
2026/02/04 18:14 1/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Version : 2023.01

Dernière mise-à-jour : 2023/07/14 11:26

LCF903 - Scripting Shell

Contenu du Module

LCF903 - Scripting Shell
Contenu du Module
LAB #1 - Les Scripts Shell

1.1 - Exécution
1.2 - La commande read

Code de retour
La variable IFS

1.3 - La commande test
Tests de Fichiers
Tests de chaînes de caractère
Tests sur des nombres
Les opérateurs
Tests d'environnement utilisateur

1.4 - La commande [[expression]]
1.5 - Opérateurs du shell
1.6 - L'arithmétique

La commande expr
Opérateurs Arithmétiques
Opérateurs de Comparaison
Opérateurs Logiques

La commande let
Opérateurs Arithmétiques
Opérateurs de comparaison

2026/02/04 18:14 2/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Opérateurs Logiques
Opérateurs travaillant sur les bits

1.7 - Structures de contrôle
If
case

Exemple
Boucles

for
while
Exemple

1.8 - Scripts de Démarrage
~/.bash_profile
~/.bashrc

LAB #2 - Automatiser la Gestion des Utilisateurs et Groupes,
Fonction cree_user,
Fonction modif_user,
Fonction affiche_user,
Fonction cree_liste_user,
Fonction cree_group,
Fonction modif_group,
Fonction delete_group,
Fonction affiche_group,
Menu des choix.

LAB #3 - Automatiser la Gestion des Sauvegardes,
Création de la fonction archive_rep,
Création de la fonction restaure_rep,
Création de la fonction affiche_archive,
Création de la fonction compress_archive,
Création de la fonction decompress_archive,
Gestion des erreurs.

2026/02/04 18:14 3/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

LAB #1 - Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point où vous êtes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrôle des services.

Écrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut être adressée que lors
d'une formation dédiée à l'écriture des scripts.

1.1 - Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une manière séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse être lu au quel cas le script est exécuté par un shell fils soit en l'appelant en argument à l'appel du
shell :

/bin/bash myscript

soit en redirigeant son entrée standard :

/bin/bash < myscript

Dans le cas où le droit d'exécution est positionné sur le fichier script et à condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
l'utilisateur qui le lance, le script peut être lancé en l'appelant simplement par son nom :

myscript

Pour lancer le script sans qu'il soit dans un répertoire du PATH, il convient de se placer dans le répertoire contenant le script et de le lancer ainsi :

./myscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. myscript

2026/02/04 18:14 4/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent à d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractère #.

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit être utilisé pour
l'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de l'utilisateur qui le lance. Le pseudo commentaire commence avec les
caractères #!. Chaque script commence donc par une ligne similaire à celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent être saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer l'utilisation de cette commande, saisissez la suite de commandes suivante :

[trainee@centos8 ~]$ script
Script started, file is typescript
[trainee@centos8 ~]$ pwd
/home/trainee
[trainee@centos8 ~]$ ls
aac abc bca codes errorlog file file1 file2 training typescript xyz
[trainee@centos8 ~]$ exit
exit
Script done, file is typescript

[trainee@centos8 ~]$ cat typescript
Script started on 2021-04-20 10:59:58-04:00
[trainee@centos8 ~]$ pwd
/home/trainee
[trainee@centos8 ~]$ ls
aac abc bca codes errorlog file file1 file2 training typescript xyz
[trainee@centos8 ~]$ exit
exit

Script done on 2021-04-20 11:00:09-04:00

2026/02/04 18:14 5/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Cette procédure peut être utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer l'écriture et l'exécution d'un script, créez le fichier myscript avec vi :

[trainee@centos8 ~]$ vi myscript
[trainee@centos8 ~]$ cat myscript
pwd
ls

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument à /bin/bash :

[trainee@centos8 ~]$ /bin/bash myscript
/home/trainee
aac bca errorlog file1 myscript typescript
abc codes file file2 training xyz

Lancez ensuite le script en redirigeant son entrée standard :

[trainee@centos8 ~]$ /bin/bash < myscript
/home/trainee
aac bca errorlog file1 myscript typescript
abc codes file file2 training xyz

