Version: 2020.01

Last update: 2020/08/27 16:13

DOE100 - Docker: Implementation

Présentation

Objectives: Master the implementation of Operating-system-level virtualization with Docker.

Who can benefit: Linux Technicians and Administrators.

Prerequisites: One of the following certifications or the equivalent skills: CompTIA Linux+ Powered by LPI or LPIC-1 or SUSE CLA or ITT Debian Linux - Technician or ITT CentOS Linux - Technician. **Learning technique**: Clear, theoretical course content divided into lessons and extensive LABS. **Student Progression**: Student progression is monitored both in terms of effective attendance and

in terms of comprehension using self-assessment tests.

Duration: 2 days (14 hours).

Prerequisites

Hardware

- A computer running MacOS, Linux, Windows[™] or Solaris[™]
- AZERTY FR or QWERTY US keyboard,
- Minimum 4 GB of RAM,
- Minimum dual-core processor,
- Headphones/Earphones,
- A microphone (optional).

Software

- If Windows[™] Putty and WinSCP,
- Chrome or Firefox web browser.

Internet

- A fast Internet connection (4G minimum) and **no** proxy,
- Unhindered access to the following domains: https://my-short.link, https://itraining.center, https://ittraining.io, https://ittraining.institute, https://ittraining.support.

Curriculum

Day #1

- DOE100 Docker : Implementation 1 hour.
 - Prerequisites
 - Hardware
 - Software
 - Internet
 - Using the Infrastructure
 - Connecting to the Cloud Server
 - Linux, MacOS and Windows 10 with a built-in ssh client
 - Windows 7 and Windows 10 without a built-in ssh client
 - Starting the Virtual Machine
 - Connecting to the Virtual Machine
 - Course Curriculum

• DOE101 - Operating-system-level virtualization - 3 hours.

- What is Operating-system-level virtualization?
 - A brief history
- What are Namespaces?
- What are CGroups?
 - LAB #1 Working with CGroups
 - 1.1 Capping memory usage
 - 1.2 The cgroup-tools package
 - The cgcreate command
 - The cgexec command
 - The cgdelete command
 - The /etc/cgconfig.conf file
- What are Linux Containers?
 - LAB #2 Working with LXC
 - 2.1 Installation
 - 2.2 Creating a simple container
 - 2.3 Starting a simple container
 - 2.4 Attaching a terminal to a running container
 - 2.5 Basic LXC commands
 - The lxc-console command
 - The lxc-stop command
 - The lxc-execute command
 - The lxc-info command
 - The lxc-freeze command
 - The lxc-unfreeze command
 - Other commands
 - 2.6 Creating an unprivileged container
 - User Namespaces
 - Creating a dedicated user
 - Setting up the mapping
 - Creating the container
 - Checking out the mapping
 - 2.7 Creating an unpersistant container
 - The lxc-copy command
 - 2.8 Backing up containers
 - The lxc-snapshot command

• DOE102 - Getting Started with Docker - 3 hours.

- What is Docker?
- ∘ LAB #1 Working with Docker
 - 1.1 Installing Docker
 - 1.2 Starting a container
 - 1.3 Viewing a list of containers and images
 - 1.4 Searching for an image in a repository
 - 1.5 Deleting a container
 - 1.6 Creating an image from a modified container
 - 1.7 Deleting an image
 - 1.8 Creating a container with a specific name
 - 1.9 Executing a command within a container
 - 1.10 Injecting Environment Variables into a container
 - 1.11 Modifying the hostname of a container
 - 1.12 Port mapping
 - 1.13 Starting a container in the background
 - 1.14 Accessing services from outside the container
 - 1.15 Starting and stopping a container
 - 1.16 Using Signals with a Container
 - 1.17 Deleting a running container
 - 1.18 Using volumes
 - 1.19 Downloading an image without creating a container
 - 1.20 Attaching to a running container
 - 1.21 Installing a package in a container
 - 1.22 Using the docker commit command
 - 1.23 Connecting to a running server within the container

Day #2

- DOE103 Managing Docker Images 3 hours.
 - LAB #1 Recreating an official Docker image
 - 1.1 Dockerfiles
 - 1.2 FROM
 - 1.3 RUN
 - 1.4 ENV
 - 1.5 VOLUME
 - 1.6 COPY
 - 1.7 ENTRYPOINT
 - 1.8 EXPOSE
 - 1.9 CMD
 - 1.10 Other commands
 - LAB #2 Creating a simple Dockerfile
 - 2.1 Create and test the script
 - 2.2 Cache management
- DOE104 Managing volumes, the network and resources 3 hours.
 - LAB #1 Managing volumes
 - 1.1 Automatically
 - 1.2 Manually
 - LAB #2 Managing the network

- 2.1 Docker networks
 - Bridge
 - Host
 - None
 - Links
- 2.2 Wordpress in a container
- 2.3 Managing microservices
- ∘ LAB #3 Monitoring
 - 3.1 Logs
 - 3.2 Processus
 - **3.3** Activity
- ∘ LAB #4 Managing resources
 - **4.1** Memory

• DOE105 - Course completion - 1 hour.

- What's next?
 - Training materials
 - What you need
 - Hardware
 - Software
 - Virtual Machine
- What we covered
 - Day #1
 - Day #2
- Resetting the course infrastructure
- Evaluate the training session
- Thanks

<html> <DIV ALIGN="CENTER"> Copyright © 2020 Hugh Norris

 Non-contractual document. The curriculum can be changed without notice. </div> </html>