2026/02/04 12:26 1/40 DOF103 - Gérer les Images Docker

Version : 2022.01

Derniere mise-a-jour : 2021/12/29 10:32

DOF103 - Gérer les Images Docker

Contenu du Module

* DOF103 - Gérer les Images Docker
o Contenu du Module
o LAB #1 - Re-créer une image officielle docker
= 1.1 - Utilisation d'un Dockerfile
1.2 - FROM
1.3-RUN
1.4 - ENV
1.5 - VOLUME
1.6 - COPY
1.7 - ENTRYPOINT
1.8 - EXPOSE
1.9-CMD
1.10 - Autres Commandes
o LAB #2 - Créer un Dockerfile
= 2.1 - Création et test du script
= 2.2 - Bonnes Pratiques liées au Cache

LAB #1 - Re-créer une image officielle docker

1.1 - Utilisation d'un Dockerfile

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 2/40 DOF103 - Gérer les Images Docker

Bien que la compilation des images soient assuré par Docker Hub, il est tout a fait possible de compiler une image “officielle” a partir d'un Dockerfile :

root@debian9:~# mkdir mongodb
root@debian9:~# cd mongodb/
root@debian9:~/mongodb# touch Dockerfile docker-entrypoint.sh

Le Docker file contient les instructions nécessaires pour la contruction de I'image :

Dockerfile

FROM ubuntu:bionic

add our user and group first to make sure their IDs get assigned consistently, regardless of whatever
dependencies get added
RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

RUN set -eux; \

apt-get update; \

apt-get install -y --no-install-recommends \
ca-certificates \
jg \
numactl \

HEAN

if ! command -v ps > /dev/null; then \
apt-get install -y --no-install-recommends procps; \

fi; \

rm -rf /var/lib/apt/lists/*

grab gosu for easy step-down from root (https://github.com/tianon/gosu/releases)

ENV GOSU VERSION 1.11

grab "js-yaml" for parsing mongod's YAML config files (https://github.com/nodeca/js-yaml/releases)
ENV JSYAML VERSION 3.13.0

RUN set -ex; \

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/doku.php?do=export_code&id=elearning:workbooks:docker1:drf02&codeblock=1

2026/02/04 12:26 3/40 DOF103 - Gérer les Images Docker

\

apt-get update; \

apt-get install -y --no-install-recommends \
wget \

HEA
if ! command -v gpg > /dev/null; then \
apt-get install -y --no-install-recommends gnupg dirmngr; \

fi; \
rm -rf /var/lib/apt/lists/*; \
\

dpkgArch="$(dpkg --print-architecture | awk -F- '{ print $NF }')"; \

wget -0 /usr/local/bin/gosu
“https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-$dpkgArch"; \

wget -0 /usr/local/bin/gosu.asc
"https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch.asc"; \

export GNUPGHOME="$(mktemp -d)"; \

gpg --batch --keyserver pgp.mit.edu --recv-keys B42F6819007FOOF88E364FD4036A9C25BF357DD4; \

gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu; \

command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc; \

chmod +x /usr/local/bin/gosu; \

gosu --version; \

gosu nobody true; \

\

wget -0 /js-yaml.js "https://github.com/nodeca/js-yaml/raw/${JSYAML_VERSION}/dist/js-yaml.js"; \
TODO some sort of download verification here

\

apt-get purge -y --auto-remove wget

RUN mkdir /docker-entrypoint-initdb.d
ENV GPG_KEYS E162F504A20CDF15827F718D4B7C549A058F8B6B

RUN set -ex; \
export GNUPGHOME="$(mktemp -d)"; \

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 4/40 DOF103 - Gérer les Images Docker

for key in $GPG KEYS; do \
gpg --batch --keyserver pgp.mit.edu --recv-keys "$key"; \

done; \
gpg --batch --export $GPG KEYS > /etc/apt/trusted.gpg.d/mongodb.gpg; \
command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME"; \
apt-key list

Allow build-time overrides (eg. to build image with MongoDB Enterprise version)

Options for MONGO PACKAGE: mongodb-org OR mongodb-enterprise

Options for MONGO REPO: repo.mongodb.org OR repo.mongodb.com

Example: docker build --build-arg MONGO PACKAGE=mongodb-enterprise --build-arg MONGO REPO=repo.mongodb.com

ARG MONGO PACKAGE=mongodb-org-unstable
ARG MONGO REPO=repo.mongodb.org
ENV MONGO PACKAGE=${MONGO PACKAGE} MONGO REPO=${MONGO REPO}

ENV MONGO MAJOR 4.1

ENV MONGO VERSION 4.1.9

bashbrew-architectures:amd64 arm64v8 s390x

RUN echo "deb http://$MONGO REPO/apt/ubuntu bionic/${MONGO PACKAGES-unstable}/$MONGO MAJOR multiverse" | tee
"/etc/apt/sources.list.d/${MONGO PACKAGES-unstable}.list"

RUN set -x \

&& apt-get update \

&& apt-get install -y \
${MONGO PACKAGE}=$MONGO VERSION \
${MONGO PACKAGE}-server=$MONGO VERSION \
${MONGO PACKAGE}-shell=$MONGO VERSION \
${MONGO_PACKAGE}-mongos=$MONGO_ VERSION \
${MONGO_PACKAGE}-to0ols=$MONGO VERSION \

& rm -rf /var/lib/apt/lists/* \

& rm -rf /var/lib/mongodb \

&& mv /etc/mongod.conf /etc/mongod.conf.orig

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 5/40

DOF103 - Gérer les Images Docker

RUN mkdir -p /data/db /data/configdb \
&& chown -R mongodb:mongodb /data/db /data/configdb
VOLUME /data/db /data/configdb

COPY docker-entrypoint.sh /usr/local/bin/
ENTRYPOINT ["docker-entrypoint.sh"]

EXPOSE 27017
CMD ["mongod"]

Le fichier docker-entrypoint.sh sert a lancer le serveur mongodb dans le conteneur :

docker-entrypoint.sh

#!/bin/bash
set -Eeuo pipefail

if ["${1:0:1}" = '-']; then
set -- mongod "$@"
fi

originalArgOne="$1"

allow the container to be started with " --user’
all mongo* commands should be dropped to the correct user
if [["$originalArgOne" == mongo*]] && ["$(id -u)" = '0']; then
if ["$originalArgOne" = 'mongod']; then
find /data/configdb /data/db \! -user mongodb -exec chown mongodb '{}' +
fi

make sure we can write to stdout and stderr as "mongodb"
(for our "initdb" code later; see "--logpath" below)

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/doku.php?do=export_code&id=elearning:workbooks:docker1:drf02&codeblock=2