Pour lancer le script en l'appelant simplement par son nom, son chemin doit être inclus dans votre PATH:

[trainee@centos8 ~]$ echo $PATH
/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

Dans le cas de RHEL/CentOS, même si PATH contient $HOME/bin, le répertoire n'existe pas :

[trainee@centos8 ~]$ ls
aac bca errorlog file1 myscript typescript
abc codes file file2 training xyz

2026/02/04 18:14 6/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Créez donc ce répertoire :

[trainee@centos8 ~]$ mkdir bin

Ensuite déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

[trainee@centos8 ~]$ mv myscript ~/bin
[trainee@centos8 ~]$ chmod u+x ~/bin/myscript

Exécutez maintenant votre script en l'appelant par son nom à partir du répertoire /tmp :

[trainee@centos8 ~]$ cd /tmp
[trainee@centos8 tmp]$ myscript
/tmp
expand
expand1
filepartaa
filepartab
filepartac
filepartad
filepartae
greptest
greptest1
greptest.patch
newfile
sales.awk
sales.txt
scriptawk
sedtest
sedtest1
systemd-private-d9ff2376a8a44f0392f860d80c839be4-chronyd.service-6im4Ii

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :

2026/02/04 18:14 7/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

[trainee@centos8 tmp]$ cd ~/bin
[trainee@centos8 bin]$./myscript
/home/trainee/bin
myscript
[trainee@centos8 bin]$. myscript
/home/trainee/bin
myscript

A faire : Notez bien la différence entre les sorties de cette dernière commande et la
précédente. Expliquez pourquoi.

1.2 - La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est l'espace. Par conséquent il est intéressant de noter les exemples suivants :

[trainee@centos8 bin]$ read var1 var2 var3 var4
fenestros edu is great!
[trainee@centos8 bin]$ echo $var1
fenestros
[trainee@centos8 bin]$ echo $var2
edu
[trainee@centos8 bin]$ echo $var3
is
[trainee@centos8 bin]$ echo $var4
great!

Important: Notez que chaque champs a été placé dans une variable différente. Notez

2026/02/04 18:14 8/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

aussi que par convention les variables déclarées par des utilisateurs sont en miniscules
afin de les distinguer des variables système qui sont en majuscules.

[trainee@centos8 bin]$ read var1 var2
fenestros edu is great!
[trainee@centos8 bin]$ echo $var1
fenestros
[trainee@centos8 bin]$ echo $var2
edu is great!

Important : Notez que dans le deuxième cas, le reste de la ligne après le mot fenestros
est mis dans $var2.

Code de retour

La commande read renvoie un code de retour de 0 dans le cas où elle ne reçoit pas l'information fin de fichier matérialisée par les touches Ctrl+D .
Le contenu de la variable var peut être vide et la valeur du code de retour 0 grâce à l'utilisation de la touche Entrée :

[trainee@centos8 bin]$ read var

↵ Entrée

[trainee@centos8 bin]$ echo $?
0
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]$

2026/02/04 18:14 9/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Le contenu de la variable var peut être vide et la valeur du code de retour autre que 0 grâce à l'utilisation des touches Ctrl+D :

[trainee@centos8 bin]$ read var

Ctrl+D

[trainee@centos8 bin]$ echo $?
1
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]$

La variable IFS

La variable IFS contient par défaut les caractères Espace , Tab et Entrée :

[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de l'entrée
standard au format octal. Ceci est utile afin de visualiser les caractères non-imprimables.
L'option -c permet de sélectionner des caractères ASCII ou des backslash dans le fichier ou
dans le contenu fourni à l'entrée standard.

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut être modifiée :

[trainee@centos8 bin]$ OLDIFS="$IFS"
[trainee@centos8 bin]$ IFS=":"

2026/02/04 18:14 10/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 : \n
0000002

De cette façon l'espace redevient un caractère normal :

[trainee@centos8 bin]$ read var1 var2 var3
fenestros:edu is:great!
[trainee@centos8 bin]$ echo $var1
fenestros
[trainee@centos8 bin]$ echo $var2
edu is
[trainee@centos8 bin]$ echo $var3
great!

