
2026/02/04 15:38 1/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Dernière mise-à-jour : 2020/01/30 03:27

Command Line Interface

The Shell

A shell is a Command Line Interpreter (C.L.I). It is used to give instructions or commands to the operating system (OS).

The word shell is generic. There are many shells under Unix and Linux such as:

Shell Name Release Date Inventer Command Comments
tsh Thompson Shell 1971 Ken Thompson sh The first shell
sh Bourne Shell 1977 Stephen Bourne sh The shell common to all Unix and Linux OSs: /bin/sh
csh C-Shell 1978 Bill Joy csh The BSD shell: /bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh A fork of the csh shell: /bin/tcsh
ksh Korn Shell 1980 David Korn ksh Open Source since 2005: /bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash The default shell for Linux, MacOS X, Solaris 11: /bin/bash

zsh Z Shell 1990 Paul Falstad zsh Zsh is an extended Bourne shell with a large number of improvements, including
some features of bash, ksh, and tcsh: /usr/bin/zsh

When using Debian 8 /bin/sh is a soft link to /bin/dash :

trainee@debian8:~$ ls -l /bin/sh
lrwxrwxrwx 1 root root 4 Nov 8 2014 /bin/sh -> dash

/bin/bash

This unit covers the /bin/bash shell. The /bin/bash shell allows you to:

2026/02/04 15:38 2/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Recall previously typed commands
Auto-generate the end of a file name
Use Aliases
Use tables
Use C language numerical and math variables
Manage strings
Use Functions

A command always starts with a keyword. This keyword is interpreted by the shell, in the order shown, as one of the following:

An Alias,
A Function,
A Built-in Command,
An External Command.

Internal And External Commands

The /bin/bash shell comes with a set of built-in or internal commands. External commands are executable binaries or scripts generally found in one of
the following directories:

/bin,
/sbin,
/usr/bin,
/usr/sbin.

To check if a command is internal to the shell or external, use the type command:

trainee@debian8:~$ type cd
cd is a shell builtin

External commands are either binaries or scripts that can be found in /bin, /sbin, /usr/bin or /usr/sbin :

trainee@debian8:~$ type passwd

2026/02/04 15:38 3/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

passwd is /usr/bin/passwd

Aliases

Aliases are strings that are aliased to a command, a command and some options or even several commands. Aliases are specific to the shell in which
they are created and unless specified in one of the start-up files, they disappear when the shell is closed:

trainee@debian8:~$ type ls
ls is aliased to `ls --color=auto

Important: Note that the ls alias is an alias to the ls command itself.

An alias is defined using the alias command:

trainee@debian8:~$ alias dir='ls -l'
trainee@debian8:~$ dir
total 36
-rw-r--r-- 1 trainee trainee 0 Aug 19 17:08 aac
-rw-r--r-- 1 trainee trainee 0 Aug 19 17:08 abc
-rw-r--r-- 1 trainee trainee 0 Aug 19 17:08 bca
drwxr-xr-x 2 trainee trainee 4096 May 1 2016 Desktop
drwxr-xr-x 2 trainee trainee 4096 May 1 2016 Documents
drwxr-xr-x 2 trainee trainee 4096 May 1 2016 Downloads
drwxr-xr-x 2 trainee trainee 4096 May 1 2016 Music
drwxr-xr-x 2 trainee trainee 4096 May 1 2016 Pictures
drwxr-xr-x 2 trainee trainee 4096 May 1 2016 Public
drwxr-xr-x 2 trainee trainee 4096 May 1 2016 Templates
drwxr-xr-x 2 trainee trainee 4096 May 1 2016 Videos
-rw-r--r-- 1 trainee trainee 391 Aug 18 23:34 vitext

2026/02/04 15:38 4/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

-rw-r--r-- 1 trainee trainee 0 Aug 19 17:08 xyz

Important: Note that dir exists as a command. By creating an alias of the same name,
the alias will be executed in place of the command.

The list of currently defined aliases is obtained by using the alias command with no options:

trainee@debian8:~$ alias
alias dir='ls -l'
alias ls='ls --color=auto'

Important: In the above list you can see, without distinction, the system wide aliases
created by system start up scripts and the user created alias dir. The latter is only
available for trainee and will disappear when the current session is terminated.

To force the shell to use the command and not the alias, you can precede the command with the \ character:

trainee@debian8:~$ \dir
aac bca Documents Music Public Videos xyz
abc Desktop Downloads Pictures Templates vitext

To delete an alias, simply use the unalias command:

trainee@debian8:~$ unalias dir
trainee@debian8:~$ dir
aac bca Documents Music Public Videos xyz
abc Desktop Downloads Pictures Templates vitext

2026/02/04 15:38 5/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Each user's shell is defined by root in the /etc/passwd file:

trainee@debian8:~$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
systemd-timesync:x:100:103:systemd Time Synchronization,,,:/run/systemd:/bin/false
systemd-network:x:101:104:systemd Network Management,,,:/run/systemd/netif:/bin/false
systemd-resolve:x:102:105:systemd Resolver,,,:/run/systemd/resolve:/bin/false
systemd-bus-proxy:x:103:106:systemd Bus Proxy,,,:/run/systemd:/bin/false
trainee:x:1000:1000:trainee,,,:/home/trainee:/bin/bash
sshd:x:104:65534::/var/run/sshd:/usr/sbin/nologin
Debian-exim:x:105:110::/var/spool/exim4:/bin/false
messagebus:x:106:111::/var/run/dbus:/bin/false
statd:x:107:65534::/var/lib/nfs:/bin/false
avahi-autoipd:x:108:113:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false
avahi:x:109:115:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
colord:x:110:117:colord colour management daemon,,,:/var/lib/colord:/bin/false
dnsmasq:x:111:65534:dnsmasq,,,:/var/lib/misc:/bin/false

2026/02/04 15:38 6/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

speech-dispatcher:x:112:29:Speech Dispatcher,,,:/var/run/speech-dispatcher:/bin/sh
pulse:x:113:119:PulseAudio daemon,,,:/var/run/pulse:/bin/false
rtkit:x:114:121:RealtimeKit,,,:/proc:/bin/false
saned:x:115:122::/var/lib/saned:/bin/false
usbmux:x:116:46:usbmux daemon,,,:/var/lib/usbmux:/bin/false
lightdm:x:117:124:Light Display Manager:/var/lib/lightdm:/bin/false

However, each user can change his shell using the chsh command. The shells available to users are listed in the /etc/shells file:

trainee@debian8:~$ cat /etc/shells
/etc/shells: valid login shells
/bin/sh
/bin/dash
/bin/bash
/bin/rbash
/usr/bin/screen

Now use the echo command to view the contents of the system variable SHELL for your current session:

trainee@debian8:~$ echo $SHELL
/bin/bash

Now change your shell to /bin/sh using the chsh command:

trainee@debian8:~$ chsh
Password: trainee
Changing the login shell for trainee
Enter the new value, or press ENTER for the default
 Login Shell [/bin/bash]: /bin/sh

Important: Note that the password will not be printed to standard output.

