0a:00:02:0a",
 "IPv4Address": "10.0.2.10/24",
 "IPv6Address": ""
 },
 "lb-app_frontend": {
 "Name": "app_frontend-endpoint",
 "EndpointID": "343887373c1f92ac08b271ee52dd160089eeed7cad13b7924e438919254b6442",
 "MacAddress": "02:42:0a:00:02:0b",
 "IPv4Address": "10.0.2.11/24",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4100"
 },
 "Labels": {
 "com.docker.stack.namespace": "app"
 },
 "Peers": [
 {
 "Name": "0e21ba1bbfab",
 "IP": "10.0.2.63"
 },
 {
 "Name": "5cc4b863da9f",
 "IP": "10.0.2.64"
 },
 {
 "Name": "377986fb7d5a",

2026/02/04 13:25 72/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "IP": "10.0.2.62"
 }
]
 }
]

Important : Notez que le réseau est 10.0.2.0/24 et la passerelle 10.0.2.1.

Consultez les informations concernant le réseau app_default :

root@manager:~# docker inspect app_default
[
 {
 "Name": "app_default",
 "Id": "z62t49w18wl2mrboa92tunrhq",
 "Created": "2019-10-28T17:22:44.724040846+01:00",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.0.1.0/24",
 "Gateway": "10.0.1.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,

2026/02/04 13:25 73/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "2032d9eae353130e283a91bc09b65b4a84b7e8f5602a466f4ea1bd9c64e964dc": {
 "Name": "app_visualizer.1.nbf78cn5g37dmu0fwrxt7kbrg",
 "EndpointID": "d5274ff057c9d9af0288efb7f9bfed3a5ca1b3e656e265ad343f52c0b1c161f5",
 "MacAddress": "02:42:0a:00:01:03",
 "IPv4Address": "10.0.1.3/24",
 "IPv6Address": ""
 },
 "lb-app_default": {
 "Name": "app_default-endpoint",
 "EndpointID": "6afb8909d94528633e4150054311f645790280b1ab1c686c43e865ba97ec3df9",
 "MacAddress": "02:42:0a:00:01:04",
 "IPv4Address": "10.0.1.4/24",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4099"
 },
 "Labels": {
 "com.docker.stack.namespace": "app"
 },
 "Peers": [
 {
 "Name": "377986fb7d5a",
 "IP": "10.0.2.62"
 }
]
 }

2026/02/04 13:25 74/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

]

Important : Notez que le réseau est 10.0.1.0/24 et la passerelle 10.0.1.1.

Schématiquement, la mise en place de l'application dans le Swarm est ainsi :

Dernièrement, supprimez le stack :

2026/02/04 13:25 75/75 DOF203 - Gestion du Réseau avec Docker

www.ittraining.team - https://www.ittraining.team/

root@manager:~# docker stack ls
NAME SERVICES ORCHESTRATOR
app 6 Swarm
root@manager:~# docker stack rm app
Removing service app_db
Removing service app_redis
Removing service app_result
Removing service app_visualizer
Removing service app_vote
Removing service app_worker
Removing network app_frontend
Removing network app_backend
Removing network app_default
root@manager:~# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
d02c6115724c alpine "/bin/sh" 6 days ago Exited (0) 6 days ago
alpine1

Copyright © 2022 Hugh Norris.

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker2:drf02

Last update: 2022/04/29 07:57

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker2:drf02

	DOF203 - Gestion du Réseau avec Docker
	Contenu du Module
	L'Approche Réseau Docker
	LAB #1 - Les Réseaux Docker ayant un Scope Local
	1.1 - Bridge
	Liens

	1.2 - Host
	1.3 - None
	1.4 - Lancer Wordpress dans un container
	1.5 - Gestion d'une Architecture de Microservices

	LAB #2 - Gestion du Réseau overlay
	2.2 - Création d'un Réseau overlay
	2.2 - Création d'un Service
	2.3 - Déplacer le Service vers un autre Réseau overlay
	2.4 - DNS container discovery
	2.5 - Création d'un Réseau overlay Personnalisé

	LAB #3 - Gestion d'une Architecture de Microservices
	3.1 - Mise en Place avec Docker Swarm avec des réseaux Overlay