Restaurez l'ancienne valeur de IFS avec la commande IFS=“$OLDIFS”

[trainee@centos8 bin]$ IFS="$OLDIFS"
[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

1.3 - La commande test

La commande test peut être utilisée avec deux syntaxes :

test expression

ou

[EspaceexpressionEspace]

2026/02/04 18:14 11/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Tests de Fichiers

Test Description
-f fichier Retourne vrai si fichier est d'un type standard
-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier
-w fichier Retourne vrai si l'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe
-s fichier Retourne vrai si fichier n'est pas vide
fichier1 -nt fichier2 Retourne vrai si fichier1 est plus récent que fichier2
fichier1 -ot fichier2 Retourne vrai si fichier1 est plus ancien que fichier2
fichier1 -ef fichier2 Retourne vrai si fichier1 est identique à fichier2

Testez si le fichier a100 est un fichier ordinaire :

[trainee@centos8 bin]$ cd ../training/
[trainee@centos8 training]$ test -f a100
[trainee@centos8 training]$ echo $?
0
[trainee@centos8 training]$ [-f a100]
[trainee@centos8 training]$ echo $?
0

Testez si le fichier a101 existe :

[trainee@centos8 training]$ [-f a101]
[trainee@centos8 training]$ echo $?
1

Testez si /home/trainee/training est un répertoire :

[trainee@centos8 training]$ [-d /home/trainee/training]

2026/02/04 18:14 12/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

[trainee@centos8 training]$ echo $?
0

Tests de chaînes de caractère

Test Description
-n chaîne Retourne vrai si chaîne n'est pas de longueur 0
-z chaîne Retourne vrai si chaîne est de longueur 0
string1 = string2 Retourne vrai si string1 est égale à string2
string1 != string2 Retourne vrai si string1 est différente de string2
string1 Retourne vrai si string1 n'est pas vide

Testez si les deux chaînes sont égales :

[trainee@centos8 training]$ string1="root"
[trainee@centos8 training]$ string2="fenestros"
[trainee@centos8 training]$ [$string1 = $string2]
[trainee@centos8 training]$ echo $?
1

Testez si la string1 n'a pas de longueur 0 :

[trainee@centos8 training]$ [-n $string1]
[trainee@centos8 training]$ echo $?
0

Testez si la string1 a une longueur de 0 :

[trainee@centos8 training]$ [-z $string1]
[trainee@centos8 training]$ echo $?
1

2026/02/04 18:14 13/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Tests sur des nombres

Test Description
value1 -eq value2 Retourne vrai si value1 est égale à value2
value1 -ne value2 Retourne vrai si value1 n'est pas égale à value2
value1 -lt value2 Retourne vrai si value1 est inférieure à value2
value1 -le value2 Retourne vrai si value1 est inférieur ou égale à value2
value1 -gt value2 Retourne vrai si value1 est supérieure à value2
value1 -ge value2 Retourne vrai si value1 est supérieure ou égale à value2

Comparez les deux nombres value1 et value2 :

[trainee@centos8 training]$ read value1
35
[trainee@centos8 training]$ read value2
23
[trainee@centos8 training]$ [$value1 -lt $value2]
[trainee@centos8 training]$ echo $?
1
[trainee@centos8 training]$ [$value2 -lt $value1]
[trainee@centos8 training]$ echo $?
0
[trainee@centos8 training]$ [$value2 -eq $value1]
[trainee@centos8 training]$ echo $?
1

Les opérateurs

Test Description
!expression Retourne vrai si expression est fausse
expression1 -a expression2 Représente un et logique entre expression1 et expression2
expression1 -o expression2 Représente un ou logique entre expression1 et expression2

2026/02/04 18:14 14/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Test Description
\(expression\) Les parenthèses permettent de regrouper des expressions

Testez si $file n'est pas un répertoire :

[trainee@centos8 training]$ file=a1OO
[trainee@centos8 training]$ [! -d $file]
[trainee@centos8 training]$ echo $?
0

Testez si $directory est un répertoire et si l'utilisateur à le droit de le traverser :

[trainee@centos8 training]$ directory=/usr
[trainee@centos8 training]$ [-d $directory -a -x $directory]
[trainee@centos8 training]$ echo $?
0

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos8 training]$ [-w a100 -a \(-d /usr -o -d /tmp \)]
[trainee@centos8 training]$ echo $?
0