2026/02/04 15:38 7/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Now check your current shell:

trainee@debian8:~$ echo $SHELL
/bin/bash

At first glance nothing has happened. However if you view your entry in the /etc/passwd file you will notice that your login shell has changed:

trainee@debian8:~$ cat /etc/passwd | grep trainee
trainee:x:1000:1000:trainee,,,:/home/trainee:/bin/sh

Important : The /bin/sh shell will be your active shell the next time you login.

Now change your shell back to /bin/bash using the chsh command:

trainee@debian8:~$ chsh
Password: trainee
Changing the login shell for trainee
Enter the new value, or press ENTER for the default
 Login Shell [/bin/sh]: /bin/bash

Important: Note that the password will not be printed to standard output.

The Prompt

As you have already noticed, the prompt under Linux is different for a normal user and root:

$ for a user,

2026/02/04 15:38 8/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

for root.

The history Command

/bin/bash keeps track of commands that have been previously executed. To access the command history, use the following command:

trainee@debian8:~$ history | more
 1 su -
 2 su -
 3 exit
 4 su -
 5 exit
 6 ls -l /var
 7 su -
 8 su -
 9 vi vitext
 10 view vitext
 11 clear
 12 stty -a
 13 date
 14 who
 15 df
 16 df -h
 17 free
 18 free -h
 19 whoami
 20 su -
 21 clear
 22 su -
 23 exit
--More--

2026/02/04 15:38 9/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Important: The history is specific to each user.

The history command uses emacs style control characters. As a result you can navigate through the list as follows:

Control Character Action
[CTRL]-[P] (= Up Arrow) Navigates backwards through the list
[CTRL]-[N] (= Down Arrow) Navigates forwards through the list

To move around in the history:

Control Character Action
[CTRL]-[A] Move to the beginning of the line
[CTRL]-[E] Move to the end of the line
[CTRL]-[B] Move one character to the left
[CTRL]-[F] Move one character to the right
[CTRL]-[D] Delete the character under the cursor

Pour rechercher dans l'historique il convient d'utiliser les touches :

Control Character Action
[CTRL]-[R] string Search backwards for string in the history. Using [CTRL]-[R] again will search for the previous occurence of string
[CTRL]-[S] string Search forwards for string in the history. Using [CTRL]-[S] again will search for the next occurence of string
[CTRL]-[G] Quit the search mode

It is also possible to recall the last command executed by using the !! characters:

trainee@debian8:~$ ls
aac bca Documents Music Public Videos xyz
abc Desktop Downloads Pictures Templates vitext
trainee@debian8:~$!!

2026/02/04 15:38 10/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

ls
aac bca Documents Music Public Videos xyz
abc Desktop Downloads Pictures Templates vitext

Alternatively, to execute a command in the list, you can use the list number preceded by the ! character:

trainee@debian8:~$!52
ls
aac bca Documents Music Public Videos xyz
abc Desktop Downloads Pictures Templates vitext

The environmental variables associated with the history are set in the ~/.bashrc file where ~/ indicates the home directory of the user concerned:

trainee@debian8:~$ cat .bashrc | grep HISTSIZE
for setting history length see HISTSIZE and HISTFILESIZE in bash(1)
HISTSIZE=1000

As you can see, in the previous case the HISTSIZE value is set to 1000. This means that the last 1,000 commands are held in the history.

The history command stores data in the ~/.bash_history file for each user. The commands for the current bash session are stored in the file when the
session is closed:

trainee@debian8:~$ nl .bash_history | more
 1 su -
 2 su -
 3 exit
 4 su -
 5 exit
 6 ls -l /var
 7 su -
 8 su -
 9 vi vitext
 10 view vitext
 11 clear

2026/02/04 15:38 11/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

 12 stty -a
 13 date
 14 who
 15 df
 16 df -h
 17 free
 18 free -h
 19 whoami
 20 su -
 21 clear
 22 su -
 23 exit
--More--

Important : Note the use of the nl command to number the lines in the output of the
contents of .bash_history file.

The TAB key

/bin/bash can auto-generate the end of a file name. Consider the following example:

$ ls .b [Tab][Tab][Tab]

By hitting the Tab key three times, the system shows you the files that match:

trainee@debian8:~$ ls .bash
.bash_history .bash_logout .bashrc

This same technique can also be used to auto-generate command names. Consider the following example:

2026/02/04 15:38 12/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

$ mo [Tab][Tab]

By hitting the Tab twice the system lists all known commands available to the user and starting with mo:

trainee@debian8:~$ mo
moc moggsplit more mount mountpoint mousepad

Metacharacters

It is often necessary and desirable to be able to work with several files at one time as opposed to repeating the operation on each file individually. For
this reason, bash accepts the use of Metacharacters:

Metacharacter Description
* Matches one or more characters
? Matches a single character
[abc] Matches any one of the characters between square brackets
[!abc] Matches any character except those between square brackets
[m-t] Matches any character from m through to t
[!m-t] Matches any character other than m through to t
?(expression1|expression2| …) Matches 0 or 1 occurence of expression1 OR 0 or 1 occurence of expression2 OR …
*(expression1|expression2| …) Matches 0 to x occurences of expression1 OR 0 to x occurences of expression2 OR …
+(expression1|expression2| …) Matches 1 to x occurences of expression1 OR 1 to x occurences of expression2 OR …
@(expression1|expression2| …) Matches 1 occurrence of expression1 OR 1 occurence of expression2 OR …
!(expression1|expression2| …) Matches 0 occurrences of expression1 OR 0 occurrences of expression2 OR …

To illustrate the use of Metacharacters, you need to create a directory in your home directory and the create some files within it:

trainee@debian8:~$ mkdir training
trainee@debian8:~$ cd training
trainee@debian8:~/training$ touch f1 f2 f3 f4 f5

2026/02/04 15:38 13/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

The * Metacharacter

Now use the Metacharacter *:

trainee@debian8:~/training$ echo f*
f1 f2 f3 f4 f5

Important: Note that the * is used as a wild card which replaces 0 or more characters.