2026/02/04 12:26 6/40 DOF103 - Gérer les Images Docker

chown --dereference mongodb "/proc/$$/fd/1" "/proc/$$/fd/2" ||
ignore errors thanks to https://github.com/docker-1library/mongo/issues/149

exec gosu mongodb "$BASH SOURCE" "$@"
fi

you should use numactl to start your mongod instances, including the config servers, mongos instances, and
any clients.
https://docs.mongodb.com/manual/administration/production-notes/#configuring-numa-on-1linux
if [["$originalArgOne" == mongo*]]; then

numa='numactl --interleave=all'

if $numa true & /dev/null; then

set -- $numa "$@"

fi

fi

usage: file env VAR [DEFAULT]
ie: file env 'XYZ DB PASSWORD' 'example'
(will allow for "$XYZ DB PASSWORD FILE" to fill in the value of
"$XYZ DB PASSWORD" from a file, especially for Docker's secrets feature)
file env() {
local var="$1"
local fileVar="${var} FILE"
local def="${2:-}"
if ["${!'var:-}" 1 & ["${'fileVar:-}" 1; then
echo >&2 "error: both $var and $fileVar are set (but are exclusive)"
exit 1
fi
local val="$def"
if ["${!'var:-}"]; then
val="${!var}"
elif ["${!'fileVar:-}"]; then
val="$(< "${!filevar}")"
fi

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 7/40 DOF103 - Gérer les Images Docker

export "$var"="$val"
unset "$fileVar"

}

see https://github.com/docker-library/mongo/issues/147 (mongod is picky about duplicated arguments)
~mongod hack have arg() {
local checkArg="$1"; shift
local arg
for arg; do
case "$arg" in
"$checkArg"|"$checkArg"=*)

return 0
esac
done
return 1
}
mongod hack get arg val '--some-arg' "$@"

_mongod hack get arg val() {
local checkArg="$1"; shift
while ["$#" -gt 0]; do

local arg="$1"; shift
case "$arg" in
"$checkArg")
echo "$1"
return 0
"$checkArg"=*)
echo "${arg#$checkArg=}"
return 0
esac
done
return 1

www.ittraining.team - https://www.ittraining.team/

DOF103 - Gérer les Images Docker

2026/02/04 12:26 8/40
}
declare -a mongodHackedArgs
mongod hack ensure arg '--some-arg' "$@"
set -- "${mongodHackedArgs[@]}"

~mongod hack ensure arg() {
local ensureArg="$1"; shift
mongodHackedArgs=("$@")
if ! mongod hack have arg "$ensureArg" "$@"; then
mongodHackedArgs+=("$ensureArg")

fi
}
mongod hack ensure no arg '--some-unwanted-arg' "$@"
set -- "${mongodHackedArgs[@]}"

_mongod hack ensure no arg() A
local ensureNoArg="$1"; shift
mongodHackedArgs=()
while ["$#" -gt 0]; do

local arg="$1"; shift

if ["$arg" = "$ensureNoArg" 1; then
continue
fi
mongodHackedArgs+=("$arg")
done

}
mongod hack ensure no arg '--some-unwanted-arg' "$@"
set -- "${mongodHackedArgs[@]}"

~mongod hack ensure no arg val() {
local ensureNoArg="$1"; shift
mongodHackedArgs=()
while ["$#" -gt 0]; do
local arg="$1"; shift
case "$arg" in
"$ensureNoArg")
shift # also skip the value

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 9/40

DOF103 - Gérer les Images Docker

continue
"$ensureNoArg"=*)
value is already included

continue
esac
mongodHackedArgs+=("$arg")
done
}
mongod hack ensure arg val '--some-arg' 'some-val' "$@"
set -- "${mongodHackedArgs[@]}"

_mongod hack ensure arg val() {
local ensureArg="%$1"; shift
local ensureVal="$1"; shift
~mongod hack ensure no arg val "$ensureArg" "$@"
mongodHackedArgs+=("$ensureArg" "$ensureVal")

}

Jjs escape 'some "string" value'
_js escape() {

jg --null-input --arg 'str' "$1" '$str'
}

jsonConfigFile="${TMPDIR: -/tmp}/docker-entrypoint-config.json"
tempConfigFile="${TMPDIR: - /tmp}/docker-entrypoint-temp-config.json"
_parse config() {
if [-s "$tempConfigFile"]; then
return 0
fi

local configPath
if configPath="$(mongod hack get arg val --config "$@")"; then
if --config is specified, parse it into a JSON file so we

can remove a few

problematic keys

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 10/40 DOF103 - Gérer les Images Docker

(especially SSL-related keys)
see https://docs.mongodb.com/manual/reference/configuration-options/
mongo --norc --nodb --quiet --eval "load('/js-yaml.js'); printjson(jsyaml.load(cat($(js escape
"$configPath"))))" > "$jsonConfigFile"
jg 'del(.systemLog, .processManagement, .net, .security)' "$jsonConfigFile" > "$tempConfigFile"
return 0
fi

return 1
}
dbPath=
_dbPath() {
if [-n "$dbPath"]; then
echo "$dbPath"
return
fi

if ! dbPath="$(mongod hack get arg val --dbpath "$@")"; then
if parse config "$@"; then
dbPath="$(jq -r '.storage.dbPath // empty' "$jsonConfigFile")"
fi
fi

if [-z "$dbPath" 1; then
if mongod hack have arg --configsvr "$@" || {
_parse _config "$@" \
&& clusterRole="$(jg -r '.sharding.clusterRole // empty' "$jsonConfigFile")" \
&& ["$clusterRole" = 'configsvr']

}; then
if running as config server, then the default dbpath is /data/configdb

https://docs.mongodb.com/manual/reference/program/mongod/#cmdoption-mongod-configsvr
dbPath=/data/configdb
fi
fi

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 11/40 DOF103 - Gérer les Images Docker

"${dbPath:=/data/db}"

echo "$dbPath"
}

if ["$originalArgOne" = 'mongod']; then
file env 'MONGO _INITDB ROOT USERNAME'
file env 'MONGO INITDB ROOT PASSWORD'
pre-check a few factors to see if it's even worth bothering with initdb

shouldPerformInitdb=

if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD" 1; then
if we have a username/password, let's set "--auth"
_mongod_hack ensure arg '--auth' "$@"
set -- "${mongodHackedArgs[@]}"

shouldPerformInitdb="'true'
elif ["$MONGO INITDB ROOT USERNAME"] || ["$MONGO INITDB ROOT PASSWORD"]; then
cat >&2 <<-'EOF'
error: missing 'MONGO_INITDB ROOT USERNAME' or 'MONGO_INITDB ROOT PASSWORD'
both must be specified for a user to be created
EOF
exit 1
fi

if [-z "$shouldPerformInitdb"]; then
if we've got any /docker-entrypoint-initdb.d/* files to parse later, we should initdb
for f in /docker-entrypoint-initdb.d/*; do
case "$f" in
.sh|.js) # this should match the set of files we check for below
shouldPerformInitdb="$f"
break
esac
done