Tests d'environnement utilisateur

Test Description
-o option Retourne vrai si l'option du shell “option” est activée

[trainee@centos8 training]$ [-o allexport]
[trainee@centos8 training]$ echo $?
1

2026/02/04 18:14 15/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

1.4 - La commande [[expression]]

La commande [[EspaceexpressionEspace]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression]] sauf -a et -o qui sont remplacés par && et || respectivement :

Test Description
!expression Retourne vrai si expression est fausse
expression1 && expression2 Représente un et logique entre expression1 et expression2
expression1 || expression2 Représente un ou logique entre expression1 et expression2
(expression) Les parenthèses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description
string = modele Retourne vrai si chaîne correspond au modèle
string != modele Retourne vrai si chaîne ne correspond pas au modèle
string1 < string2 Retourne vrai si string1 est lexicographiquement avant string2
string1 > string2 Retourne vrai si string1 est lexicographiquement après string2

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos8 training]$ [[-w a100 && (-d /usr || -d /tmp)]]
[trainee@centos8 training]$ echo $?
0

1.5 - Opérateurs du shell

Opérateur Description
Commande1 && Commande2 Commande 2 est exécutée si la première commande renvoie un code vrai
Commande1 || Commande2 Commande 2 est exécutée si la première commande renvoie un code faux

[trainee@centos8 training]$ [[-d /root]] && echo "The root directory exists"

2026/02/04 18:14 16/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

The root directory exists
[trainee@centos8 training]$ [[-d /root]] || echo "The root directory exists"
[trainee@centos8 training]$

1.6 - L'arithmétique

La commande expr

La commande expr prend la forme :

expr Espace value1 Espace opérateur Espace value2 Entrée

ou

expr Tab value1 Tab opérateur Tab value2 Entrée

ou

expr Espace chaîne Espace : Espace expression_régulière Entrée

ou

expr Tab chaîne Tab : Tab expression_régulière Entrée

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo

2026/02/04 18:14 17/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Opérateur Description
\(\) Parenthèses

Opérateurs de Comparaison

Opérateur Description
\< Inférieur
\<= Inférieur ou égal
\> Supérieur
\>= Supérieur ou égal
= égal
!= inégal

Opérateurs Logiques

Opérateur Description
\| ou logique
\& et logique

Ajoutez 2 à la valeur de $x :

[trainee@centos8 training]$ x=2
[trainee@centos8 training]$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

[trainee@centos8 training]$ expr $x+2
2+2

Les opérateurs doivent être protégés :

[trainee@centos8 training]$ expr $x * 2

2026/02/04 18:14 18/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

expr: syntax error
[trainee@centos8 training]$ expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

[trainee@centos8 training]$ resultat=`expr $x + 10`
[trainee@centos8 training]$ echo $resultat
12

La commande let

La commande let est l'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $
les caractères spéciaux du shell n'ont pas besoin d'être protégés
les affectations se font dans la commande
exécution plus rapide

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
^ Puissance

2026/02/04 18:14 19/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Opérateurs de comparaison

Opérateur Description
< Inférieur
<= Inférieur ou égal
> Supérieur
>= Supérieur ou égal
== égal
!= inégal

Opérateurs Logiques

Opérateur Description
&& et logique
|| ou logique
! négation logique

Opérateurs travaillant sur les bits

Opérateur Description
~ négation binaire
>> décalage binaire à droite
<< décalage binaire à gauche
& et binaire
| ou binaire
^ ou exclusif binaire

[trainee@centos8 training]$ x=2
[trainee@centos8 training]$ ((x=$x+10))
[trainee@centos8 training]$ echo $x
12
[trainee@centos8 training]$ ((x=$x+20))
[trainee@centos8 training]$ echo $x

2026/02/04 18:14 20/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

32

1.7 - Structures de contrôle

If

La syntaxe de la commande If est la suivante :

if condition
then
 commande(s)
else
 commande(s)
fi

ou :

if condition
then
 commande(s)
 commande(s)
fi

ou encore :

if condition
then
 commande(s)
elif condition
then
 commande(s)
elif condition

2026/02/04 18:14 21/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

then
 commande(s)
else
 commande(s)

fi

Créez le script user_check suivant :