The ? Metacharacter

Create two more files:

trainee@debian8:~/training$ touch f52 f62

Now use the Metacharacter ?:

trainee@debian8:~/training$ echo f?2
f52 f62

Important: Note that the ? is used as a wild card which replaces a single character.

The [] Metacharacter

2026/02/04 15:38 14/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

The [] Metacharacter can take several forms:

Metacharacter Description
[xyz] Represents either x or y or z
[m-t]
[!xyz] Represents any character other than x or y or z
[!m-t] Represents any character outside of the range m to t

To demonstrate the use of the metacharacter [], create a file called a100:

trainee@debian8:~/training$ touch a100

The use of this Metacharacter can be demonstrated with the following examples:

trainee@debian8:~/training$ echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62
trainee@debian8:~/training$ echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

Important: Note that all the files starting with either a, b, c, d, e or f are displayed.

trainee@debian8:~/training$ echo [!a]*
f1 f2 f3 f4 f5 f52 f62

Important: Note that all the files in the directory are displayed except the file starting
with a .

trainee@debian8:~/training$ echo [a-b]*

2026/02/04 15:38 15/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

a100

Important: Note that only the file starting with a is displayed since no file starting with b
is present.

trainee@debian8:~/training$ echo [a-f]
[a-f]

Important: Note that in the above example, since no file called a, b, c, d, e or f exists in
the directory, the echo command simply returns the filter used.

The extglob Option

In order to use ?(expression), *(expression), +(expression), @(expression) and !(expression), you need to activate the extglob option:

trainee@debian8:~/training$ shopt -s extglob

The shopt command is used to activate and deactivate the shopt option of the shell.

The list of all the options can be displayed by simply using the shopt command:

trainee@debian8:~/training$ shopt
autocd off
cdable_vars off
cdspell off
checkhash off
checkjobs off

2026/02/04 15:38 16/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

checkwinsize on
cmdhist on
compat31 off
compat32 off
compat40 off
compat41 off
compat42 off
complete_fullquote on
direxpand off
dirspell off
dotglob off
execfail off
expand_aliases on
extdebug off
extglob on
extquote on
failglob off
force_fignore on
globstar off
globasciiranges off
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit off
interactive_comments on
lastpipe off
lithist off
login_shell on
mailwarn off
no_empty_cmd_completion off
nocaseglob off
nocasematch off

2026/02/04 15:38 17/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

nullglob off
progcomp on
promptvars on
restricted_shell off
shift_verbose off
sourcepath on
xpg_echo off

?(expression)

Create the following files:

trainee@debian8:~/training$ touch f f.txt f123.txt f123123.txt f123123123.txt

Execute the following command:

trainee@debian8:~/training$ ls f?(123).txt
f123.txt f.txt

Important: Note that the command displays file names that match 0 or 1 occurrences of
the string 123.

*(expression)

Execute the following command:

trainee@debian8:~/training$ ls f*(123).txt
f123123123.txt f123123.txt f123.txt f.txt

2026/02/04 15:38 18/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Important: Note that the command displays file names that match 0 to x occurrences of
the string 123.

+(expression)

Execute the following command:

trainee@debian8:~/training$ ls f+(123).txt
f123123123.txt f123123.txt f123.txt

Important: Note that the command displays file names that match 1 to x occurrences of
the string 123..

@(expression)

Execute the following command:

trainee@debian8:~/training$ ls f@(123).txt
f123.txt

Important: Note that the command displays file names that match 1 occurrence of the
string 123.

2026/02/04 15:38 19/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

!(expression)

Execute the following command:

trainee@debian8:~/training$ ls f!(123).txt
f123123123.txt f123123.txt f.txt

Important: Note that the command displays file names that match 0 or x occurrences of
the string 123, where x>1.

Protecting Metacharacters

To cancel the wild card effect of a special character, the character needs to be escaped or “protected”:

Character Description
\ Escapes the character which immediately follows
' ' Protects any character between the two '
“ ” Protects any character between the two “ except the following: $, \ and '

For example:

trainee@debian8:~/training$ echo * est un caractère spécial
a100 f f1 f123123123.txt f123123.txt f123.txt f2 f3 f4 f5 f52 f62 f.txt est un caractère spécial

trainee@debian8:~/training$ echo * est un caractère spécial
* est un caractère spécial

trainee@debian8:~/training$ echo "* est un caractère spécial"
* est un caractère spécial

2026/02/04 15:38 20/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

trainee@debian8:~/training$ echo '* est un caractère spécial'
* est un caractère spécial

Exit Status

Each command returns an exit status when it is executed. This exit status is stored in a special variable: $?.

For example:

trainee@debian8:~/training$ cd ..
trainee@debian8:~$ mkdir codes
trainee@debian8:~$ echo $?
0
trainee@debian8:~$ touch codes/exit.txt
trainee@debian8:~$ rmdir codes
rmdir: failed to remove ‘codes’: Directory not empty
trainee@debian8:~$ echo $?
1

As you can see when the exit status is 0, the command has executed correctly. If the exit status is anything else, the command has executed with
errors.

Redirections

Your dialogue with the system uses three file descriptors:

Standard Input - the keyboard,
Standard output - the screen,
Standard error - contains any eventual errors.

The standard output can be redirected using the > character:

2026/02/04 15:38 21/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

trainee@debian8:~$ pwd
/home/trainee
trainee@debian8:~$ cd training
trainee@debian8:~/training$ free > file
trainee@debian8:~/training$ cat file
 total used free shared buffers cached
Mem: 506268 429624 76644 4804 59540 130524
-/+ buffers/cache: 239560 266708
Swap: 2046972 0 2046972

Important: If the file does not exist, it is automatically created.

Repeating a single redirection will replace the file:

trainee@debian8:~/training$ date > file
trainee@debian8:~/training$ cat file
Mon 28 Nov 14:48:03 GMT 2016

To add additional data to the file, you need to use a double redirection:

trainee@debian8:~/training$ free >> file
trainee@debian8:~/training$ cat file
Mon 28 Nov 14:48:03 GMT 2016
 total used free shared buffers cached
Mem: 506268 431668 74600 4804 60264 130912
-/+ buffers/cache: 240492 265776
Swap: 2046972 0 20469722

Important : Note that standard output can only be redirected to a single destination.