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 12/40

fi

DOF103 - Gérer les Images Docker

check for a few known paths (to determine whether we've already initialized and should thus skip our
initdb scripts)
if [-n "$shouldPerformInitdb"]; then
dbPath="$(dbPath "$@")"
for path in \
"$dbPath/WiredTiger" \
"$dbPath/journal" \
"$dbPath/local.o" \
"$dbPath/storage.bson" \

; do
if [-e "$path"]; then
shouldPerformInitdb=
break
fi
done

fi

if [-n "$shouldPerformInitdb"]; then
mongodHackedArgs=("$@")
if parse config "$@"; then

_mongod hack ensure arg val --config "$tempConfigFile" "${mongodHackedArgs[@]}"

fi
_mongod_hack ensure arg val --bind ip 127.0.0.1 "${mongodHackedArgs[@]}"
_mongod hack ensure arg val --port 27017 "${mongodHackedArgs[@]}"
~mongod hack ensure no arg --bind ip all "${mongodHackedArgs[@]}"

remove "--auth" and "--replSet" for our initial startup (see
https://docs.mongodb.com/manual/tutorial/enable-authentication/#start-mongodb-without-access-control)
https://github.com/docker-library/mongo/issues/211
_mongod hack ensure no _arg --auth "${mongodHackedArgs[@]}"
if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD"]; then
~mongod hack ensure no arg val --replSet "${mongodHackedArgs[@]}"

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 13/40 DOF103 - Gérer les Images Docker

fi

sslMode="$(_mongod hack have arg '--sslPEMKeyFile' "$@" && echo 'allowSSL' || echo 'disabled')" #
"BadValue: need sslPEMKeyFile when SSL is enabled" vs "BadValue: need to enable SSL via the sslMode flag
when using SSL configuration parameters”

~mongod hack ensure arg val --sslMode "$sslMode" "${mongodHackedArgs[@]}"

if stat "/proc/$$/fd/1" > /dev/null & [-w "/proc/$$/fd/1" 1; then
#
https://github.com/mongodb/mongo/blob/38c0eb538d0fd390c6ch9ce9ae9894153f6e8ef5/src/mongo/db/initialize serve
r global state.cpp#L237-L251
https://github.com/docker-library/mongo/issues/164#issuecomment-293965668
_mongod hack ensure arg val --logpath "/proc/$$/fd/1" "${mongodHackedArgs[@]}"
else
initdbLogPath="$(dbPath "$@")/docker-initdb.log"
echo >&2 "warning: initdb logs cannot write to '/proc/$$/fd/1', so they are in '$initdbLogPath’
instead"
_mongod hack ensure arg val --logpath "$initdbLogPath" "${mongodHackedArgs[@]}"
fi
_mongod hack ensure arg --logappend "${mongodHackedArgs[@]}"

pidfile="${TMPDIR: - /tmp}/docker-entrypoint-temp-mongod.pid"
rm -f "$pidfile”
_mongod hack ensure arg val --pidfilepath "$pidfile" "${mongodHackedArgs[@]}"

"${mongodHackedArgs[@]}" --fork
mongo=(mongo --host 127.0.0.1 --port 27017 --quiet)

check to see that our "mongod" actually did start up (catches "--help", "--version", MongoDB 3.2
being silly, slow prealloc, etc)

https://jira.mongodb.org/browse/SERVER-16292

tries=30

while true; do

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 14/40 DOF103 - Gérer les Images Docker

if !V { [-s "$pidfile"] && ps "$(< "$pidfile")" & /dev/null; }; then
bail ASAP if "mongod" isn't even running
echo >&2
echo >&2 "error: $originalArgOne does not appear to have stayed running -- perhaps it had an

error?"
echo >&2
exit 1
fi
if "${mongo[@]}" 'admin' --eval 'quit(0)' &> /dev/null; then
success!
break

((tries--))
if ["$tries" -1le 0]; then
echo >&2
echo >&2 "error: $originalArgOne does not appear to have accepted connections quickly enough
-- perhaps it had an error?"

echo >&2
exit 1
fi
sleep 1
done

if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD" 1; then
rootAuthDatabase='admin'

"${mongo[@]}" "$rootAuthDatabase" <<-E0JS
db.createUser({
user: $(_js escape "$MONGO INITDB ROOT USERNAME"),
pwd: $(js escape "$MONGO INITDB ROOT PASSWORD"),
roles: [{ role: 'root', db: $(js escape "$rootAuthDatabase") } 1]
})
E0JS
fi

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26

15/40 DOF103 - Gérer les Images Docker

fi

export MONGO INITDB DATABASE="${MONGO INITDB DATABASE:-test}"

echo
for f in /docker-entrypoint-initdb.d/*; do
case "$f" in
*.sh) echo "$0: running $f"; . "$f" ;;
*.js) echo "$0: running $f"; "${mongo[@]}" "$MONGO INITDB DATABASE" "$f"; echo ;;
*) echo "$0: ignoring $f" ;;
esac
echo
done

“${mongodHackedArgs[@]}" --shutdown
rm -f "$pidfile"

echo
echo 'MongoDB init process complete; ready for start up.'
echo

MongoDB 3.6+ defaults to localhost-only binding
if mongod --help 2>&1 | grep -q -- --bind ip all; then # TODO remove this conditional when 3.4 is no
longer supported

haveBindIp=

if mongod hack have arg --bind ip "$@" || _mongod hack have arg --bind ip all "$@"; then
haveBindIp=1

elif parse config "$@" && jq --exit-status '.net.bindIp // .net.bindIpAll' "$jsonConfigFile" >

/dev/null; then

haveBindIp=1

fi

if [-z "$haveBindIp"]; then
so if no "--bind ip" is specified, let's add "--bind ip all"
set -- "$@" --bind ip all

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 16/40 DOF103 - Gérer les Images Docker

fi
fi

unset "${!'MONGO INITDB @}"
fi

rm -f "$jsonConfigFile" "$tempConfigFile"

exec " $@||

Examinons chaque commande dans le Dockerfile :

1.2 - FROM

FROM ubuntu:bionic

Cette ligne définit I'image a partir de laquelle sera construite notre image. Quand I'image n'est construite a partir d'une autre image, la valeur de
FROM est scratch.