[trainee@centos8 training]$ vi user_check
[trainee@centos8 training]$ cat user_check
#!/bin/bash
if [$# -ne 1] ; then
 echo "Mauvais nombre d'arguments"
 echo "Usage : $0 nom_utilisateur"
 exit 1
fi
if grep "^$1:" /etc/passwd > /dev/null
then
 echo "Utilisateur $1 est défini sur ce système"
else
 echo "Utilisateur $1 n'est pas défini sur ce système"
fi
exit 0

Testez-le :

[trainee@centos8 training]$ chmod 770 user_check
[trainee@centos8 training]$./user_check
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
[trainee@centos8 training]$./user_check root
Utilisateur root est défini sur ce système
[trainee@centos8 training]$./user_check mickey mouse

2026/02/04 18:14 22/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
[trainee@centos8 training]$./user_check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce système

case

La syntaxe de la commande case est la suivante :

case $variable in
modele1) commande
 ...
 ;;
modele2) commande
 ...
 ;;
modele3 | modele4 | modele5) commande
 ...
 ;;
esac

Exemple

 case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart|reload)

2026/02/04 18:14 23/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 1
esac

Important : L'exemple indique que dans le cas où le premier argument qui suit le nom du
script contenant la clause case est start, la fonction start sera exécutée. La fonction start
n'a pas besoin d'être définie dans case et est donc en règle générale définie en début de
script. La même logique est appliquée dans le cas où le premier argument est stop,
restart ou reload et status. Dans tous les autres cas, représentés par une étoile, case
affichera la ligne Usage: $0 {start|stop|restart|status} où $0 est remplacé par le nom
du script.

1.8 - Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste_variables
do
 commande(s)
done

2026/02/04 18:14 24/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

while

La syntaxe de la commande while est la suivante :

while condition
do
 commande(s)
done

Exemple

U=1
while [$U -lt $MAX_ACCOUNTS]
do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1
done

2.8 - Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans l'ordre suivant :

/etc/profile,
~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de RHEL/CentOS, le système exécute le fichier ~/.bash_profile.

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

2026/02/04 18:14 25/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts
suivants ligne par ligne.

~/.bash_profile

[trainee@centos8 training]$ cat ~/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

~/.bashrc

[trainee@centos8 training]$ cat ~/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific environment

2026/02/04 18:14 26/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export PATH

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions

LAB #2 - Automatiser la Gestion des Utilisateurs et Groupes

A faire : Etudiez les fonctions cree_user, modif_user, affiche_user, cree_liste_user,
cree_group, modif_group, delete_group, affiche_group, et le menu des choix.

LAB #3 - Automatiser la Gestion des Sauvegardes

A faire : Créez les fonctions archive_rep, restaure_rep, affiche_archive, compress_archive,
decompress_archive en incluant la gestion des erreurs.

From:
https://www.ittraining.team/ - www.ittraining.team

Permanent link:
https://www.ittraining.team/doku.php?id=elearning:workbooks:centos:8:lcf800:l703

Last update: 2023/07/14 11:26

https://www.ittraining.team/
https://www.ittraining.team/doku.php?id=elearning:workbooks:centos:8:lcf800:l703

2026/02/04 18:14 27/27 LCF903 - Scripting Shell

www.ittraining.team - https://www.ittraining.team/

	LCF903 - Scripting Shell
	Contenu du Module
	LAB #1 - Les Scripts Shell
	1.1 - Exécution
	1.2 - La commande read
	Code de retour
	La variable IFS

	1.3 - La commande test
	Tests de Fichiers
	Tests de chaînes de caractère
	Tests sur des nombres
	Les opérateurs
	Tests d'environnement utilisateur

	1.4 - La commande [[expression]]
	1.5 - Opérateurs du shell
	1.6 - L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits

	1.7 - Structures de contrôle
	If
	case
	Exemple

	1.8 - Boucles
	for
	while
	Exemple

	2.8 - Scripts de Démarrage
	~/.bash_profile
	~/.bashrc

	LAB #2 - Automatiser la Gestion des Utilisateurs et Groupes
	LAB #3 - Automatiser la Gestion des Sauvegardes