2026/02/04 15:38 22/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

File descriptors are numbered for ease of use :

0 = Standard Input
1 = Standard Output
2 = Standard Error

For example:

trainee@debian8:~/training$ cd ..
trainee@debian8:~$ rmdir training/ 2>errorlog
trainee@debian8:~$ cat errorlog
rmdir: failed to remove ‘training/’: Directory not empty

Important: As you can see the error generated is redirected to the errorlog file.

You can join file descriptors using the & character:

trainee@debian8:~$ free > file 2>&1

Any errors are sent to the same destination as the standard output, in the case, file.

It is also possible to have a reverse redirection:

trainee@debian8:~$ wc -w < errorlog
8

In this case wc -w counts the number of words in the file.

Other redirections exist :

2026/02/04 15:38 23/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Redirection Definition
&> Join file descriptors 1 and 2.
<< Takes the text typed on the next lines as standard input until EOF is found at the beginning of a line.
<> Allows the use of the same file as STDIN and STDOUT.

Pipes

A pipe is used to present the standard output on the first command to the standard input of the second command:

trainee@debian8:~$ ls | wc -w
17

Important - Several pipes can be used within the same command.

Standard output can generally only be redirected to a single destination. To redirect to two destinations at once, you need to use the tee command:

trainee@debian8:~$ date | tee file1
Mon 28 Nov 15:14:18 GMT 2016
trainee@debian8:~$ cat file1
Mon 28 Nov 15:14:18 GMT 2016

Alternatively, tee can be used to redirect to two files at the same time:

trainee@debian8:~$ date | tee file1 > file2
trainee@debian8:~$ cat file1
Mon 28 Nov 15:15:52 GMT 2016
trainee@debian8:~$ cat file2
Mon 28 Nov 15:15:52 GMT 2016

2026/02/04 15:38 24/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Important : The default action of the tee command is to overwrite the destination file. In
order to append output to the same file, you need to use the -a switch.

Command Substitution

Command substitution permits in-line execution of a command:

trainee@debian8:~$ echo date
date
trainee@debian8:~$ echo $(date)
Mon 28 Nov 15:19:29 GMT 2016
trainee@debian8:~$ echo `date`
Mon 28 Nov 15:19:30 GMT 2016

Conditional Command Execution

Commands can be grouped using brackets:

$ (ls -l; ps; who) > list

Conditional command execution can be obtained by using the exit status value and either && or ||.

For example,

Command1 && Command2,
Command2 will execute if the exit status of Command1 is 0,

Command1 || Command2,
Command2 will execute if the exit status of Command1 anything other than 0.

2026/02/04 15:38 25/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Environment Variables

The contents of a shell variable can be displayed on standard output using the echo command:

$ echo $VARIABLE [Enter]

Principal Variables

Variable Description
BASH Complete path to current shell.
BASH_VERSION Shell version.
EUID EUID of the current user.
UID UID of the current user.
PPID PID of the parent of the current process.
PWD The current directory.
OLDPWD The previous current directory (like the cd -command).
RANDOM A random number between 0 and 32767.
SECONDS The numbers of seconds since the shell was started.
LINES The number of lines in a screen.
COLUMNS The number of columns in a screen .
HISTFILE The history file.
HISTFILESIZE The history file size.
HISTSIZE The number of commands that can be saved to the history file.
HISTCMD The current command's number in the History.
HISTCONTROL ignorespace or ignoredups or ignoreboth
HOME The user's home directory.
HOSTTYPE Machine type.
OSTYPE The OS type.
MAIL The file containing the user's mail.
MAILCHECK Frequency in seconds that a user's mail is checked.

2026/02/04 15:38 26/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Variable Description
PATH The paths to executables.
PROMPT_COMMAND Command executed before each prompt is displayed.
PS1 User's default prompt.
PS2 User's 2nd level default prompt.
PS3 User's 3rd level prompt.
PS4 User's 4th level prompt.
SHELL User's current shell.
SHLVL The number of shell instances.
TMOUT The number of seconds less 60 before an unused terminal gets sent the exit command.

Internationalisation and Localisation

Internationalisation, also called i18n since there are 18 letters between the I and n, consists of modifying software so that it conforms to regional
parameters:

Text processing differences,
Writing direction,
Different systems of numerals,
Telephone numbers, addresses and international postal codes,
Weights and measures,
Date/time format,
Paper sizes,
Keyboard layout,
etc …

Localisation, also called L10n since there are 10 letters between the L and n, consists of modifying the Internationalisation so that it conforms to a
specific locale:

en_GB = Great Britain,
en_US = USA,
en_AU = Australia,
en_NZ = New Zealand,

2026/02/04 15:38 27/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

en_ZA = South Africa,
en_CA = Canada.

The most important variables are:

trainee@debian8:~$ echo $LC_ALL
en_GB.UTF-8
trainee@debian8:~$ echo $LC_CTYPE

trainee@debian8:~$ echo $LANG
en_GB.UTF-8

trainee@debian8:~$ locale
LANG=en_GB.UTF-8
LANGUAGE=en_GB:en
LC_CTYPE="en_GB.UTF-8"
LC_NUMERIC="en_GB.UTF-8"
LC_TIME="en_GB.UTF-8"
LC_COLLATE="en_GB.UTF-8"
LC_MONETARY="en_GB.UTF-8"
LC_MESSAGES="en_GB.UTF-8"
LC_PAPER="en_GB.UTF-8"
LC_NAME="en_GB.UTF-8"
LC_ADDRESS="en_GB.UTF-8"
LC_TELEPHONE="en_GB.UTF-8"
LC_MEASUREMENT="en_GB.UTF-8"
LC_IDENTIFICATION="en_GB.UTF-8"
LC_ALL=en_GB.UTF-8

Special Variables

Variable Description
$LINENO Contains the current line number of the script or function being executed

2026/02/04 15:38 28/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Variable Description
$$ Contains the PID of the current process
$PPID Contains the PID of the parent of the current process
$0 Contains the name of the current script
$1, $2 … Contains respectively the 1st, 2nd etc arguments passed to the script
$# Contains the total number of arguments passed to the script
$* Contains all of the arguments passed to the script
$@ Contains all of the arguments passed to the script