1.3 - RUN

RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

RUN set -eux; \
apt-get update; \
apt-get install -y --no-install-recommends \
ca-certificates \

jig \

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 17/40 DOF103 - Gérer les Images Docker

numactl \
P
if ! command -v ps > /dev/null; then \
apt-get install -y --no-install-recommends procps; \
fi; \
rm -rf /var/lib/apt/lists/*

RUN set -ex; \
\
apt-get update; \
apt-get install -y --no-install-recommends \
wget \
o
if ! command -v gpg > /dev/null; then \
apt-get install -y --no-install-recommends gnupg dirmngr; \

fi; \
rm -rf /var/lib/apt/lists/*; \
\

dpkgArch="$(dpkg --print-architecture | awk -F- '{ print $NF }')"; \
wget -0 /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch";
\
wget -0 /usr/local/bin/gosu.asc
"https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch.asc"; \
export GNUPGHOME="$(mktemp -d)"; \
gpg --batch --keyserver ha.pool.sks-keyservers.net --recv-keys B42F6819007FQ0OF88E364FD4036A9C25BF357DD4; \
gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu; \
command -v gpgconf && gpgconf --kill all || :; \
rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc; \
chmod +x /usr/local/bin/gosu; \
gosu --version; \
gosu nobody true; \
\
wget -0 /js-yaml.js "https://github.com/nodeca/js-yaml/raw/${JSYAML VERSION}/dist/js-yaml.js"; \
TODO some sort of download verification here

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 18/40 DOF103 - Gérer les Images Docker

\
apt-get purge -y --auto-remove wget

RUN mkdir /docker-entrypoint-initdb.d

RUN set -ex; \
export GNUPGHOME="$(mktemp -d)"; \
for key in $GPG _KEYS; do \
gpg --batch --keyserver ha.pool.sks-keyservers.net --recv-keys "$key"; \

done; \
gpg --batch --export $GPG KEYS > /etc/apt/trusted.gpg.d/mongodb.gpg; \
command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME"; \
apt-key list
RUN set -x \

&& apt-get update \

& apt-get install -y \
${MONGO_ PACKAGE}=$MONGO VERSION \
${MONGO PACKAGE}-server=$MONGO VERSION \
${MONGO PACKAGE}-shell=$MONGO VERSION \
${MONGO_ PACKAGE}-mongos=$MONGO VERSION \
${MONGO_PACKAGE}-tools=$MONGO VERSION \

&& rm -rf /var/lib/apt/lists/* \

& rm -rf /var/lib/mongodb \

&& mv /etc/mongod.conf /etc/mongod.conf.orig

RUN mkdir -p /data/db /data/configdb \
&& chown -R mongodb:mongodb /data/db /data/configdb

Cette commande lance un processus dans la construction de I'image. Dans les cas ci-dessus, chaque chaine correspond a la commande passée au shell
/bin/sh.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 19/40 DOF103 - Gérer les Images Docker

[l existe un autre syntaxe de la commande RUN appelé le format exec, a savoir :

RUN ["/bin/bash", "-c", "commande"]

/> Important : La commande RUN est utilisée pour exécuter une commande passée en argument lors de la compilation de I'image
.+ seulement. Cette commande ne doit pas donc étre utilisée pour exécuter une commande lors du lancement du conteneur. La commande
utilisée pour accomplir ce dernier est ENTRYPOINT.

1.4 - ENV

Cette commande permet de fixer la valeur d'une variable d'environnement disponible dans la suite du Dockerfile :

ENV GOSU VERSION 1.11
grab "js-yaml" for parsing mongod's YAML config files (https://github.com/nodeca/js-yaml/releases)
ENV JSYAML VERSION 3.13.0

ENV GPG_KEYS E162F504A20CDF15827F718D4B7C549A058F8B6B
ENV MONGO PACKAGE=${MONGO PACKAGE} MONGO REPO=${MONGO REPO}
ENV MONGO MAJOR 4.1

ENV MONGO VERSION 4.1.95

et dans les conteneurs générés a partir de I'image construite.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 20/40 DOF103 - Gérer les Images Docker

1.5 - VOLUME

VOLUME /data/db /data/configdb

Cette commande expose les répertoires passés en argument afin qu'ils puissent étre mappés vers des répertoires sur la machine hote ou ailleurs, tel
que nous avons vu avec l'exemple nginx.

1.6 - COPY

COPY docker-entrypoint.sh /usr/local/bin/

Cette commande permet de récupérer les fichiers dans le contexte et de les copier dans I'image.
Attention : tous les fichiers dans le contexte sont inclus dans I'image finale, méme ceux qui sont inutiles.

Il est possible d'exclure des fichiers présents dans le contexte en les mettant dans un fichier appelé .dockerignore placé dans le contexte.

- Important - |l existe une autre commande similaire a COPY : ADD. ADD est une commande qui n'est plus recommendé sauf dans le cas
| de cas spécifiques. Notez que dans le cas de I'utilisation de la commande ADD, si le fichier source est une archive de type TAR, son
contenu sera désarchivé et copier vers la destination tandis que si le fichier source est référencé par un URL, le contenu sera téléchargé
puis déposé dans la destination.

1.7 - ENTRYPOINT

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 21/40 DOF103 - Gérer les Images Docker

ENTRYPOINT ["docker-entrypoint.sh"]

Cette commande stipule la commande qui sera exécutée lors du démarrage du conteneur.

Deux cas de figure se présentent :

e ENTRYPOINT suivi d'une chaine - un shell est démarré pour exécuter la chaine,
e ENTRYPOINT suivi d'une table JSON (comme ci-dessus) au format ENTRYPOINT [“commande a exécuter”, “parametres de la commande”].

Dans le fichier docker-entrypoint.sh :

originalArgOne="$1"

allow the container to be started with " --user’
all mongo* commands should be dropped to the correct user
if [["$originalArgOne" == mongo*]] && ["$(id -u)" = '0']; then
if ["$originalArgOne" = 'mongod']; then
find /data/configdb /data/db \! -user mongodb -exec chown mongodb '{}' +
fi

make sure we can write to stdout and stderr as "mongodb"

(for our "initdb" code later; see "--logpath" below)

chown --dereference mongodb "/proc/$$/fd/1" "/proc/$$/fd/2" ||

ignore errors thanks to https://github.com/docker-library/mongo/issues/149

exec gosu mongodb "$BASH SOURCE" "$@"
fi
you should use numactl to start your mongod instances, including the config servers, mongos instances, and any

clients.
https://docs.mongodb.com/manual/administration/production-notes/#configuring-numa-on-1linux

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 22/40 DOF103 - Gérer les Images Docker

if [["$originalArgOne" == mongo*]]; then
numa='numactl --interleave=all'
if $numa true & /dev/null; then
set -- $numa "$@"
fi
fi

exec "$@"

si la valeur du parametre passé a entrypoint.sh est mongod, le script affecte I'utilisateur mongodb aux répertoires /data/configdb et /data/db puis
lance mongo sous l'utilisateur mongodb avec des droits réduits (gosu).

Ce fichier finit par “$@" qui indique que si aucune condition n'ait été remplie, la commande est exécutée avec la valeur passée en argument.

| Important - Notez que la compilation d'une image se fait a I'intérieur d'un contexte. Le contexte est le répertoire de build.
Dernierement, notez qu'il peut y avoir plusieurs ENTRYPOINT dans le fichier Dockerfile mais uniquement le dernier est pris en compte.

1.8 - EXPOSE

EXPOSE 27017

Cette commande permet d'exposer un port a I'extérieur du conteneur.

1.9 - CMD

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26

23/40

DOF103 - Gérer les Images Docker

CMD ["mongod"]

Ceci représente la valeur du parametre par défaut si aucun parametre n'est spécifié a la fin de la commande docker run.