The env Commande

The env command can be used to run a program in a modified environment or just list the values of all environmental variables associated with the
user calling the program env:

trainee@debian8:~$ env
XDG_SESSION_ID=1
TERM=xterm-256color
SHELL=/bin/bash
SSH_CLIENT=10.0.2.2 44524 22
OLDPWD=/home/trainee/training
SSH_TTY=/dev/pts/0
LC_ALL=en_GB.UTF-8
USER=trainee
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:su=37;41:sg
=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*
.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=0
1;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=0
1;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:
.alz=01;31:.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif
=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;
35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:
.mkv=01;35:.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wm
v=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35

2026/02/04 15:38 29/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aa
c=00;36:*.au=00;36:*.flac=00;36:*.m4a=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00
;36:*.ra=00;36:*.wav=00;36:*.axa=00;36:*.oga=00;36:*.spx=00;36:*.xspf=00;36:
MAIL=/var/mail/trainee
PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
PWD=/home/trainee
LANG=en_GB.UTF-8
SHLVL=1
HOME=/home/trainee
LANGUAGE=en_GB:en
LOGNAME=trainee
SSH_CONNECTION=10.0.2.2 44524 10.0.2.15 22
XDG_RUNTIME_DIR=/run/user/1000
_=/usr/bin/env

To run a program, such as xterm in a modified environment the command is:

$ env EDITOR=vim xterm

Bash Shell Options

To view all the options of the bash shell, use the command set:

trainee@debian8:~$ set -o
allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on

2026/02/04 15:38 30/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off
noglob off
nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

To turn on an option you need to specify which option as an argument to the previous command:

trainee@debian8:~$ set -o allexport
trainee@debian8:~$ set -o
allexport on
braceexpand on
...

To turn off an option, use set with the +o option:

trainee@debian8:~$ set +o allexport
trainee@debian8:~$ set -o
allexport off
braceexpand on

2026/02/04 15:38 31/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

...

These are the most interesting options:

Option Default value Description
allexport off The shell automatically exports all variables
emacs on emacs editing mode
noclobber off Simple re-directions do not squash the target file if it exists
noglob off Turns off special characters
nounset off The shell will return an error if the variable is not set
verbose off Echos back the typed command
vi off vi editing mode

noclobber

trainee@debian8:~$ set -o noclobber
trainee@debian8:~$ pwd > file
-bash: file: cannot overwrite existing file
trainee@debian8:~$ pwd > file
-bash: file: cannot overwrite existing file
trainee@debian8:~$ pwd >| file
trainee@debian8:~$ set +o noclobber

Important : Note that the noclobber option can be overidden by using a pipe.

noglob

trainee@debian8:~$ set -o noglob

2026/02/04 15:38 32/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

trainee@debian8:~$ echo *
*
trainee@debian8:~$ set +o noglob
trainee@debian8:~$ echo *
aac abc bca codes Desktop Documents Downloads errorlog file file1 Music Pictures Public Templates training Videos
vitext xyz

Important : Note that metacharacters are turned off when the noglob option is set.

nounset

trainee@debian8:~$ set -o nounset
trainee@debian8:~$ echo $FENESTROS
-bash: FENESTROS: unbound variable
trainee@debian8:~$ set +o nounset
trainee@debian8:~$ echo $FENESTROS

trainee@debian8:~$

Important : Note that the inexistant variable $FENESTROS is identified as such when the
nounset option is set.

Basic Shell Scripting

2026/02/04 15:38 33/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Execution

A script is a text file that is read by the system and it's contents executed. There are five ways to execute a script:

By stipulating the shell that will execute the script:

/bin/bash myscript

by a reverse redirection:

/bin/bash < myscript

By calling the script by it's name, provided that the script is executable and that it resides in a directory specified by your path :

myscript

By placing yourself in the directory where the script resides and using one of the two following possibilities :

. myscript et ./myscript

Important: In the first case the script is executed in the parent shell. In the second case
the script is executed in a child shell.

Comments in a script are lines starting with #. However, each script starts with a pseudo-comment that informs the system which shell should be used
to execute the script:

#!/bin/sh

Since a script in it's simplest form is a list of commands that are sequentially executed, it is often useful to test those command prior to writing the
script> Linux has a command that can help you debug a future script. The script command can be used to generate a log file, called typescript, that
contains a record of everything occurred on standard output. To exit the recording mode, use exit:

2026/02/04 15:38 34/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

trainee@debian8:~$ script
Script started, file is typescript
trainee@debian8:~$ pwd
/home/trainee
trainee@debian8:~$ ls
aac bca Desktop Downloads fichier1 file Music Public training Videos xyz
abc codes Documents errorlog fichier2 file1 Pictures Templates typescript vitext
trainee@debian8:~$ exit
exit
Script done, file is typescript
trainee@debian8:~$ cat typescript
Script started on Tue 29 Nov 2016 02:56:33 GMT
trainee@debian8:~$ pwd
/home/trainee
trainee@debian8:~$ ls
aac bca Desktop Downloads fichier1 file Music Public training Videos xyz
abc codes Documents errorlog fichier2 file1 Pictures Templates typescript vitext
trainee@debian8:~$ exit
exit

Script done on Tue 29 Nov 2016 02:56:44 GMT

Lets start by creating a simple script called myscript:

$ vi myscript [Enter]

Edit the file as follows:

pwd
ls

Important: Note that in the above example, the script does not start with a pseudo-

2026/02/04 15:38 35/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

comment. As a result, the script will be executed by the shell of the user that invokes it
unless a different shell is specified.

Save the file and use the five ways to execute it.

As an argument de /bin/bash:

trainee@debian8:~$ vi myscript
trainee@debian8:~$ /bin/bash myscript
/home/trainee
aac codes Downloads fichier2 myscript Public typescript xyz
abc Desktop errorlog file Music Templates Videos
bca Documents fichier1 file1 Pictures training vitext

Using a redirection:

trainee@debian8:~$ /bin/bash < myscript
/home/trainee
aac codes Downloads fichier2 myscript Public typescript xyz
abc Desktop errorlog file Music Templates Videos
bca Documents fichier1 file1 Pictures training vitext

In order to be able to call the script by it's name from another directory, such as /tmp, you need to move the script into the /home/trainee/bin
directory and make it executable. Note that in this case, the the value of the environmental variable $PATH should contain a reference to
/home/trainee/bin:

trainee@debian8:~$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

As you can see, in the case of Debian, this is not the case. The reason for this becomes apparent when viewing the contents of the .profile file in
/home/trainee:

2026/02/04 15:38 36/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

trainee@debian8:~$ cat .profile
~/.profile: executed by the command interpreter for login shells.
...
set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

As you can see PATH is set so it includes the user's private bin only if the directory exists:

set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

To fix the value of the PATH variable, create the $HOME/bin directory and re-load the .profile file:

trainee@debian8:~$ mkdir bin
trainee@debian8:~$ source .profile
trainee@debian8:~$ echo $PATH
/home/trainee/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

Now you need to move the script to $HOME/bin and make it executable:

trainee@debian8:~$ mv myscript ~/bin
trainee@debian8:~$ chmod u+x ~/bin/myscript

Move to /tmp and can call the script by just using it's name:

trainee@debian8:/tmp$ myscript
/tmp
hsperfdata_root pulse-PKdhtXMmr18n

2026/02/04 15:38 37/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Now move back to ~/bin and use the following two commands to execute myscript:

./myscript

. myscript

trainee@debian8:/tmp$ cd ~/bin
trainee@debian8:~/bin$./myscript
/home/trainee/bin
myscript
trainee@debian8:~/bin$. myscript
/home/trainee/bin
myscript

To do: Note the difference in the output of these two commands and explain that
difference.

The read command

The read command reads the standard input and stores the information in the variables that are specified as arguments. The separator between fields
is a space, a tabultaion or a carriage return:

trainee@debian8:~/bin$ read var1 var2 var3 var4
fenestros edu is great!
trainee@debian8:~/bin$ echo $var1
fenestros
trainee@debian8:~/bin$ echo $var2
edu
trainee@debian8:~/bin$ echo $var3
is
trainee@debian8:~/bin$ echo $var4

2026/02/04 15:38 38/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

great!

Important: Note that each field has been placed in a seperate variable. Note also that by
convention, user declared variables are in lower case in order to distinguish them from
system variables.

trainee@debian8:~/bin$ read var1 var2
fenestros edu is great!
trainee@debian8:~/bin$ echo $var1
fenestros
trainee@debian8:~/bin$ echo $var2
edu is great!

Important: Note that in this case, $var2 contains three fields.

Code de retour

The contents of a variable can also be empty:

trainee@debian8:~/bin$ read var

↵ Enter

trainee@debian8:~/bin$ echo $?
0
trainee@debian8:~/bin$ echo $var

2026/02/04 15:38 39/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

trainee@debian8:~/bin$

But not null:

trainee@debian8:~/bin$ read var

Ctrl+D

trainee@debian8:~/bin$ echo $?
1
trainee@debian8:~/bin$ echo $var

trainee@debian8:~/bin$

The IFS Variable

The IFS variable contains the default separator characters: SpaceBar , Tab ⇆ and ↵ Enter :

trainee@debian8:~/bin$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important: The od command (Octal Dump) returns the contents of a file in octal format.
The -c switch prints to standard output any ASCII characters or backslashes contained
within the file.

It is possible to change the contents of this variable:

trainee@debian8:~/bin$ OLDIFS="$IFS"

2026/02/04 15:38 40/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

trainee@debian8:~/bin$ IFS=":"
trainee@debian8:~/bin$ echo "$IFS" | od -c
0000000 : \n
0000002

Now test the new configuration:

trainee@debian8:~/bin$ read var1 var2 var3
fenestros:edu is:great!
trainee@debian8:~/bin$ echo $var1
fenestros
trainee@debian8:~/bin$ echo $var2
edu is
trainee@debian8:~/bin$ echo $var3
great!

Restore the old value of IFS before proceeding further: IFS=“$OLDIFS”

trainee@debian8:~/bin$ IFS="$OLDIFS"
trainee@debian8:~/bin$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

The test Command

The test command uses two forms:

test expression

or

[SpaceBarexpressionSpaceBar]

2026/02/04 15:38 41/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Testing Files

Test Description
-f file Returns true if file is an ordinary file
-d file Returns true if file is a directory
-r file Returns true if user can read file
-w file Returns true if user can write file
-x file Returns true if user can execute file
-e file Returns true if file exists
-s file Returns true if file is not empty
file1 -nt file2 Returns true if file1 is newer than file2
file1 -ot file2 Returns true if file1 is older than file2
file1 -ef file2 Returns true if file1 is identical to file2

LAB #1

Test whether the a100 file is an ordinary file:

trainee@debian8:~/bin$ cd ../training/
trainee@debian8:~/training$ test -f a100
trainee@debian8:~/training$ echo $?
0
trainee@debian8:~/training$ [-f a100]
trainee@debian8:~/training$ echo $?
0

Important: The value contained in $? is 0. This indicates true.

Test whether the a101 file is an ordinary file:

2026/02/04 15:38 42/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

trainee@debian8:~/training$ [-f a101]
trainee@debian8:~/training$ echo $?
1

Important: The value contained in $? is 1. This indicates false. This is obvious since a101
does not exist.

Test whether /home/trainee/training is a directory:

trainee@debian8:~/training$ [-d /home/trainee/training]
trainee@debian8:~/training$ echo $?
0

Important: The value contained in $? is 0. This indicates true.

Testing Strings

Test Description
-n string Returns true if string is not zero in length
-z string Returns true if string is zero in length
string1 = string2 Returns true if string1 is equal to string2
string1 != string2 Returns true if string1 is different to string2
string1 Returns true if string1 is not empty

LAB #2

2026/02/04 15:38 43/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Test whether two strings are indentical:

trainee@debian8:~/training$ string1="root"
trainee@debian8:~/training$ string2="fenestros"
trainee@debian8:~/training$ [$string1 = $string2]
trainee@debian8:~/training$ echo $?
1

Important: The value contained in $? is 1. This indicates false.

Test if string1 is not zero in length:

trainee@debian8:~/training$ [-n $string1]
trainee@debian8:~/training$ echo $?
0

Important: The value contained in $? is 0. This indicates true.

Test if string1 is is zero in length:

trainee@debian8:~/training$ [-z $string1]
trainee@debian8:~/training$ echo $?
1

Important: The value contained in $? is 1. This indicates false.