1.10 - Autres Commandes

Le Dockerfile peut aussi contenir les commandes suivantes :

* WORKDIR,

o Cette commande fixe le répertoire de travil lors de la compilation d'une image. Elle peut apparaitre plusieurs fois dans le Dockerfile
permettant ainsi I'évolution du répertoire de travail,

e LABEL,

o Cette commande permet de définir des couples clef/valeur a inclure dans les méta-données décrivant I'image lors de sa distribution, par
exemple, la version, la description ou un readme.

Lancez maintenant la compilation de l'image :
root@debian9:~/mongodb# docker build
Consultez la liste de images :

root@debian9:~/mongodb# docker images

REPOSITORY TAG

<none> <none>
i2tch/mongodb latest
nginx latest
centos latest
ubuntu bionic
ubuntu latest
hello-world latest

IMAGE ID

3bf216d921d6
eca’/835d4feb
2bcb04bdb83f
9138484d220f
94e814e2efa8
94e814e2efa8
fce289e99eb9

Notez que I'image n'a ni REPOSITORY, ni TAG. Créez donc un TAG :

CREATED

About a minute ago
11 minutes ago

13 days ago

3 weeks ago

4 weeks ago

4 weeks ago

3 months ago

SIZE
96.2MB
1.03GB
109MB
202MB
88.9MB
88.9MB
1.84kB

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 24/40

DOF103 - Gérer les Images Docker

root@debian9:~/mongodb# docker tag 3bf2 i2tch/mongodbl

root@debian9:~/mongodb# docker images

REPOSITORY TAG

i2tch/mongodbl latest
i2tch/mongodb latest
nginx latest
centos latest
ubuntu bionic
ubuntu latest
hello-world latest

IMAGE ID

3bf216d921d6
eca’/835d4feb
2bcb04bdb83f
9138484d220f
94e814e2efa8
94e814e2efa8
fce289e99eb9

Démarrez un conteneur a partir de I'image i2tch/mongodb1 :

CREATED

2 minutes ago
11 minutes ago
13 days ago

3 weeks ago

4 weeks ago

4 weeks ago

3 months ago

root@debian9:~/mongodb# docker run -d --name mongol i2tch/mongodbl
bdb4bc0f81de8b5821f20d8609b9640abaaae7b4a7577¢c42b78d4bd34617d211

docker: Error response from daemon: oci runtime error: container linux.go:262: starting container process caused
"exec: \"docker-entrypoint.sh\": executable file not found in $PATH".

root@debian9:~/mongodb# 1s -1
total 16

-rw-r--r-- 1 root root 10971 avril 9 13:56 docker-entrypoint.sh

-rw-r--r-- 1 root root 3542 avril 9 13:55 Dockerfile

F []
_)

Recompilez donc I'image :

root@debian9:~/mongodb# docker rm mongol
mongol

root@debian9:~/mongodb# chmod +x docker-entrypoint.sh

root@debian9:~/mongodb# docker build .
Sending build context to Docker daemon

16.9kB

Important - Notez que le fichier docker-entrypoint.sh n'était pas exécutable !

SIZE
96.2MB
1.03GB
109MB
202MB
88.9MB
88.9MB
1.84kB

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 25/40 DOF103 - Gérer les Images Docker

Step 1/22 : FROM ubuntu:bionic
---> 94e814e2efal

Step 2/22 : RUN groupadd -r mongodb && useradd -r -g mongodb mongodb
---> Using cache
---> f40ac453fa97

Step 3/22 : RUN set -eux; apt-get update; apt-get install -y --no-install-recommends ca-
certificates jq numactl ; if ! command -v ps > /dev/null; then apt-get install -y --
no-install-recommends procps; fi; rm -rf /var/lib/apt/lists/*

---> Using cache
---> adc57dalbl9of

Step 4/22 : ENV GOSU VERSION 1.11
---> Using cache
---> 038e7de870b7

Step 5/22 : ENV JSYAML VERSION 3.13.0
---> Using cache
---> 3bf216d921d6

Removing intermediate container a98ae692felf
---> 04c2e98927c3
Step 17/22 : RUN mkdir -p /data/db /data/configdb && chown -R mongodb:mongodb /data/db /data/configdb
---> Running in dOf5bee34571
Removing intermediate container dOf5bee34571
---> d5b95e9e63el
Step 18/22 : VOLUME /data/db /data/configdb
---> Running in ¢7626528a9hb9
Removing intermediate container ¢7626528a9b9
---> 4250613adf6a
Step 19/22 : COPY docker-entrypoint.sh /usr/local/bin/
---> eedfd53da0f8
Step 20/22 : ENTRYPOINT ["docker-entrypoint.sh"]
---> Running in eff53d0213d1
Removing intermediate container eff53d0213d1l
---> 716abf2faa87
Step 21/22 : EXPOSE 27017

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26

26/40

DOF103 - Gérer les Images Docker

---> Running in 5139fcf19d7f

Removing intermediate container 5139fcf
---> fc5896e08fd6

Step 22/22 : CMD ["mongod"]
---> Running in 458d6f15cdf2

19d7f

Removing intermediate container 458d6f15cdf2

---> 12e00099ca8d
Successfully built 12e00099ca8d
root@debian9:~/mongodb#

" Important - Notez ici les lignes Using cache. Il est cependant possible de ne pas utiliser le cache en stipulant -no-cache. Notez aussi
/1 I'utilisation de conteneurs temporaires par étape nouvelle avec un commit vers une image et une suppression dudit conteneur.

Consultez la liste des images de nouveau et renommez votre derniére image :

root@debian9:~/mongodb# docker images

REPOSITORY TAG

<none> <none>
i2tch/mongodbl latest
i2tch/mongodb latest
nginx latest
centos latest
ubuntu bionic
ubuntu latest

hello-world latest
root@debian9:~/mongodb# docker tag 12e0
root@debian9:~/mongodb# docker images
REPOSITORY TAG

i2tch/mongodb?2 latest

IMAGE ID
12e00099ca8d
3bf216d921d6
eca’/835d4feb
2bcb04bdb83f
9f38484d220f
94e814e2efa8
94e814e2efa8
fce289e99eb9
i2tch/mongodb2

IMAGE ID
12e00099ca8d

CREATED

42 seconds ago
10 minutes ago
19 minutes ago
13 days ago

3 weeks ago

4 weeks ago

4 weeks ago

3 months ago

CREATED
About a minute ago

SIZE
377MB
96.2MB
1.03GB
109MB
202MB
88.9MB
88.9MB
1.84kB

SIZE
377MB

Derniérement, notez que la compilation d'une image se fait a I'intérieur d'un contexte. Le contexte est le répertoire de build. Attention
: tous les fichiers dans le contexte sont inclus dans I'image finale, méme ceux qui sont inutiles.