2026/02/04 15:38 44/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Testing Numbers

Test Description
value1 -eq value2 Returns true if value1 is equal to value2
value1 -ne value2 Returns true if value1 is not equal to value2
value1 -lt value2 Returns true if value1 is less than value2
value1 -le value2 Returns true if value1 is less than or equal to value2
value1 -gt value2 Returns true if value1 is greater than value2
value1 -ge value2 Returns true if value1 is greater than or equal to value2

LAB #3

Compare the two numbers value1 and value2 :

trainee@debian8:~/training$ read value1
35
trainee@debian8:~/training$ read value2
23
trainee@debian8:~/training$ [$value1 -lt $value2]
trainee@debian8:~/training$ echo $?
1
trainee@debian8:~/training$ [$value2 -lt $value1]
trainee@debian8:~/training$ echo $?
0
trainee@debian8:~/training$ [$value2 -eq $value1]
trainee@debian8:~/training$ echo $?
1

Expressions

Test Description
!expression Returns true if expression is false

2026/02/04 15:38 45/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Test Description
expression1 -a expression2 Represents a logical OR between expression1 and expression2
expression1 -o expression2 Represents a logical AND between expression1 and expression2
\(expression\) Parenthesis let you group together expressions

LAB #4

Test if $file is not a directory:

trainee@debian8:~/training$ file=a1OO
trainee@debian8:~/training$ [! -d $file]
trainee@debian8:~/training$ echo $?
0

Test if $directory is a directory and if trainee can cd into it:

trainee@debian8:~/training$ directory=/usr
trainee@debian8:~/training$ [-d $directory -a -x $directory]
trainee@debian8:~/training$ echo $?
0

Test if trainee has the write permission for the a100 file and test if /usr is a directory or test if /tmp is a directory:

trainee@debian8:~/training$ [-w a100 -a \(-d /usr -o -d /tmp \)]
trainee@debian8:~/training$ echo $?
0

Testing the User Environment

Test Description
-o option Returns true if the shell option “option” is on

2026/02/04 15:38 46/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

LAB #5

trainee@debian8:~/training$ [-o allexport]
trainee@debian8:~/training$ echo $?
1

The [[expression]] Command

The [[SpaceBarexpressionSpaceBar]] command is an improved test command with some minor changes to syntax:

Test Description
expression1 && expression2 Represents a logical OR between expression1 and expression2
expression1 || expression2 Represents a logical AND between expression1 and expression2
(expression) Parenthesis let you group together expressions

and some additional operators :

Test Description
string = model Returns true if string corresponds to model
string != model Returns true if string does not correspond to model
string1 < string2 Returns true if string1 is lexicographically before string2
string1 > string2 Returns true if string1 is lexicographically after string2

LAB #6

Test if trainee has the write permission for the a100 file and test if /usr is a directory or test if /tmp is a directory:

trainee@debian8:~/training$ [[-w a100 && (-d /usr || -d /tmp)]]
trainee@debian8:~/training$ echo $?
0

2026/02/04 15:38 47/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Shell Operators

Operator Description
Command1 && Command2 Command2 is executed if the exit code of Command1 is zero
Command1 || Command2 Command2 is executed is the exit code of Command1 is not zero

LAB #7

trainee@debian8:~/training$ [[-d /root]] && echo "The root directory exists"
The root directory exists
trainee@debian8:~/training$ [[-d /root]] || echo "The root directory exists"
trainee@debian8:~/training$

The expr Command

Theexpr command's syntax is as follows :

expr SpaceBar number1 SpaceBar operator SpaceBar number2 SpaceBar

ou

expr Tab ⇆ number1 Tab operator Tab ⇆ number2 ↵ Enter

ou

expr SpaceBar string SpaceBar : SpaceBar regular_expression SpaceBar

or

expr Tab ⇆ string Tab ⇆ : Tab ⇆ regular_expression ↵ Enter

2026/02/04 15:38 48/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Maths

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo
\(\) Parentheses

Comparisons

Operator Description
\< Less than
\<= Less than or equal to
\> Greater then
\>= Greater then or equal to
= Equal to
!= Not equal to

Logic

Operator Description
\| Logical OR
\& Logical AND

LAB #8

Add two to the value of $x:

trainee@debian8:~/training$ x=2
trainee@debian8:~/training$ expr $x + 2

2026/02/04 15:38 49/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

4

If the surrounding spaces are removed, the result is completely different:

trainee@debian8:~/training$ expr $x+2
2+2

Certain operators need to be protected:

trainee@debian8:~/training$ expr $x * 2
expr: syntax error
trainee@debian8:~/training$ expr $x * 2
4

Now put the result of a calculation in a variable:

trainee@debian8:~/training$ resultat=`expr $x + 10`
trainee@debian8:~/training$ echo $resultat
12

The let Command

The let command is equivalent to ((expression)). The ((expression)) command provides the following additional features when compared with the expr
command :

greater number of operators,
no need for spaces or tabulations between arguments,
no need to prefix variables with the $ character,
the shell's special characters do not need to be escaped,
variables are defined directly in the command,
faster execution time.

2026/02/04 15:38 50/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Maths

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo
^ Power

Comparisons

Operator Description
< Less than
<= Less than or equal to
> Greater then
>= Greater then or equal to
== Equal
!= Not Equal

Logic

Operator Description
&& Logical AND
|| Logical OR
! Logical negation

Binary

Opérateur Description
~ Binary negation
>> décalage binaire à droite
<< décalage binaire à gauche

2026/02/04 15:38 51/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

Opérateur Description
& Binary AND
| Binary OR
^ Exclusive binary OR

LAB #9

trainee@debian8:~/training$ x=2
trainee@debian8:~/training$ ((x=$x+10))
trainee@debian8:~/training$ echo $x
12
trainee@debian8:~/training$ ((x=$x+20))
trainee@debian8:~/training$ echo $x
32

Control Structures

If

The syntax is as follows:

if condition
then
 command(s)
else
 command(s)
fi

or:

if condition

2026/02/04 15:38 52/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

then
 command(s)
 command(s)
fi

or finally:

if condition
then
 command(s)
elif condition
then
 command(s)
elif condition
then
 command(s)
else
 command(s)

fi

case

The syntax is as follows:

case $variable in
model1) function
 ...
 ;;
model2) function
 ...
 ;;

2026/02/04 15:38 53/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

model3 | model4 | model5) function
 ...
 ;;
esac

Loops

for

The syntax is as follows:

for variable in variable_list
do
 command(s)
done

while

The syntax is as follows:

while condition
do
 command(s)
done

Example

U=1
while [$U -lt $MAX_ACCOUNTS]

2026/02/04 15:38 54/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1
done

Start-up Scripts

When Bash is called as a login shell it executes the start-up scripts in the following order:

/etc/profile,
~/.bash_profile or ~/.bash_login or ~/.profile dependant upon the distribution,

In the cas of Debian Bash executes ~/.profile.

When a login shell is terminated, Bash executes the ~/.bash_logout file if it exists.

Whan Bash is called as an interactive shell as opposed to a login shell, it executes only the ~/.bashrc file.

LAB #10

To do : Using the knowledge you have acquired in this unit, explain each of the following
scripts.

~/.profile

trainee@debian8:~/training$ cat ~/.profile

2026/02/04 15:38 55/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

~/.profile: executed by the command interpreter for login shells.
This file is not read by bash(1), if ~/.bash_profile or ~/.bash_login
exists.
see /usr/share/doc/bash/examples/startup-files for examples.
the files are located in the bash-doc package.

the default umask is set in /etc/profile; for setting the umask
for ssh logins, install and configure the libpam-umask package.
#umask 022

if running bash
if [-n "$BASH_VERSION"]; then
 # include .bashrc if it exists
 if [-f "$HOME/.bashrc"]; then
 . "$HOME/.bashrc"
 fi
fi

set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

~/.bashrc

trainee@debian8:~/training$ cat ~/.bashrc
~/.bashrc: executed by bash(1) for non-login shells.
see /usr/share/doc/bash/examples/startup-files (in the package bash-doc)
for examples

If not running interactively, don't do anything
case $- in
 i) ;;

2026/02/04 15:38 56/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

 *) return;;
esac

don't put duplicate lines or lines starting with space in the history.
See bash(1) for more options
HISTCONTROL=ignoreboth

append to the history file, don't overwrite it
shopt -s histappend

for setting history length see HISTSIZE and HISTFILESIZE in bash(1)
HISTSIZE=1000
HISTFILESIZE=2000

check the window size after each command and, if necessary,
update the values of LINES and COLUMNS.
shopt -s checkwinsize

If set, the pattern "**" used in a pathname expansion context will
match all files and zero or more directories and subdirectories.
#shopt -s globstar

make less more friendly for non-text input files, see lesspipe(1)
#[-x /usr/bin/lesspipe] && eval "$(SHELL=/bin/sh lesspipe)"

set variable identifying the chroot you work in (used in the prompt below)
if [-z "${debian_chroot:-}"] && [-r /etc/debian_chroot]; then
 debian_chroot=$(cat /etc/debian_chroot)
fi

set a fancy prompt (non-color, unless we know we "want" color)
case "$TERM" in
 xterm-color) color_prompt=yes;;
esac

2026/02/04 15:38 57/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

uncomment for a colored prompt, if the terminal has the capability; turned
off by default to not distract the user: the focus in a terminal window
should be on the output of commands, not on the prompt
#force_color_prompt=yes

if [-n "$force_color_prompt"]; then
 if [-x /usr/bin/tput] && tput setaf 1 >&/dev/null; then
 # We have color support; assume it's compliant with Ecma-48
 # (ISO/IEC-6429). (Lack of such support is extremely rare, and such
 # a case would tend to support setf rather than setaf.)
 color_prompt=yes
 else
 color_prompt=
 fi
fi

if ["$color_prompt" = yes]; then
 PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$ '
else
 PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '
fi
unset color_prompt force_color_prompt

If this is an xterm set the title to user@host:dir
case "$TERM" in
xterm*|rxvt*)
 PS1="\[\e]0;${debian_chroot:+($debian_chroot)}\u@\h: \w\a\]$PS1"
 ;;
*)
 ;;
esac

enable color support of ls and also add handy aliases
if [-x /usr/bin/dircolors]; then

2026/02/04 15:38 58/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

 test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval "$(dircolors -b)"
 alias ls='ls --color=auto'
 #alias dir='dir --color=auto'
 #alias vdir='vdir --color=auto'

 #alias grep='grep --color=auto'
 #alias fgrep='fgrep --color=auto'
 #alias egrep='egrep --color=auto'
fi

colored GCC warnings and errors
#export GCC_COLORS='error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01'

some more ls aliases
#alias ll='ls -l'
#alias la='ls -A'
#alias l='ls -CF'

Alias definitions.
You may want to put all your additions into a separate file like
~/.bash_aliases, instead of adding them here directly.
See /usr/share/doc/bash-doc/examples in the bash-doc package.

if [-f ~/.bash_aliases]; then
 . ~/.bash_aliases
fi

enable programmable completion features (you don't need to enable
this, if it's already enabled in /etc/bash.bashrc and /etc/profile
sources /etc/bash.bashrc).
if ! shopt -oq posix; then
 if [-f /usr/share/bash-completion/bash_completion]; then
 . /usr/share/bash-completion/bash_completion
 elif [-f /etc/bash_completion]; then

2026/02/04 15:38 59/59 Command Line Interface

www.ittraining.team - https://www.ittraining.team/

 . /etc/bash_completion
 fi
fi

<html>

Copyright © 2004-2019 Hugh Norris.

</html>

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:deb:6:utilisateur:l105

Last update: 2020/01/30 03:27

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:deb:6:utilisateur:l105

	Command Line Interface
	The Shell
	/bin/bash
	Internal And External Commands
	Aliases
	The Prompt
	The history Command
	The TAB key
	Metacharacters
	The * Metacharacter
	The ? Metacharacter
	The [] Metacharacter
	The extglob Option
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)

	Protecting Metacharacters
	Exit Status
	Redirections
	Pipes
	Command Substitution
	Conditional Command Execution

	Environment Variables
	Principal Variables
	Internationalisation and Localisation
	Special Variables
	The env Commande

	Bash Shell Options
	noclobber
	noglob
	nounset

	Basic Shell Scripting
	Execution
	The read command
	Code de retour
	The IFS Variable

	The test Command
	Testing Files
	LAB #1

	Testing Strings
	LAB #2

	Testing Numbers
	LAB #3

	Expressions
	LAB #4

	Testing the User Environment
	LAB #5

	The [[expression]] Command
	LAB #6

	Shell Operators
	LAB #7

	The expr Command
	Maths
	Comparisons
	Logic
	LAB #8

	The let Command
	Maths
	Comparisons
	Logic
	Binary
	LAB #9

	Control Structures
	If
	case

	Loops
	for
	while
	Example

	Start-up Scripts
	LAB #10
	~/.profile
	~/.bashrc