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 27/40 DOF103 - Gérer les Images Docker

i2tch/mongodbl latest 3bf216d921d6 11 minutes ago 96.2MB
i2tch/mongodb latest eca’7835d4feb 20 minutes ago 1.03GB
nginx latest 2bcb04bdb83f 13 days ago 109MB
centos latest 9f38484d220f 3 weeks ago 202MB
ubuntu bionic 94e814e2efa8 4 weeks ago 88.9MB
ubuntu latest 94e814e2efal 4 weeks ago 88.9MB
hello-world latest fce289e99eb9 3 months ago 1.84kB

Lancez un conteneur a partir de la derniere image :

root@debian9:~/mongodb# docker run -d --name mongo2 i2tch/mongodb2
€91a055283f4d67cbd91d11bb3faa6f67925893cb18f9cc25023e72e0f7ed85a

Utilisez la commande docker ps pour visualiser si le processus mongodb est bien démarré :

root@debian9:~/mongodb# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

€91a055283f4 i2tch/mongodb2 "docker-entrypoint.s.." 28 seconds ago Up 27 seconds

27017/tcp mongo2

d2ddb4f8ca8a i2tch/mongodb “bash" 21 minutes ago Up 19 minutes

mongo

c080793965de nginx "nginx -g 'daemon of.." About an hour ago Up About an hour

0.0.0.0:81->80/tcp suspicious sanderson
Connectez-vous a mongodb a partir de votre machine hote :

root@debian9:~/mongodb# docker inspect mongo2 | grep IP
"LinkLocalIPv6Address": "",
"LinkLocalIPv6PrefixLen": 0,
"SecondaryIPAddresses": null,
"SecondaryIPv6Addresses": null,
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26

28/40

DOF103 - Gérer les Images Docker

"ITPAddress": "172.17.0.4",
"IPPrefixLen": 16,
"IPvbGateway": "",

MongoDB shell

"IPAMConfig": null,

“IPAddress": "172.17.0.4",

"IPPrefixLen": 16,
"IPvbGateway": "",

"GlobalIPvb6Address":

nun
’

"GlobalIPv6PrefixLen": 0,
root@debian9:~/mongodb#
root@debian9:~/mongodb# mongo --host 172.17.0.4

version v4.0.8

connecting to: mongodb://172.17.0.4:27017/7?gssapiServiceName=mongodb

Implicit session: session { "id"

MongoDB server version: 4.1.9
WARNING: shell and server versions do not match
Server has startup warnings:

2019-04-09T17:
2019-04-09T17:

50:12.635+0000 I STORAGE
50:12.636+0000 I STORAGE

[initandlisten]
[initandlisten]

recommended with the WiredTiger storage engine

2019-04-09T17:
http://dochub.
2019-04-09T17:
2019-04-09T17
MongoDB.
2019-04-09T17
2019-04-09T17
2019-04-09T17
database.
2019-04-09T17
configuration
2019-04-09T17:

Enable MongoDB's

50:12.636+0000 I STORAGE

[initandlisten]

mongodb.org/core/prodnotes-filesystem

50:13.458+0000 I CONTROL

:50:13.459+0000 I CONTROL
:50:13.459+0000 I CONTROL
:50:13.459+0000 I CONTROL
:50:13.459+0000 I CONTROL

:50:13.459+0000 I CONTROL

is unrestricted.
50:13.460+0000 I CONTROL

[initandlisten]
[initandlisten]

[initandlisten]
[initandlisten]
[initandlisten]

[initandlisten]

[initandlisten]

k%

* %

k%

* %

k%

k%

: UUID("3feff8c0-5460-473b-b036-4aee64a314f7") }

WARNING: Using the XFS filesystem is strongly

See

NOTE: This is a development version (4.1.9) of
Not recommended for production.
WARNING: Access control is not enabled for the

Read and write access to data and

free cloud-based monitoring service, which will then receive and display

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26

29/40

DOF103 - Gérer les Images Docker

metrics about your deployment (disk utilization, CPU, operation statistics, etc).

The monitoring data will be available on a MongoDB website with a unique URL accessible to you

and anyone you share the URL with. MongoDB may use this information to make product

improvements and to suggest MongoDB products and deployment options to you.

To enable free monitoring,

To permanently disable this reminder,

> exit
bye

root@debian9:~/mongodb#

run the following command: db.enableFreeMonitoring()
run the following command: db.disableFreeMonitoring()

Notez que lors de la compilation de I'image finale, une image a été créée lors de chaque instruction dans le fichier Dockerfile sauf en cas d'utilisation

d'une image en cache :

root@debian9:~/mongodb# docker images -a

REPOSITORY
i2tch/mongodb2
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>

TAG

latest
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>

IMAGE ID

12e00099ca8d
d5b95e9e63el
4250613adf6a
eedfd53da0df8
04c2e98927c3
cbeae79e3d22
€205179d538c
b70835bebe35
5b2827910929
5b1f6df94d98
a950a5d04b68
c183cfecc5f0
aadb5806f1b8
8d538d38407e
32d59bf23987

CREATED

00 00O NNNNNNNU1o ol U

minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes

ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago

SIZE

377MB
377MB
377MB
377MB
377MB
110MB
110MB
116MB
116MB
116MB
110MB
116MB
116MB
116MB
116MB

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 30/40 DOF103 - Gérer les Images Docker
i2tch/mongodbl latest 3bf216d921d6 15 minutes ago 96.2MB
<none> <none> 038e7de870b7 15 minutes ago 96.2MB
<none> <none> adc57dalbl9f 15 minutes ago 96.2MB
<none> <none> f40ac453fa97 15 minutes ago 89.3MB
i2tch/mongodb latest eca’/835d4feb 24 minutes ago 1.03GB
<none> <none> 620057baad1ll 27 minutes ago 816MB
<none> <none> 67afc80el424 33 minutes ago 816MB
nginx latest 2bcb04bdb83f 13 days ago 109MB
centos latest 9f38484d220f 3 weeks ago 202MB
ubuntu bionic 94e814e2efal 4 weeks ago 88.9MB
ubuntu latest 94e814e2efal8 4 weeks ago 88.9MB
hello-world latest fce289e99eb9 3 months ago 1.84kB

LAB #2 - Créer un Dockerfile

2.1 - Création et test du script

Créez un répertoire nommé myDocker :

root@debian9:~/mongodb# mkdir ~/myDocker

root@debian9:~/mongodb# cd ~/myDocker

root@debian9:~/myDocker#

Créez le fichier myEntrypoint.sh :

root@debian9:~/myDocker# vi myEntrypoint.sh
root@debian9:~/myDocker# cat myEntrypoint.sh

#!/bin/bash

if [-z "$myVariable"]; then
echo "La variable myVariable doit étre renseignée"

return 1

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 31/40 DOF103 - Gérer les Images Docker

fi

while true;

do
echo $1 \($(date +%H:%M:%S)\);
sleep "$myVariable";

done

Testez ce script :

root@debian9:~/myDocker# myVariable=3 . ./myEntrypoint.sh salut
salut (20:04:39)

salut (20:04:42)
salut (20:04:45)
salut (20:04:48)
salut (20:04:51)
~C

root@debian9:~/myDocker#

Rendez ce script exécutable :

root@debian9:~/myDocker# chmod u+x myEntrypoint.sh
Créez maintenant le fichier Dockerfile dans le répertoire ~/myDocker :

root@debian9:~/myDocker# vi Dockerfile
root@debian9:~/myDocker# cat Dockerfile
FROM centos:latest

MAINTAINER i2tch "infos@i2tch.eu"

COPY myEntrypoint.sh /entrypoint.sh

ENV myVariable 3

ENTRYPOINT ["/entrypoint.sh"]

CMD ["mycommand"]

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 32/40

DOF103 - Gérer les Images Docker

Générez maintenant l'image :

root@debian9:~/myDocker# docker build -t i2tch/mydocker .

Sending build context to Docker daemon 3.072kB

Step 1/6 : FROM centos:latest
---> 9f38484d220f

Step 2/6 : MAINTAINER i2tch "infos@i2tch.eu"
---> Running in 02c700ed04da

Removing intermediate container 02c700ed04da
---> 4274107d52e2

Step 3/6 : COPY myEntrypoint.sh /entrypoint.sh
---> 723923372768

Step 4/6 : ENV myVariable 3
---> Running in 3288bf6291ad

Removing intermediate container 3288bf6291ad
---> 3edb630c1511

Step 5/6 : ENTRYPOINT ["/entrypoint.sh"]
---> Running in 8dcba2c41520

Removing intermediate container 8dcba2c41520
---> 11962052539c

Step 6/6 : CMD ["mycommand"]
---> Running in f891fbcfaad0

Removing intermediate container f891fbcfaad0O
---> 7925ba23abb2

Successfully built 7925ba23abb2

Successfully tagged i2tch/mydocker:latest

Lancez le conteneur :

root@debian9:~/myDocker# docker run -it --name myDocker i2tch/mydocker

mycommand (18:07:12)

mycommand (18:07:15)
mycommand (18:07:18)
mycommand (18:07:21)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26

33/40

DOF103 - Gérer les Images Docker

~Cmycommand (18:07:22)
mycommand (18:07:25)
mycommand (18:07:28)

root@debian9:~/myDocker#

Constatez que le conteneur est toujours en cours de fonctionnement :

root@debian9:~/myDocker# docker ps

CONTAINER ID
NAMES
140ecfdd80b7
myDocker
b3380889eb75
27017/tcp
d2ddb4f8ca8a
mongo
c080793965de

IMAGE COMMAND

i2tch/mydocker "/entrypoint.sh myco.."
i2tch/mongodb2 "docker-entrypoint.s.."
mongo2

i2tch/mongodb "bash"

nginx “nginx -g 'daemon of.."

0.0.0.0:81->80/tcp suspicious sanderson
root@debian9:~/myDocker#
root@debian9:~/myDocker# docker logs myDocker | tail

mycommand (18:

mycommand
mycommand
mycommand
mycommand

mycommand
mycommand
mycommand

mycommand (18:

(18
(18
(18
(18
mycommand (18:
(18
(18
(18

08:
:08:28)
:08:31)
:08:34)
:08:37)
:140)
43)
46)
49)

08

:08:
:08:
:08:
08:

Arrétez le conteneur :

25)

52)

CREATED

About a minute ago
7 minutes ago

38 minutes ago

About an hour ago

STATUS PORTS
Up About a minute

Up 7 minutes

Up 36 minutes

Up About an hour

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26

34/40

DOF103 - Gérer les Images Docker

root@debian9:~/myDocker# docker stop

myDocker

root@debian9:~/myDocker# docker ps

CONTAINER ID

NAMES

b3380889eb75
27017/tcp
d2ddb4f8ca8a

mongo

c080793965de
0.0.0.0:81->80/tcp

Démarrez le conteneur :

IMAGE

i2tch/mongodb?2

mongo2
i2tch/mongodb

nginx

-t 1 myDocker

COMMAND
"docker-entrypoint.s.."
"bash"

"nginx -g 'daemon of.."

suspicious sanderson

root@debian9:~/myDocker# docker start myDocker

myDocker

root@debian9:~/myDocker# docker ps

CONTAINER ID

NAMES

140ecfdd80b7
myDocker
b3380889eb75
27017/tcp
d2ddb4f8ca8a

mongo

c080793965de
0.0.0.0:81->80/tcp

IMAGE

i2tch/mydocker

i2tch/mongodb2

mongo2
i2tch/mongodb

nginx

COMMAND
"/entrypoint.sh myco.."
"docker-entrypoint.s.."
"bash"

“nginx -g 'daemon of.."

suspicious sanderson

Mettez le conteneur en pause :

root@debian9:~/myDocker# docker pause myDocker

myDocker

root@debian9:~/myDocker# docker ps

CONTAINER ID

IMAGE

COMMAND

CREATED
9 minutes ago
40 minutes ago

About an hour ago

CREATED

3 minutes ago
10 minutes ago
40 minutes ago

About an hour ago

CREATED

STATUS PORTS
Up 9 minutes

Up 38 minutes

Up About an hour

STATUS PORTS

Up 10 seconds
Up 10 minutes
Up 38 minutes

Up About an hour

STATUS

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26

35/40

DOF103 - Gérer les Images Docker

PORTS
140ecfdd80b7
myDocker
b3380889eb75
27017/tcp
d2ddb4f8ca8a
mongo
c080793965de

0.0.0.0:81->80/tcp

Supprimez la pause :

NAMES
i2tch/mydocker

i2tch/mongodb2
mongo2
i2tch/mongodb

nginx

"/entrypoint.sh myco.."
"docker-entrypoint.s.."
"bash"

“nginx -g 'daemon of.."

suspicious sanderson

root@debian9:~/myDocker# docker unpause myDocker

myDocker

root@debian9:~/myDocker# docker ps

CONTAINER ID
NAMES
140ecfdd80b7
myDocker
b3380889eb75
27017/tcp
d2ddb4f8ca8a
mongo
c080793965de

0.0.0.0:81->80/tcp

IMAGE

i2tch/mydocker

i2tch/mongodb?2
mongo2

i2tch/mongodb

nginx

COMMAND
"/entrypoint.sh myco.."
"docker-entrypoint.s.."

"bash"

“nginx -g 'daemon of.."

suspicious sanderson

Lancez maintenant le conteneur avec un parametre :

root@debian9:~/myDocker# docker rm -fv myDocker

myDocker

3 minutes ago
10 minutes ago
41 minutes ago

About an hour ago

CREATED

4 minutes ago
11 minutes ago
42 minutes ago

About an hour ago

Up 51 seconds (Paused)
Up 10 minutes
Up 39 minutes

Up About an hour

STATUS PORTS
Up About a minute

Up 11 minutes

Up 40 minutes

Up About an hour

root@debian9:~/myDocker# docker run -d --name myDocker i2tch/mydocker "Up and Running"

0cf8c8clbdf4ch05d9852900ecdfl71ad9abad0fce29a9f040d5d8436285db65

root@debian9:~/myDocker# docker logs myDocker
Up and Running (18:13:33)

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 36/40

DOF103 - Gérer les Images Docker

Up and Running (18:13:36)
Up and Running (18:13:39)
Up and Running (18:13:42)
root@debian9:~/myDocker#

Changez la valeur de la variable d'environnement myVariable :

root@debian9:~/myDocker# docker rm -fv myDocker

myDocker

root@debian9:~/myDocker# docker run -d --name myDocker --env myVariable=1 i2tch/mydocker
fbbe3b48c63310e37a3bad5fc962361c39c045a107f47980614efd6b2e8d3981
root@debian9:~/myDocker# docker logs myDocker

mycommand (18:14:47)

mycommand (18:14:48)
mycommand (18:14:49)
mycommand (18:14:50)
mycommand (18:14:51)
mycommand (18:14:52)
mycommand (18:14:53)
mycommand (18:14:54)
mycommand (18:14:55)
mycommand (18:14:56)

mycommand (18:14:57)
root@debian9:~/myDocker#

2.2 - Bonnes Pratiques liées au Cache
Opérations Non-ldempotentes

Créez un répertoire bestp ainsi que le fichier Dockerfile suivant :

root@debian9:~/myDocker# cd ..

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 37/40

DOF103 - Gérer les Images Docker

root@debian9:~# mkdir bestp
root@debian9:~# cd bestp
root@debian9:~/bestp# vi Dockerfile
root@debian9:~/bestp# cat Dockerfile
FROM ubuntu:latest

RUN date +%N > /tmp/moment
ENTRYPOINT ["more"]

CMD ["/tmp/moment"]

Le fichier Dokerfile contient une opération non idempotente.

| Important : Une opération idempotente est une opération qui aboutit systématiquement au méme résultat quand elle est lancée dans le

méme contexte.

Compilez I'image :

root@debian9:~/bestp# docker build -t testcache .
Sending build context to Docker daemon 2.048kB

Step 1/4 : FROM ubuntu:latest
---> 94e814e2efa8

Step 2/4 : RUN date +%N > /tmp/moment
---> Running in 6c8c677c1549

Removing intermediate container 6c8c677c1549
---> 66c3c88c57bb

Step 3/4 : ENTRYPOINT ["more"]
---> Running in e€9658e591172

Removing intermediate container e€9658e591172
---> 81ch68241ecH9

Step 4/4 : CMD ["/tmp/moment"]
---> Running in 48974dcl2faa

Removing intermediate container 48974dcl2faa

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 38/40

DOF103 - Gérer les Images Docker

---> c55a42a18572
Successfully built c55a42a18572
Successfully tagged testcache:latest
root@debian9:~/bestp#

Exécuter maintenant un premier conteneur a partir de I'image compilée :

root@debian9:~/bestp# docker run --name testl -it testcache
369009216

Supprimez maintenant le conteneur et relancez la compilation de I'image :

root@debian9:~/bestp# docker rm testl
testl
root@debian9:~/bestp# docker build -t testcache .
Sending build context to Docker daemon 2.048kB
Step 1/4 : FROM ubuntu:latest
---> 94e814e2efal
Step 2/4 : RUN date +%N > /tmp/moment
---> Using cache
---> 66c3c88c57bb
Step 3/4 : ENTRYPOINT ["more"]
---> Using cache
---> 81cb68241ecH9
Step 4/4 : CMD ["/tmp/moment"]
---> Using cache
---> c55a42a18572
Successfully built c55a42a18572
Successfully tagged testcache:latest
root@debian9:~/bestp#

Lancez un conteneur a partir de I'image re-compilée :

root@debian9:~/bestp# docker run --name testl -it testcache

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 39/40 DOF103 - Gérer les Images Docker

369009216

Important - Notez que les deux sorties des conteneurs sont identiques malgré le fait que la valeur de la commande date aurait du
modifier le résultat obtenu lors de I'exécution du deuxieme conteneur. La raison que ceci n'est pas le cas est I'utilisation dans la deuxieme
compilation du cache. Si cette commande avait été quelque chose de plus importante telle apt-get upgrade, le résultat pourrait étre

génant !

Pour contourner ce probleme, il est possible d'utiliser I'option -no-cache. Malheureusement ceci produirait une compilation complete a chaque fois,
méme pour les opérations idempotentes. Il est donc conseillé de combiner les opérations non-idempotentes avec des opérations idempotentes dans la

méme ligne de commande afin d'invalider le cache pour cette ligne de commande seulement :

root@debian9:~/bestp# vi Dockerfile
root@debian9:~/bestp# cat Dockerfile
FROM ubuntu:latest
RUN date +%N > /tmp/moment \

&& echo "V1.1" > /tmp/version
ENTRYPOINT ["more"]
CMD ["/tmp/moment"]

Supprimez maintenant le conteneur et relancez la compilation de I'image :

root@debian9:~/bestp# docker rm testl

testl

root@debian9:~/bestp# docker build -t testcache .

Sending build context to Docker daemon 2.048kB

Step 1/4 : FROM ubuntu:latest
---> 94e814e2efal

Step 2/4 : RUN date +%N > /tmp/moment & echo "V1.1" > /tmp/version
---> Running in 3d2a5ceebac8

Removing intermediate container 3d2a5cee6ac8
---> 75d0498a9676

www.ittraining.team - https://www.ittraining.team/

2026/02/04 12:26 40/40 DOF103 - Gérer les Images Docker

Step 3/4 : ENTRYPOINT ["more"]
---> Running in 88cOcec68659

Removing intermediate container 88c0Ocec68659
---> 2aee524c8da4

Step 4/4 : CMD ["/tmp/moment"]
---> Running in 82d2162bb701

Removing intermediate container 82d2162bb701
---> a54c4af89994

Successfully built a54c4af89994

Successfully tagged testcache:latest

Lancez un conteneur a partir de I'image re-compilée :

root@debian9:~/bestp# docker run --name testl -it testcache
746997174

Copyright © 2022 Hugh Norris.

From:
https://www.ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:dockerl:drf02

Last update: 2021/12/29 10:32

www.ittraining.team - https://www.ittraining.team/

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:docker1:drf02

	DOF103 - Gérer les Images Docker
	Contenu du Module
	LAB #1 - Re-créer une image officielle docker
	1.1 - Utilisation d'un Dockerfile
	1.2 - FROM
	1.3 - RUN
	1.4 - ENV
	1.5 - VOLUME
	1.6 - COPY
	1.7 - ENTRYPOINT
	1.8 - EXPOSE
	1.9 - CMD
	1.10 - Autres Commandes

	LAB #2 - Créer un Dockerfile
	2.1 - Création et test du script
	2.2 - Bonnes Pratiques liées au Cache
	Opérations Non-Idempotentes

